Advertisement

Activity-Based Protein Profiling of Non-ribosomal Peptide Synthetases

  • Fumihiro IshikawaEmail author
  • Genzoh Tanabe
  • Hideaki KakeyaEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 420)

Abstract

Non-ribosomal peptide (NRP) natural products are one of the most promising resources for drug discovery and development because of their wide-ranging of therapeutic potential, and their behavior as virulence factors and signaling molecules. The NRPs are biosynthesized independently of the ribosome by enzyme assembly lines known as the non-ribosomal peptide synthetase (NRPS) machinery. Genetic, biochemical, and bioinformatics analyses have provided a detailed understanding of the mechanism of NRPS catalysis. However, proteomic techniques for natural product biosynthesis remain a developing field. New strategies are needed to investigate the proteomes of diverse producer organisms and directly analyze the endogenous NRPS machinery. Advanced platforms should verify protein expression, protein folding, and activities and also enable the profiling of the NRPS machinery in biological samples from wild-type, heterologous, and engineered bacterial systems. Here, we focus on activity-based protein profiling strategies that have been recently developed for studies aimed at visualizing and monitoring the NRPS machinery and also for rapid labeling, identification, and biochemical analysis of NRPS enzyme family members as required for proteomic chemistry in natural product sciences.

Keywords

Natural product biosynthesis Non-ribosomal peptide synthetase Adenylation domain Thiolation domain Activity-based probe 

Notes

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in Aid for Scientific Research on Innovative Areas [17H05438 (F.I.) and 17H06401 (H.K.)] and the Antiaging Project for Private Universities.

Conflict of Interest

The authors declare no competing financial interest.

References

  1. Ames BD, Walsh CT (2010) Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Biochemistry 49:3351–3365PubMedPubMedCentralGoogle Scholar
  2. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494PubMedGoogle Scholar
  3. Baltz RH (2014) Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol 3:748–758PubMedGoogle Scholar
  4. Barajas JF, Finzel K, Valentic TR et al (2016) Structural and biochemical analysis of protein–protein interactions between the acyl-carrier protein and product template domain. Angew Chem Int Ed 55:13005–13009Google Scholar
  5. Barry SM, Challis GL (2009) Recent advances in siderophore biosynthesis. Curr Opin Chem Biol 13:205–215PubMedGoogle Scholar
  6. Beld J, Sonnenschein EC, Vickery CR et al (2014) The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 31:61–108PubMedPubMedCentralGoogle Scholar
  7. Blatti JL, Beld J, Behnke CA et al (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. PLoS ONE 7:e42949PubMedPubMedCentralGoogle Scholar
  8. Bode HB, Müller R (2005) The impact of bacterial genomics on natural product research. Angew Chem Int Ed 44:6828–6846Google Scholar
  9. Bozhüyük KAJ, Fleischhacker F, Linck A et al (2018) De novo design and engineering of non-ribosomal peptide synthetases. Nat Chem.  https://doi.org/10.1038/NCHEM.2890CrossRefPubMedGoogle Scholar
  10. Brieke C, Yim G, Peschke M et al (2016) Catalytic promiscuity of glycopeptide N-methyltransferases enables bio-orthogonal labelling of biosynthetic intermediates. Chem Commun 52:13679–13682Google Scholar
  11. Bumpus SB, Kelleher NL (2008) Accessing natural product biosynthetic processes by mass spectrometry. Curr Opin Chem Biol 12:475–482PubMedPubMedCentralGoogle Scholar
  12. Bumpus SB, Evans BS, Thomas PM et al (2009) A proteomics approach to discovering natural products and their biosynthetic pathways. Nat Biotechnol 27:951–956PubMedPubMedCentralGoogle Scholar
  13. Calcott MJ, Owen JG, Lamont IL et al (2014) Biosynthesis of novel pyoverdines by domain substitution in a nonribosomal peptide synthetase of Pseudomonas aeruginosa. Appl Environ Microbiol 80:5723–5731PubMedPubMedCentralGoogle Scholar
  14. Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224PubMedGoogle Scholar
  15. Chalut C, Botella L, Sousa-D’Auris C et al (2006) The nonredundant roles of two 4’-phosphopantetheinyl transferases in vital processes of Mycobacteria. Proc Natl Acad Sci U S A 103:8511–8516PubMedPubMedCentralGoogle Scholar
  16. Chen WH, Li K, Sandhya N et al (2016) Interdomain and intermodule organization in epimerization domain containing nonribosomal peptide synthetases. ACS Chem Biol 11:2293–2303PubMedGoogle Scholar
  17. Chuh KN, Batt AR, Pratt MR (2016) Chemical methods for encoding and decoding of posttranslational modifications. Cell Chem Biol 23:86–107PubMedPubMedCentralGoogle Scholar
  18. Cisar JS, Tan DS (2008) Small molecule inhibition of microbial natural product biosynthesis—an emerging antibiotic strategy. Chem SocRev 37:1320–1329Google Scholar
  19. Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548PubMedGoogle Scholar
  20. Conti E, Stachelhaus T, Marahiel MA et al (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16: 4174–4183PubMedPubMedCentralGoogle Scholar
  21. Cosmina P, Rodriguez F, de Ferra F et al (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:821–831PubMedGoogle Scholar
  22. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414Google Scholar
  23. Crosby J, Crump MP (2012) The structural role of the carrier protein—active controller or passive carrier. Nat Prod Rep 29:1111–1137PubMedGoogle Scholar
  24. De Voss JJ, Rutter K, Schroeder BG et al (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97:1252–1257PubMedPubMedCentralGoogle Scholar
  25. Dormán G, Nakamura H, Pulsipher A et al (2016) The life of Pi star: exploring the exciting and forbidden worlds of the benzophenone photophore. Chem Rev 116:15284–15398PubMedGoogle Scholar
  26. Dorrestein PC, Blackhall J, Straight PD et al (2006a) Activity screening of carrier domains within nonribosomal peptide synthetases using complex substrate mixtures and large molecule mass spectrometry. Biochemistry 45:1537–1546PubMedPubMedCentralGoogle Scholar
  27. Dorrestein PC, Bumpus SB, Calderone CT et al (2006b) Facile detection of acyl and peptidyl intermediates on thiotemplate carrier domains via phosphopantetheinyl elimination reactions during tandem mass spectrometry. Biochemistry 45:12756–12766PubMedPubMedCentralGoogle Scholar
  28. Duckworth BP, Wilson DJ, Nelson KM et al (2012) Development of a selective activity-based probe for adenylating enzymes: profiling MbtA involved in siderophore biosynthesis from mycobacterium tuberculosis. ACS Chem Biol 7:1653–1658PubMedPubMedCentralGoogle Scholar
  29. Evans BS, Chen Y, Metcalf WW et al (2011) Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Chem Biol 18:601–607PubMedPubMedCentralGoogle Scholar
  30. Ferreras JA, Ryu JS, Di Lello F et al (2005) Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia petis. Nat Chem Biol 1:29–32PubMedGoogle Scholar
  31. Finking R, Neumüller A, Solsbacher J et al (2003) Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases. ChemBioChem 4:903–906PubMedGoogle Scholar
  32. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496PubMedGoogle Scholar
  33. Foley TL, Young BS, Burkart MD (2009) Phosphopantetheinyl transferase inhibition and secondary metabolism. FEBS J 276:7134–7145PubMedGoogle Scholar
  34. Foley TL, Rai G, Yasgar A et al (2014) 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl) piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth. J Med Chem 57:1063–1078PubMedPubMedCentralGoogle Scholar
  35. Gehring AM, Mori I, Walsh CT (1998) Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37:2648–2659PubMedGoogle Scholar
  36. Gulick AM (2016) Structural insights into the necessary conformational changes of modular nonribosomal peptide synthetases. Curr Opin Chem Biol 35:89–96PubMedPubMedCentralGoogle Scholar
  37. Hornbogen T, Riechers SP, Prinz B et al (2007) Functional characterization of the recombinant N-methyltransferase domain from the multienzyme enniatin synthetase. ChemBioChem 8:1048–1054PubMedGoogle Scholar
  38. Hoyer KM, Mahlert C, Marahiel MA (2007) The iterative gramicidin S thioesterase catalyzes peptide ligation and cyclization. Chem Biol 14:13–22PubMedGoogle Scholar
  39. Huang T, Wang Y, Yin J et al (2011) Identification and characterization of the pyridomycin biosynthetic gene cluster of Streptomyces pyridomyceticus NRRL B-2517. J Biol Chem 286:20648–20657PubMedPubMedCentralGoogle Scholar
  40. Hur GH, Vickery CR, Burkart MD (2012) Exploration of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 10:1074–1098Google Scholar
  41. Isono K, Uramoto M, Kusakabe H et al (1984) Ascamycin and dealanylascamycin, nucleoside antibiotics from Streptomyces sp. J Antibiot 37:670–672PubMedGoogle Scholar
  42. Ishikawa F, Haushalter RW, John Lee D et al (2013) Sulfonyl 3-alkynyl pantetheinamides as mechanism-based cross-linkers of acyl carrier protein dehydratase. J Am Chem Soc 135:8846–8849PubMedPubMedCentralGoogle Scholar
  43. Ishikawa F, Kakeya H (2014) Specific enrichment of nonribosomal peptide synthetase module by an affinity probe for adenylation domains. Bioorg Med Chem Lett 24:865–869PubMedGoogle Scholar
  44. Ishikawa F, Miyamoto K, Konno S et al (2015a) Accurate detection of adenylation domain functions in nonribosomal peptide synthetases by an enzyme-linked immunosorbent assay system using active site-directed probes for adenylation domains. ACS Chem Biol 10:2816–2826PubMedGoogle Scholar
  45. Ishikawa F, Konno S, Suzuki T et al (2015b) Profiling nonribosomal peptide synthetase activities using chemical proteomic probes for adenylation domains. ACS Chem Biol 10:1989–1997PubMedGoogle Scholar
  46. Ishikawa F, Suzuki T, Dohmae N et al (2015c) A multiple-labeling strategy for nonribosomal peptide synthetases using active-site-directed proteomic probes for adenylation domains. ChemBioChem 16:2590–2594PubMedGoogle Scholar
  47. Ishikawa F, Sugimoto H, Kakeya H (2016) In vitro investigation of crosstalk between fatty Acid and polyketide synthases in the andrimid biosynthetic assembly line. ChemBioChem 17:2137–2142PubMedGoogle Scholar
  48. Ishikawa F, Kasai S, Kakeya H et al (2017) Visualizing the adenylation activities and protein–protein interactions of aryl acid adenylating enzymes. ChemBioChem 18:2199–2204PubMedGoogle Scholar
  49. Jaremko MJ, John Lee D, Patel A et al (2017) Manipulating protein–protein interactions in nonribosomal peptide synthetase type II peptidyl carrier proteins. Biochemistry 56:5269–5273PubMedPubMedCentralGoogle Scholar
  50. Jenni S, Leibundgut M, Maier T et al (2006) Architecture of a fungal fatty acid synthase at 5 Å resolution. Science 311:1263–1268PubMedGoogle Scholar
  51. Kasai S, Konno S, Ishikawa F et al (2015) Functional profiling of adenylation domains in nonribosomal peptide synthetases by competitive activity-based protein profiling. Chem Commum 51:15764–15767Google Scholar
  52. Kasai S, Ishikawa F, Suzuki T et al (2016) A chemical proteomic probe for detecting native carrier protein motifs in nonribosomal peptide synthetases. Chem Commum 52:14129–14132Google Scholar
  53. Keating TA, Gary Marshall C, Walsh CT (2000) Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF, and VibH. Biochemistry 39:15522–15530PubMedGoogle Scholar
  54. Keating TA, Ehmann DE, Kohli RM et al (2001) Chain termination steps in nonribosomal peptide synthetase assembly lines: directed acyl-S-enzyme breakdown in antibiotic and siderophore biosynthesis. ChemBioChem 2:99–107PubMedGoogle Scholar
  55. Kohli RM, Walsh CT, Burkart MD (2002) Biomimetic synthesis and optimization of cyclic peptide sntibiotics. Nature 418:658–661PubMedGoogle Scholar
  56. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137PubMedGoogle Scholar
  57. Konno S, Ishikawa F, Suzuki T et al (2015) Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. Chem Commum 51:2262–2265Google Scholar
  58. Konno S, Ishikawa F, Suzuki T et al (2017) A chemoproteomics approach to investigate phosphopantetheine transferase activity at the cellular level. ChemBioChem 18:1855–1862PubMedGoogle Scholar
  59. Krätzschmar J, Krause M, Marahiel MA (1989) Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol 171:5422–5429PubMedPubMedCentralGoogle Scholar
  60. Kries H, Wachtel R, Pabst A et al (2014) Reprogramming nonribosomal peptide synthetases for “clickable” amino acids. Angew Chem Int Ed 53:10105–10108Google Scholar
  61. Kries H, Niquille DL, Hilvert D (2015) A subdomain swap strategy for reengineering nonribosomal peptides. Chem Biol 22:640–648PubMedGoogle Scholar
  62. Kries H (2016) Biosynthetic engineering of nonribosomal peptide synthetases. J Pept Sci 9:564–570Google Scholar
  63. Lamb AL (2015) Breaking a pathogen’s iron will: inhibiting siderophore production as an antimicrobial strategy. Biochim Biophys Acta 1854:1054–1070PubMedPubMedCentralGoogle Scholar
  64. Lambalot RH, Walsh CT (1995) Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J Biol Chem 270:24658–24661PubMedGoogle Scholar
  65. Lambalot RH, Gehring AM, Flugel RS et al (1996) A new enzyme superfamily—the phosphopantetheinyl transferases. Chem Biol 3:923–936PubMedGoogle Scholar
  66. Lee JY, Janes BK, Passalacqua KD et al (2007) Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J Bacteriol 189:1698–1710PubMedGoogle Scholar
  67. Liu Y, Bruner SD (2007) Rational manipulation of carrier-domain geometry in nonribosomal peptide synthetases. ChemBioChem 8:617–621PubMedGoogle Scholar
  68. Maier T, Jenni S, Ban N (2006) Architecture of mammalian fatty acid synthase at 4.5 Å resolution. Science 311:1258–1263PubMedGoogle Scholar
  69. Marshall CG, Burkart MD, Keating TA et al (2001) Heterocycle formation in vibriobactin biosynthesis: alternative substrate utilization and identification of a condensed intermediate. Biochemistry 40:10655–10663PubMedGoogle Scholar
  70. McQuade TJ, Shallop AD, Sheoran A et al (2009) A nonradioactive high-throughput assay for screening and characterization of adenylation domains for nonribosomal peptide combinatorial biosynthesis. Anal Biochem 386:244–250PubMedGoogle Scholar
  71. Meier JL, Niessen S, Hoover HS et al (2009) An orthogonal active site identification system (OASIS) for proteomic profiling of natural product biosynthesis. ACS Chem Biol 11:948–957Google Scholar
  72. Meier JL, Burkart MD (2010) Proteomic analysis of polyketide and nonribosomal peptide biosynthesis. Curr Opin Chem Biol 15:1–9Google Scholar
  73. Meluzzi D, Zheng WH, Hensler M et al (2008) Top-down mass spectrometry on low-resolution instruments: characterization of phosphopantetheinylated carrier domains in polyketide and non-ribosomal biosynthetic pathways. Bioorg Med Chem Lett 18:3107–3111PubMedGoogle Scholar
  74. Mercer AC, Burkart MD (2007) The ubiquitous carrier protein—a window to metabolite biosynthesis. Nat Prod Rep 24:750–773PubMedGoogle Scholar
  75. Miethke M, Bisseret P, Beckering CL et al (2006) Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis. FEBS J 273:409–419PubMedGoogle Scholar
  76. Mihara K, Tanabe T, Yamakawa Y et al (2004) Identification and transcriptional organization of a gene cluster involved in biosynthesis and transport of acinetobactin, a siderophore produced by Acinetobacter baumannii ATCC 19606T. Microbiology 150:2587–2597PubMedGoogle Scholar
  77. Miller DA, Luo L, Hillson N et al (2002) Yersiniabactin synthetase: a four-protein assembly line producing the nonribosomal peptide/polyketide hybrid siderophore of Yersinia pestis. Chem Biol 9:333–344PubMedGoogle Scholar
  78. Mitchell CA, Shi C, Aldrich CC et al (2012) Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Biochemistry 51:3252–3263PubMedPubMedCentralGoogle Scholar
  79. Mootz HD, Schwarzer D, Marahiel MA (2002) Ways of assembling complex natural products on modular nonribosomal peptide synthetases. ChemBioChem 3:490–504PubMedGoogle Scholar
  80. Moran S, Rai DK, Clark BR et al (2009) Precursor-directed biosynthesis of fluorinated iturin A in Bacillus spp. Org Biomol Chem 7:644–646PubMedGoogle Scholar
  81. Neres J, Labello NP, Somu RV et al (2008) Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: Structure–activity relationships of the nucleobase domain of 5′-O-[N-(salicyl)sulfamoyl]adenosine. J Med Chem 51:5349–5370PubMedPubMedCentralGoogle Scholar
  82. Nguyen C, Haushalter RW, John Lee D et al (2014) Trapping the dynamic acyl carrier protein in fatty acid biosynthesis. Nature 505:427–431PubMedGoogle Scholar
  83. Niquille DL, Hansen DA, Mori T et al (2018) Nonribosomal biosynthesis of backbone-modified peptides. Nat Chem 10:282–287.  https://doi.org/10.1038/NCHEM.2891CrossRefPubMedGoogle Scholar
  84. Otten LG, Schaffer ML, Villiers BRM et al (2007) An optimized ATP/PPi-exchange assay in 96-well format for screening of adenylation domains for applications in combinatorial biosynthesis. Biotechnol J 2:232–240PubMedGoogle Scholar
  85. Parris KD, Lin L, Tam A et al (2000) Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites. Structure 8:883–895PubMedGoogle Scholar
  86. Paul VJ, Arthur KE, Ritson-Williams R et al (2007) Marine biological laboratory chemical defenses: from compounds to communities. Biol Bull 213:226–251PubMedGoogle Scholar
  87. Phelan VV, Du Y, McLean JA et al (2009) Adenylation enzyme characterization using γ-18O4-ATP pyrophosphate exchange. Chem Biol 16:473–478PubMedPubMedCentralGoogle Scholar
  88. Płoskoń E, Arthur CJ, Kanari ALP et al (2010) Recognition of intermediate functionality by acyl carrier protein over a complete cycle of fatty acid biosynthesis. Chem Biol 17:776–785PubMedGoogle Scholar
  89. Qiao C, Wilson DJ, Bennett EM et al (2007) A mechanism-based aryl carrier protein/thiolation domain affinity probe. J Am Chem Soc 129:6350–6351PubMedPubMedCentralGoogle Scholar
  90. Quadri LEN, Sello J, Keating TA et al (1998a) Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5:631–645PubMedGoogle Scholar
  91. Quadri LEN, Weinreb PH, Lei M et al (1998b) Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carder protein domains in peptide synthetases. Biochemistry 37:1585–1595PubMedGoogle Scholar
  92. Quadri LEN (2007) Strategic paradigm shifts in the antimicrobial drug discovery process of the 21st century. Infect Disord Drug Targets 7:230–237PubMedGoogle Scholar
  93. Reyes CP, La Clair JJ, Burkart MD (2010) Metabolic probes for imaging endosymbiotic bacteria within toxic dinoflagellates. Chem Commum 46:8151–8153Google Scholar
  94. Röttig M, Medema MH, Blin K et al (2011) NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39(suppl 2):W362–W367PubMedPubMedCentralGoogle Scholar
  95. Rusnak F, Stephen Faraci W, Walsh CT (1989) Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase: demonstration of enzyme-bound (2,3-dihydroxybenzoyl)adenylate product. Biochemistry 28:6827–6835PubMedGoogle Scholar
  96. Saario SM, McKinney MK, Speers AE et al (2012) Clickable, photoreactive inhibitors to probe the active site microenvironment of fatty acid amide hydrolase. Chem Sci 3:77–83PubMedGoogle Scholar
  97. Samel SA, Czodrowski P, Essen LO (2014) Structure of the epimerization domain of tyrocidine synthetase A. Acta Cryst D70:1442–1452Google Scholar
  98. Sanman LE, Bogyo M (2014) Activity-based profiling of proteases. Annu Rev Biochem 83:249–273PubMedGoogle Scholar
  99. Schley C, Altmeyer MO, Swart R et al (2006) Proteome analysis of Myxococcus xanthus by off-line two-dimensional chromatographic separation using monolithic poly-(styrene-divinylbenzene) columns combined with ion-trap tandem mass spectrometry. J Proteome Res 5:2760–2768PubMedGoogle Scholar
  100. Schneider TL, Shen B, Walsh CT (2003) Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. Biochemistry 42:9722–9730PubMedGoogle Scholar
  101. Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:e1000949PubMedPubMedCentralGoogle Scholar
  102. Somu RV, Boshoff H, Qiao C et al (2006) Rationally-designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J Med Chem 49:31–34PubMedGoogle Scholar
  103. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505PubMedGoogle Scholar
  104. Stachelhaus T, Walsh CT (2000) Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry 39:5775–5787PubMedGoogle Scholar
  105. Sundlov JA, Shi C, Wilson DJ et al (2012) Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Chem Biol 19:188–198Google Scholar
  106. Tallorin L, Finzel K, Nguyen QG et al (2016) Trapping of the enoyl-acyl carrier protein reductase–acyl carrier protein interaction. J Am Chem Soc 138:3962–3965PubMedPubMedCentralGoogle Scholar
  107. Thirlway J, Lewis R, Nunns L et al (2012) Introduction of a non-natural amino acid into a nonribosomal peptide antibiotics by modification of adenylation domain specificity. Angew Chem Int Ed 51:7181–7184Google Scholar
  108. Tim J, Post FA, Bekker LG et al (2003) Differential expression of iron-, carbon-, and oxygen- responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci U S A 100:14321–14326Google Scholar
  109. Ueda H, Shoku Y, Hayashi N et al (1991) X-ray crystallographic conformational study of 5′-O-[N-(L-alanyl)-sulfamoyl]adenosine, a substrate analogue for alanyl-tRNA synthetase. Biochim Biophys Acta 1080:126–134PubMedGoogle Scholar
  110. Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30PubMedGoogle Scholar
  111. Wakimoto T, Egami Y, Nakashima Y et al (2014) Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nat Chem Biol 10:648–655PubMedGoogle Scholar
  112. Walsh C, Liu J, Rusnak F et al (1990) Molecular studies on enzyme in chorismate metabolism and the enterobactin biosynthetic pathway. Chem Rev 90:1105–1129Google Scholar
  113. Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303:1805–1810PubMedGoogle Scholar
  114. Walsh CT, O’Brien RV, Khosla C (2013) Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed 52:7098–7124Google Scholar
  115. Walsh CT (2016) Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Nat Prod Rep 33:127–135PubMedGoogle Scholar
  116. Wang M, Beissner M, Zhao H (2014) Aryl-aldehyde formation in fungal polyketides: discovery and characterization of a distinct biosynthetic mechanism. Chem Biol 21:257–263PubMedPubMedCentralGoogle Scholar
  117. Whicher JR, Dutta S, Hansen DA et al (2014) Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 510:560–564PubMedPubMedCentralGoogle Scholar
  118. Wilson DJ, Aldrich CC (2010) A continuous kinetic assay for adenylation enzyme activity and inhibition. Anal Biochem 404:56–63PubMedPubMedCentralGoogle Scholar
  119. Winn M, Fyans JK, Zhuo Y et al (2016) Recent advances in engineering nonribosomal peptide assembly lines. Nat Prod Rep 33:317–347PubMedGoogle Scholar
  120. Worthington AS, Rivera H, Torpey JW et al (2006) Mechanism-based protein cross-linking probes to investigate carrier protein-mediated biosynthesis. ACS Chem Biol 1:687–691PubMedGoogle Scholar
  121. Worthington AS, Burkart MD (2006) One-pot chemo-enzymatic synthesis of reporter-modified proteins. Org Biomol Chem 4:44–46PubMedGoogle Scholar
  122. Zhang B, Tian W, Wang S et al (2017) Activation of natural products biosynthetic pathways via a protein modification level regulation. ACS Chem Biol 12:1732–1736PubMedGoogle Scholar
  123. Zhang H, Wang, Y. Pfeifer BA (2008) Bacterial hosts for natural product production. Mol Pharmaceutics 5:212–225PubMedGoogle Scholar
  124. Zhang K, Nelson KM, Bhuripanyo K et al (2013) Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display. Chem Biol 20:92–101PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of PharmacyKindai UniversityHigashi-Osaka, OsakaJapan
  2. 2.Graduate School of Pharmaceutical SciencesKyoto UniversitySakyo, KyotoJapan

Personalised recommendations