Advertisement

Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling

  • Adam L. Borne
  • Tao Huang
  • Rebecca L. McCloud
  • Boobalan Pachaiyappan
  • Timothy N. J. Bullock
  • Ku-Lung HsuEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 420)

Abstract

As a major sentinel of adaptive immunity, T cells seek and destroy diseased cells using antigen recognition to achieve molecular specificity. Strategies to block checkpoint inhibition of T cell activity and thus reawaken the patient’s antitumor immune responses are rapidly becoming standard of care for treatment of diverse cancers. Adoptive transfer of patient T cells genetically engineered with tumor-targeting capabilities is redefining the field of personalized medicines. The diverse opportunities for exploiting T cell biology in the clinic have prompted new efforts to expand the scope of targets amenable to immuno-oncology. Given the complex spatiotemporal regulation of T cell function and fate, new technologies capable of global molecular profiling in vivo are needed to guide selection of appropriate T cell targets and subsets. In this chapter, we describe the use of activity-based protein profiling (ABPP) to illuminate different aspects of T cell metabolism and signaling as fertile starting points for investigation. We highlight the merits of ABPP methods to enable target, inhibitor, and biochemical pathway discovery of T cells in the burgeoning field of immuno-oncology.

References

  1. Aderem A (1992) The Marcks brothers: a family of protein kinase C substrates. Cell 71:713–716.  https://doi.org/10.1016/0092-8674(92)90546-OCrossRefPubMedGoogle Scholar
  2. Adibekian A, Martin BR, Wang C, Hsu KL, Bachovchin DA, Niessen S, Hoover H, Cravatt BF (2011) Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat Chem Biol 7(7):469–478.  https://doi.org/10.1038/nchembio.579CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahluwalia GS, Grem JL, Hao Z, Cooney DA (1990) Metabolism and action of amino-acid analog anticancer agents. Pharmacol Therapeut 46(2):243–271.  https://doi.org/10.1016/0163-7258(90)90094-ICrossRefGoogle Scholar
  4. Albrecht P, Bouchachia I, Goebels N, Henke N, Hofstetter HH, Issberner A, Kovacs Z, Lewerenz J, Lisak D, Maher P, Mausberg AK, Quasthoff K, Zimmermann C, Hartung HP, Methner A (2012) Effects of dimethyl fumarate on neuroprotection and immunomodulation. J Neuroinflamm 9:163.  https://doi.org/10.1186/1742-2094-9-163CrossRefGoogle Scholar
  5. Alexander JW (1990) Mechanism of immunologic suppression in burn injury. J Trauma 30(12 Suppl):S70–S75CrossRefGoogle Scholar
  6. Alloatti A, Kotsias F, Magalhaes JG, Amigorena S (2016) Dendritic cell maturation and cross-presentation: timing matters! Immunol Rev 272(1):97–108.  https://doi.org/10.1111/imr.12432CrossRefPubMedGoogle Scholar
  7. Anderson VE, Weiss PM, Cleland WW (1984) Reaction intermediate analogs for enolase. Biochemistry 23(12):2779–2786.  https://doi.org/10.1021/bi00307a038CrossRefPubMedGoogle Scholar
  8. Bachovchin DA, Ji T, Li W, Simon GM, Blankman JL, Adibekian A, Hoover H, Niessen S, Cravatt BF (2010) Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc Natl Acad Sci U S A 107(49):20941–20946.  https://doi.org/10.1073/pnas.1011663107CrossRefPubMedPubMedCentralGoogle Scholar
  9. Backus KM, Correia BE, Lum KM, Forli S, Horning BD, Gonzalez-Paez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson AJ, Wolan DW, Cravatt BF (2016) Proteome-wide covalent ligand discovery in native biological systems. Nature 534(7608):570–574.  https://doi.org/10.1038/nature18002CrossRefPubMedPubMedCentralGoogle Scholar
  10. Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM, Obaid H, Sorenson EC, Popow R, Ariyan C, Rossi F, Besmer P, Guo T, Antonescu CR, Taguchi T, Yuan J, Wolchok JD, Allison JP, DeMatteo RP (2011) Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med 17(9):1094–1100.  https://doi.org/10.1038/nm.2438CrossRefPubMedPubMedCentralGoogle Scholar
  11. Birks J, Grimley Evans J, Iakovidou V, Tsolaki M, Holt FE (2009) Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev (2):Cd001191.  https://doi.org/10.1002/14651858.cd001191.pub2
  12. Blewett MM, Xie J, Zaro BW, Backus KM, Altman A, Teijaro JR, Cravatt BF (2016) Chemical proteomic map of dimethyl fumarate–sensitive cysteines in primary human T cells. Sci Signal 9(445):rs10.  https://doi.org/10.1126/scisignal.aaf7694CrossRefGoogle Scholar
  13. Brownlie RJ, Zamoyska R (2013) T cell receptor signalling networks: branched, diversified and bounded. Nat Rev Immunol 13(4):257–269.  https://doi.org/10.1038/nri3403CrossRefPubMedGoogle Scholar
  14. Brownlie RJ, Garcia C, Ravasz M, Zehn D, Salmond RJ, Zamoyska R (2017) Resistance to TGFbeta suppression and improved anti-tumor responses in CD8(+) T cells lacking PTPN22. Nat Commun 8(1):1343.  https://doi.org/10.1038/s41467-017-01427-1CrossRefPubMedPubMedCentralGoogle Scholar
  15. Buck MD, Sowell RT, Kaech SM, Pearce EL (2017) Metabolic instruction of immunity. Cell 169(4):570–586.  https://doi.org/10.1016/j.cell.2017.04.004CrossRefPubMedPubMedCentralGoogle Scholar
  16. Capello M, Ferri-Borgogno S, Cappello P, Novelli F (2011) Alpha-Enolase: a promising therapeutic and diagnostic tumor target. FEBS J 278(7):1064–1074.  https://doi.org/10.1111/j.1742-4658.2011.08025.xCrossRefPubMedGoogle Scholar
  17. Cassago A, Ferreira APS, Ferreira IM, Fornezari C, Gomes ERM, Greene KS, Pereira HM, Garratt RC, Dias SMG, Ambrosio ALB (2012) Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A 109(4):1092–1097.  https://doi.org/10.1073/pnas.1112495109CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chang C-H, Pearce EL (2016) Emerging concepts of T cell metabolism as a target of immunotherapy. Nat Immunol 17(4):364–368.  https://doi.org/10.1038/ni.3415CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, Longworth SA, Vinup KE, Mrass P, Oliaro J, Killeen N, Orange JS, Russell SM, Weninger W, Reiner SL (2007) Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science (New York, NY) 315(5819):1687–1691.  https://doi.org/10.1126/science.1139393CrossRefGoogle Scholar
  20. Chang JT, Ciocca ML, Kinjyo I, Palanivel VR, McClurkin CE, DeJong CS, Mooney EC, Kim JS, Steinel NC, Oliaro J, Yin CC, Florea BI, Overkleeft HS, Berg LJ, Russell SM, Koretzky GA, Jordan MS, Reiner SL (2011) Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity 34(4):492–504.  https://doi.org/10.1016/j.immuni.2011.03.017CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153(6):1239–1251.  https://doi.org/10.1016/j.cell.2013.05.016CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, Tonc E, Schreiber RD, Pearce EJ, Pearce EL (2015a) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6):1229–1241.  https://doi.org/10.1016/j.cell.2015.08.016CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chang JW, Zuhl AM, Speers AE, Niessen S, Brown SJ, Mulvihill MM, Fan YC, Spicer TP, Southern M, Scampavia L, Fernandez-Vega V, Dix MM, Cameron MD, Hodder PS, Rosen H, Nomura DK, Kwon O, Hsu KL, Cravatt BF (2015b) Selective inhibitor of platelet-activating factor acetylhydrolases 1b2 and 1b3 that impairs cancer cell survival. ACS Chem Biol 10(4):925–932.  https://doi.org/10.1021/cb500893qCrossRefPubMedPubMedCentralGoogle Scholar
  24. Chen H, Assmann JC, Krenz A, Rahman M, Grimm M, Karsten CM, Kohl J, Offermanns S, Wettschureck N, Schwaninger M (2014) Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate’s protective effect in EAE. J Clin Investig 124(5):2188–2192.  https://doi.org/10.1172/jci72151CrossRefPubMedGoogle Scholar
  25. Cheong JE, Sun L (2018) Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy—challenges and opportunities. Trends Pharmacol Sci 39(3):307–325.  https://doi.org/10.1016/j.tips.2017.11.007CrossRefPubMedGoogle Scholar
  26. Cluntun AA, Lukey MJ, Cerione RA, Locasale JW (2017) Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer 3(3):169–180.  https://doi.org/10.1016/j.trecan.2017.01.005CrossRefPubMedPubMedCentralGoogle Scholar
  27. Colón-González F, Kazanietz MG (2006) C1 domains exposed: from diacylglycerol binding to protein–protein interactions. Biochim Biophys Acta 1761:827–837.  https://doi.org/10.1016/j.bbalip.2006.05.001CrossRefGoogle Scholar
  28. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414.  https://doi.org/10.1146/annurev.biochem.75.101304.124125CrossRefGoogle Scholar
  29. Cui W, Joshi NS, Jiang A, Kaech SM (2009) Effects of Signal 3 during CD8 T cell priming: bystander production of IL-12 enhances effector T cell expansion but promotes terminal differentiation. Vaccine 27(15):2177–2187.  https://doi.org/10.1016/j.vaccine.2009.01.088CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cui W, Liu Y, Weinstein JS, Craft J, Kaech SM (2011) An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35(5):792–805.  https://doi.org/10.1016/j.immuni.2011.09.017CrossRefPubMedPubMedCentralGoogle Scholar
  31. De Rosa V, Galgani M, Porcellini A, Colamatteo A, Santopaolo M, Zuchegna C, Romano A, De Simone S, Procaccini C, La Rocca C, Carrieri PB, Maniscalco GT, Salvetti M, Buscarinu MC, Franzese A, Mozzillo E, La Cava A, Matarese G (2015) Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat Immunol 16(11):1174–1184.  https://doi.org/10.1038/ni.3269CrossRefPubMedPubMedCentralGoogle Scholar
  32. DeLaBarre B, Gross S, Fang C, Gao Y, Jha A, Jiang F, Song JJ, Wei WT, Hurov JB (2011) Full-length human glutaminase in complex with an allosteric inhibitor. Biochemistry 50(50):10764–10770.  https://doi.org/10.1021/bi201613dCrossRefPubMedGoogle Scholar
  33. Efimov I, Basran J, Thackray SJ, Handa S, Mowat CG, Raven EL (2011) Structure and reaction mechanism in the heme dioxygenases. Biochemistry 50(14):2717–2724.  https://doi.org/10.1021/bi101732nCrossRefPubMedPubMedCentralGoogle Scholar
  34. Eijkelenboom A, Burgering BM (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14(2):83–97.  https://doi.org/10.1038/nrm3507CrossRefPubMedGoogle Scholar
  35. Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15(9):605–619.  https://doi.org/10.1038/nrd.2016.109CrossRefPubMedGoogle Scholar
  36. Fanani ML, Topham MK, Walsh JP, Epand RM (2004) Lipid modulation of the activity of diacylglycerol kinase α- and ζ-isoforms: activation by phosphatidylethanolamine and cholesterol. Biochemistry 43:14767–14777.  https://doi.org/10.1021/bi049145zCrossRefPubMedGoogle Scholar
  37. Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J, Panteleyev AA, Okkenhaug K, Cantrell DA (2012) PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med 209(13):2441–2453.  https://doi.org/10.1084/jem.20112607CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fischer AM, Katayama CD, Pages G, Pouyssegur J, Hedrick SM (2005) The role of erk1 and erk2 in multiple stages of T cell development. Immunity 23(4):431–443.  https://doi.org/10.1016/j.immuni.2005.08.013CrossRefPubMedGoogle Scholar
  39. Franks CE, Campbell ST, Purow BW, Harris TE, Hsu KL (2017) The ligand binding landscape of diacylglycerol kinases. Cell Chem Biol 24(7):870–880 e875.  https://doi.org/10.1016/j.chembiol.2017.06.007CrossRefGoogle Scholar
  40. Gajewski TF, Hamid O, Smith DC, Bauer TM, Wasser JS, Luke JJ, Balmanoukian AS, Kaufman DR, Zhao YF, Maleski J, Leopold L, Gangadhar TC (2016) Preliminary safety and efficacy data from a phase 1/2 study of epacadostat (INCB024360) in combination with pembrolizumab in patients with advanced/metastatic melanoma. J Transl Med 14Google Scholar
  41. Gillard GO, Collette B, Anderson J, Chao J, Scannevin RH, Huss DJ, Fontenot JD (2015) DMF, but not other fumarates, inhibits NF-kappaB activity in vitro in an Nrf2-independent manner. J Neuroimmunol 283:74–85.  https://doi.org/10.1016/j.jneuroim.2015.04.006CrossRefPubMedGoogle Scholar
  42. Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M (2000) Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 7(8):569–581CrossRefGoogle Scholar
  43. Gregory MA, Nemkov T, Reisz JA, Zaberezhnyy V, Hansen KC, D’Alessandro A, DeGregori J (2018) Glutaminase inhibition improves FLT3 inhibitor therapy for acute myeloid leukemia. Exp Hematol 58:52–58.  https://doi.org/10.1016/j.exphem.2017.09.007CrossRefPubMedGoogle Scholar
  44. Groll M, Kim KB, Kairies N, Huber R, Crews CM (2000) Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of α‘, β‘-epoxyketone proteasome inhibitors. J Am Chem Soc 122(6):1237–1238.  https://doi.org/10.1021/ja993588mCrossRefGoogle Scholar
  45. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, Janes JR, Laidig GJ, Lewis ER, Li J, Mackinnon AL, Parlati F, Rodriguez ML, Shwonek PJ, Sjogren EB, Stanton TF, Wang T, Yang J, Zhao F, Bennett MK (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 13(4):890–901.  https://doi.org/10.1158/1535-7163.MCT-13-0870CrossRefPubMedGoogle Scholar
  46. Hacker SM, Backus KM, Lazear MR, Forli S, Correia BE, Cravatt BF (2017) Global profiling of lysine reactivity and ligandability in the human proteome. Nat Chem 9(12):1181–1190.  https://doi.org/10.1038/nchem.2826CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hekmat O, Kim YW, Williams SJ, He S, Withers SG (2005) Active-site peptide “fingerprinting” of glycosidases in complex mixtures by mass spectrometry. Discovery of a novel retaining beta-1,4-glycanase in Cellulomonas fimi. J Biol Chem 280(42):35126–35135.  https://doi.org/10.1074/jbc.M508434200CrossRefPubMedGoogle Scholar
  48. Henness S, Perry CM (2006) Orlistat: a review of its use in the management of obesity. Drugs 66(12):1625–1656CrossRefGoogle Scholar
  49. Hirahara K, Onodera A, Villarino AV, Bonelli M, Sciume G, Laurence A, Sun HW, Brooks SR, Vahedi G, Shih HY, Gutierrez-Cruz G, Iwata S, Suzuki R, Mikami Y, Okamoto Y, Nakayama T, Holland SM, Hunter CA, Kanno Y, O’Shea JJ (2015) Asymmetric action of STAT transcription factors drives transcriptional outputs and cytokine specificity. Immunity 42(5):877–889.  https://doi.org/10.1016/j.immuni.2015.04.014CrossRefPubMedGoogle Scholar
  50. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC, Kleinstein SH, Abel ED, Insogna KL, Feske S, Locasale JW, Bosenberg MW, Rathmell JC, Kaech SM (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162(6):1217–1228.  https://doi.org/10.1016/j.cell.2015.08.012CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hornyak L, Dobos N, Koncz G, Karanyi Z, Pall D, Szabo Z, Halmos G, Szekvolgyi L (2018) The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. Front Immunol 9:151.  https://doi.org/10.3389/fimmu.2018.00151CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science (New York, NY) 260(5107):547–549CrossRefGoogle Scholar
  53. Hsu KL, Tsuboi K, Adibekian A, Pugh H, Masuda K, Cravatt BF (2012) DAGLbeta inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat Chem Biol 8(12):999–1007.  https://doi.org/10.1038/nchembio.1105CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hsu KL, Tsuboi K, Chang JW, Whitby LR, Speers AE, Pugh H, Cravatt BF (2013a) Discovery and optimization of piperidyl-1,2,3-triazole ureas as potent, selective, and in vivo-active inhibitors of alpha/beta-hydrolase domain containing 6 (ABHD6). J Med Chem 56(21):8270–8279.  https://doi.org/10.1021/jm400899cCrossRefPubMedPubMedCentralGoogle Scholar
  55. Hsu KL, Tsuboi K, Whitby LR, Speers AE, Pugh H, Inloes J, Cravatt BF (2013b) Development and optimization of piperidyl-1,2,3-triazole ureas as selective chemical probes of endocannabinoid biosynthesis. J Med Chem 56(21):8257–8269.  https://doi.org/10.1021/jm400898xCrossRefPubMedPubMedCentralGoogle Scholar
  56. Hukelmann JL, Anderson KE, Sinclair LV, Grzes KM, Murillo AB, Hawkins PT, Stephens LR, Lamond AI, Cantrell DA (2016) The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol 17(1):104–112.  https://doi.org/10.1038/ni.3314CrossRefPubMedGoogle Scholar
  57. Hurley JH, Misra S (2000) Signaling and subcellular targeting by membrane-binding domains. Annu Rev Biophys Biomol Struct 29:49–79.  https://doi.org/10.1146/annurev.biophys.29.1.49CrossRefGoogle Scholar
  58. Inloes JM, Hsu KL, Dix MM, Viader A, Masuda K, Takei T, Wood MR, Cravatt BF (2014) The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase. Proc Natl Acad Sci U S A 111(41):14924–14929.  https://doi.org/10.1073/pnas.1413706111CrossRefPubMedPubMedCentralGoogle Scholar
  59. Jalkanen S, Reichert RA, Gallatin WM, Bargatze RF, Weissman IL, Butcher EC (1986) Homing receptors and the control of lymphocyte migration. Immunol Rev 91:39–60CrossRefGoogle Scholar
  60. Jennings W, Doshi S, D’Souza K, Epand RM (2015) Molecular properties of diacylglycerol kinase-epsilon in relation to function. Chem Phys Lipid 192:100–108.  https://doi.org/10.1016/j.chemphyslip.2015.06.003CrossRefGoogle Scholar
  61. Jessani N, Liu Y, Humphrey M, Cravatt BF (2002) Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc Natl Acad Sci U S A 99(16):10335–10340.  https://doi.org/10.1073/pnas.162187599CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jessani N, Humphrey M, McDonald WH, Niessen S, Masuda K, Gangadharan B, Yates JR 3rd, Mueller BM, Cravatt BF (2004) Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc Natl Acad Sci U S A 101(38):13756–13761.  https://doi.org/10.1073/pnas.0404727101CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jessani N, Niessen S, Wei BQ, Nicolau M, Humphrey M, Ji Y, Han W, Noh DY, Yates JR 3rd, Jeffrey SS, Cravatt BF (2005) A streamlined platform for high-content functional proteomics of primary human specimens. Nat Methods 2(9):691–697.  https://doi.org/10.1038/nmeth778CrossRefPubMedGoogle Scholar
  64. Joshi RP, Schmidt AM, Das J, Pytel D, Riese MJ, Lester M, Diehl JA, Behrens EM, Kambayashi T, Koretzky GA (2013) The zeta isoform of diacylglycerol kinase plays a predominant role in regulatory T cell development and TCR-mediated ras signaling. Sci Signal 6(303):ra102.  https://doi.org/10.1126/scisignal.2004373CrossRefGoogle Scholar
  65. Jun JE, Rubio I, Roose JP (2013) Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol 4:239.  https://doi.org/10.3389/fimmu.2013.00239CrossRefPubMedPubMedCentralGoogle Scholar
  66. Jung DW, Kim WH, Park SH, Lee J, Kim J, Su D, Ha HH, Chang YT, Williams DR (2013) A unique small molecule inhibitor of enolase clarifies its role in fundamental biological processes. ACS Chem Biol 8(6):1271–1282.  https://doi.org/10.1021/cb300687kCrossRefPubMedGoogle Scholar
  67. Katt WP, Ramachandran S, Erickson JW, Cerione RA (2012) Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation. Mol Cancer Ther 11(6):1269–1278.  https://doi.org/10.1158/1535-7163.MCT-11-0942CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kerdiles YM, Beisner DR, Tinoco R, Dejean AS, Castrillon DH, DePinho RA, Hedrick SM (2009) Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat Immunol 10(2):176–184.  https://doi.org/10.1038/ni.1689CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kluge AF, Petter RC (2010) Acylating drugs: redesigning natural covalent inhibitors. Curr Opin Chem Biol 14(3):421–427.  https://doi.org/10.1016/j.cbpa.2010.03.035CrossRefPubMedGoogle Scholar
  70. Koblish HK, Hansbury MJ, Bowman KJ, Yang GJ, Neilan CL, Haley PJ, Burn TC, Waeltz P, Sparks RB, Yue EW, Combs AP, Scherle PA, Vaddi K, Fridman JS (2010) Hydroxyamidine inhibitors of indoleamine-2,3-dioxygenase potently suppress systemic tryptophan catabolism and the growth of IDO-expressing tumors. Mol Cancer Ther 9(2):489–498.  https://doi.org/10.1158/1535-7163.MCT-09-0628CrossRefPubMedGoogle Scholar
  71. Koneru M, Schaer D, Monu N, Ayala A, Frey AB (2005) Defective proximal TCR signaling inhibits CD8+ tumor-infiltrating lymphocyte lytic function. J Immunol 174(4):1830–1840CrossRefGoogle Scholar
  72. Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci U S A 96(18):9997–10002CrossRefGoogle Scholar
  73. Lee H-J, Zheng JJ (2010) PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 8:8.  https://doi.org/10.1186/1478-811X-8-8CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lehmann JC, Listopad JJ, Rentzsch CU, Igney FH, von Bonin A, Hennekes HH, Asadullah K, Docke WD (2007) Dimethylfumarate induces immunosuppression via glutathione depletion and subsequent induction of heme oxygenase 1. J Invest Dermatol 127(4):835–845.  https://doi.org/10.1038/sj.jid.5700686CrossRefPubMedGoogle Scholar
  75. Leonard PG, Satani N, Maxwell D, Lin YH, Hammoudi N, Peng Z, Pisaneschi F, Link TM, Lee GRt, Sun D, Prasad BAB, Di Francesco ME, Czako B, Asara JM, Wang YA, Bornmann W, DePinho RA, Muller FL (2016) SF2312 is a natural phosphonate inhibitor of enolase. Nat Chem Biol 12(12):1053–1058.  https://doi.org/10.1038/nchembio.2195CrossRefGoogle Scholar
  76. Li N, Kuo C-L, Paniagua G, van den Elst H, Verdoes M, Willems LI, van der Linden WA, Ruben M, van Genderen E, Gubbens J, van Wezel GP, Overkleeft HS, Florea BI (2013) Relative quantification of proteasome activity by activity-based protein profiling and LC-MS/MS. Nat Protoc 8:1155.  https://doi.org/10.1038/nprot.2013.065CrossRefPubMedGoogle Scholar
  77. Lin SX, Lisi L, Dello Russo C, Polak PE, Sharp A, Weinberg G, Kalinin S, Feinstein DL (2011) The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1. ASN Neuro 3(2).  https://doi.org/10.1042/an20100033CrossRefGoogle Scholar
  78. Lin WH, Adams WC, Nish SA, Chen YH, Yen B, Rothman NJ, Kratchmarov R, Okada T, Klein U, Reiner SL (2015) Asymmetric PI3K signaling driving developmental and regenerative cell fate bifurcation. Cell Rep 13(10):2203–2218.  https://doi.org/10.1016/j.celrep.2015.10.072CrossRefPubMedPubMedCentralGoogle Scholar
  79. Linker RA, Gold R (2013) Dimethyl fumarate for treatment of multiple sclerosis: mechanism of action, effectiveness, and side effects. Curr Neurol Neurosci Rep 13(11):394.  https://doi.org/10.1007/s11910-013-0394-8CrossRefPubMedGoogle Scholar
  80. Liu Y, Patricelli MP, Cravatt BF (1999) Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci U S A 96(26):14694–14699CrossRefGoogle Scholar
  81. Liu H, Zhang Y, Yang W (2000) How is the active site of enolase organized to catalyze two different reaction steps? J Am Chem Soc 122(28):6560–6570.  https://doi.org/10.1021/ja9936619CrossRefGoogle Scholar
  82. Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, Leffet L, Hansbury MJ, Thomas B, Rupar M, Waeltz P, Bowman KJ, Polam P, Sparks RB, Yue EW, Li Y, Wynn R, Fridman JS, Burn TC, Combs AP, Newton RC, Scherle PA (2010) Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115(17):3520–3530.  https://doi.org/10.1182/blood-2009-09-246124CrossRefPubMedGoogle Scholar
  83. Liu K, Kunii N, Sakuma M, Yamaki A, Mizuno S, Sato M, Sakai H, Kado S, Kumagai K, Kojima H, Okabe T, Nagano T, Shirai Y, Sakane F (2016) A novel diacylglycerol kinase alpha-selective inhibitor, CU-3, induces cancer cell apoptosis and enhances immune response. J Lipid Res 57(3):368–379.  https://doi.org/10.1194/jlr.M062794CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lohman K, Meyerhof O (1934) Über die enzymatische Umwandlung von Phosphoglyzerinsäure in Brenztraubensäure und Phosphorsäure (Enzymatic transformation of phosphoglyceric acid into pyruvic and phosphoric acid). Biochem Z 273:60–72Google Scholar
  85. Long JZ, Cravatt BF (2011) The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 111(10):6022–6063.  https://doi.org/10.1021/cr200075yCrossRefPubMedPubMedCentralGoogle Scholar
  86. Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, Pavon FJ, Serrano AM, Selley DE, Parsons LH, Lichtman AH, Cravatt BF (2009) Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5(1):37–44.  https://doi.org/10.1038/nchembio.129CrossRefGoogle Scholar
  87. Lukey MJ, Wilson KF, Cerione RA (2013) Therapeutic strategies impacting cancer cell glutamine metabolism. Future Med Chem 5(14):1685–1700.  https://doi.org/10.4155/fmc.13.130CrossRefPubMedPubMedCentralGoogle Scholar
  88. Lung M, Shulga YV, Ivanova PT, Myers DS, Milne SB, Brown HA, Topham MK, Epand RM (2009) Diacylglycerol kinase ϵ is selective for both acyl chains of phosphatidic acid or diacylglycerol. J Biol Chem 284:31062–31073.  https://doi.org/10.1074/jbc.M109.050617CrossRefPubMedPubMedCentralGoogle Scholar
  89. Luster AD (2002) The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol 14(1):129–135CrossRefGoogle Scholar
  90. Ma EH, Bantug G, Griss T, Condotta S, Johnson RM, Samborska B, Mainolfi N, Suri V, Guak H, Balmer ML, Verway MJ, Raissi TC, Tsui H, Boukhaled G, Henriques da Costa S, Frezza C, Krawczyk CM, Friedman A, Manfredi M, Richer MJ, Hess C, Jones RG (2017) Serine is an essential metabolite for effector T cell expansion. Cell Metab 25(2):345–357.  https://doi.org/10.1016/j.cmet.2016.12.011CrossRefPubMedGoogle Scholar
  91. Macintyre AN, Finlay D, Preston G, Sinclair LV, Waugh CM, Tamas P, Feijoo C, Okkenhaug K, Cantrell DA (2011) Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34(2):224–236.  https://doi.org/10.1016/j.immuni.2011.01.012CrossRefPubMedPubMedCentralGoogle Scholar
  92. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, Collins NB, Bi K, LaFleur MW, Juneja VR, Weiss SA, Lo J, Fisher DE, Miao D, Van Allen E, Root DE, Sharpe AH, Doench JG, Haining WN (2017) In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547(7664):413–418.  https://doi.org/10.1038/nature23270CrossRefPubMedPubMedCentralGoogle Scholar
  93. McCloud RL, Franks CE, Campbell ST, Purow BW, Harris TE, Hsu KL (2018) Deconstructing lipid kinase inhibitors by chemical proteomics. Biochemistry 57(2):231–236.  https://doi.org/10.1021/acs.biochem.7b00962CrossRefPubMedGoogle Scholar
  94. Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A 96(18):10403–10408CrossRefGoogle Scholar
  95. Mérida I, Ávila-Flores A, Merino E (2008) Diacylglycerol kinases: at the hub of cell signalling. Biochem J 409:1–18.  https://doi.org/10.1042/BJ20071040CrossRefPubMedGoogle Scholar
  96. Mérida I, Andrada E, Gharbi SI, Avila-Flores A (2015) Redundant and specialized roles for diacylglycerol kinases alpha and zeta in the control of T cell functions. Sci Signal 8(374):re6.  https://doi.org/10.1126/scisignal.aaa0974CrossRefGoogle Scholar
  97. Merino E, Sanjuan MA, Moraga I, Cipres A, Merida I (2007) Role of the diacylglycerol kinase alpha-conserved domains in membrane targeting in intact T cells. J Biol Chem 282(48):35396–35404.  https://doi.org/10.1074/jbc.M702085200CrossRefPubMedGoogle Scholar
  98. Momcilovic M, Bailey ST, Lee JT, Fishbein MC, Magyar C, Braas D, Graeber T, Jackson NJ, Czernin J, Emberley E, Gross M, Janes J, Mackinnon A, Pan A, Rodriguez M, Works M, Zhang W, Parlati F, Demo S, Garon E, Krysan K, Walser TC, Dubinett SM, Sadeghi S, Christofk HR, Shackelford DB (2017) Targeted inhibition of EGFR and glutaminase induces metabolic crisis in EGFR mutant lung cancer. Cell reports 18(3):601–610.  https://doi.org/10.1016/j.celrep.2016.12.061CrossRefPubMedPubMedCentralGoogle Scholar
  99. Monu N, Frey AB (2007) Suppression of proximal T cell receptor signaling and lytic function in CD8+ tumor-infiltrating T cells. Cancer Res 67(23):11447–11454.  https://doi.org/10.1158/0008-5472.CAN-07-1441CrossRefPubMedPubMedCentralGoogle Scholar
  100. Mosavi LK, Cammett TJ, Desrosiers DC, Peng Z-y (2009) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448.  https://doi.org/10.1110/ps.03554604CrossRefGoogle Scholar
  101. Mrowietz U, Asadullah K (2005) Dimethylfumarate for psoriasis: more than a dietary curiosity. Trends Mol Med 11(1):43–48.  https://doi.org/10.1016/j.molmed.2004.11.003CrossRefPubMedGoogle Scholar
  102. Mrowietz U, Altmeyer P, Bieber T, Röcken M, Schopf RE, Sterry W (2007) Treatment of psoriasis with fumaric acid esters (Fumaderm®). JDDG: J Dtsch Dermatol Ges 5(8):716–717.  https://doi.org/10.1111/j.1610-0387.2007.06346.xCrossRefPubMedGoogle Scholar
  103. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science (New York, NY) 281(5380):1191–1193.  https://doi.org/10.1126/science.281.5380.1191CrossRefGoogle Scholar
  104. Nagano JM, Hsu KL, Whitby LR, Niphakis MJ, Speers AE, Brown SJ, Spicer T, Fernandez-Vega V, Ferguson J, Hodder P, Srinivasan P, Gonzalez TD, Rosen H, Bahnson BJ, Cravatt BF (2013) Selective inhibitors and tailored activity probes for lipoprotein-associated phospholipase A(2). Bioorg Med Chem Lett 23(3):839–843.  https://doi.org/10.1016/j.bmcl.2012.11.061CrossRefPubMedGoogle Scholar
  105. Nakaya M, Xiao Y, Zhou X, Chang JH, Chang M, Cheng X, Blonska M, Lin X, Sun SC (2014) Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40(5):692–705.  https://doi.org/10.1016/j.immuni.2014.04.007CrossRefPubMedPubMedCentralGoogle Scholar
  106. Niphakis MJ, Cravatt BF (2014) Enzyme inhibitor discovery by activity-based protein profiling. Annu Rev Biochem 83(1):341–377.  https://doi.org/10.1146/annurev-biochem-060713-035708CrossRefPubMedGoogle Scholar
  107. Ogasawara D, Deng H, Viader A, Baggelaar MP, Breman A, den Dulk H, van den Nieuwendijk AM, Soethoudt M, van der Wel T, Zhou J, Overkleeft HS, Sanchez-Alavez M, Mori S, Nguyen W, Conti B, Liu X, Chen Y, Liu QS, Cravatt BF, van der Stelt M (2016) Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition. Proc Natl Acad Sci U S A 113(1):26–33.  https://doi.org/10.1073/pnas.1522364112CrossRefPubMedGoogle Scholar
  108. Okerberg ES, Wu J, Zhang B, Samii B, Blackford K, Winn DT, Shreder KR, Burbaum JJ, Patricelli MP (2005) High-resolution functional proteomics by active-site peptide profiling. Proc Natl Acad Sci U S A 102(14):4996–5001.  https://doi.org/10.1073/pnas.0501205102CrossRefPubMedPubMedCentralGoogle Scholar
  109. Olenchock BA, Guo R, Carpenter JH, Jordan M, Topham MK, Koretzky GA, Zhong XP (2006) Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol 7(11):1174–1181.  https://doi.org/10.1038/ni1400CrossRefPubMedGoogle Scholar
  110. Palmer DC, Guittard GC, Franco Z, Crompton JG, Eil RL, Patel SJ, Ji Y, Van Panhuys N, Klebanoff CA, Sukumar M, Clever D, Chichura A, Roychoudhuri R, Varma R, Wang E, Gattinoni L, Marincola FM, Balagopalan L, Samelson LE, Restifo NP (2015) Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. J Exp Med 212(12):2095–2113.  https://doi.org/10.1084/jem.20150304CrossRefPubMedPubMedCentralGoogle Scholar
  111. Parker CG, Galmozzi A, Wang Y, Correia BE, Sasaki K, Joslyn CM, Kim AS, Cavallaro CL, Lawrence RM, Johnson SR, Narvaiza I, Saez E, Cravatt BF (2017) Ligand and target discovery by fragment-based screening in human cells. Cell 168(3):527–541 e529.  https://doi.org/10.1016/j.cell.2016.12.029CrossRefGoogle Scholar
  112. Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, Gartner JJ, Jia L, Steinberg SM, Yamamoto TN, Merchant AS, Mehta GU, Chichura A, Shalem O, Tran E, Eil R, Sukumar M, Guijarro EP, Day CP, Robbins P, Feldman S, Merlino G, Zhang F, Restifo NP (2017) Identification of essential genes for cancer immunotherapy. Nature 548(7669):537–542.  https://doi.org/10.1038/nature23477CrossRefPubMedPubMedCentralGoogle Scholar
  113. Patricelli MP, Szardenings AK, Liyanage M, Nomanbhoy TK, Wu M, Weissig H, Aban A, Chun D, Tanner S, Kozarich JW (2007) Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46(2):350–358.  https://doi.org/10.1021/bi062142xCrossRefPubMedGoogle Scholar
  114. Patricelli MP, Nomanbhoy Tyzoon K, Wu J, Brown H, Zhou D, Zhang J, Jagannathan S, Aban A, Okerberg E, Herring C, Nordin B, Weissig H, Yang Q, Lee J-D, Gray Nathanael S, Kozarich John W (2011) In situ kinase profiling reveals functionally relevant properties of native kinases. Chem Biol 18(6):699–710CrossRefGoogle Scholar
  115. Pauls SD, Marshall AJ (2017) Regulation of immune cell signaling by SHIP1: a phosphatase, scaffold protein, and potential therapeutic target. Eur J Immunol 47(6):932–945.  https://doi.org/10.1002/eji.201646795CrossRefPubMedGoogle Scholar
  116. Quann EJ, Liu X, Altan-Bonnet G, Huse M (2011) A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells. Nat Immunol 12(7):647–654.  https://doi.org/10.1038/ni.2033CrossRefPubMedPubMedCentralGoogle Scholar
  117. Randolph GJ, Ochando J, Partida-Sanchez S (2008) Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 26:293–316.  https://doi.org/10.1146/annurev.immunol.26.021607.090254CrossRefPubMedGoogle Scholar
  118. Rathmell JC, Elstrom RL, Cinalli RM, Thompson CB (2003) Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma. Eur J Immunol 33(8):2223–2232.  https://doi.org/10.1002/eji.200324048CrossRefPubMedGoogle Scholar
  119. Reading JL, Galvez-Cancino F, Swanton C, Lladser A, Peggs KS, Quezada SA (2018) The function and dysfunction of memory CD8(+) T cells in tumor immunity. Immunol Rev 283(1):194–212.  https://doi.org/10.1111/imr.12657CrossRefPubMedGoogle Scholar
  120. Riese MJ, Grewal J, Das J, Zou T, Patil V, Chakraborty AK, Koretzky GA (2011) Decreased diacylglycerol metabolism enhances ERK activation and augments CD8+ T cell functional responses. J Biol Chem 286(7):5254–5265.  https://doi.org/10.1074/jbc.M110.171884CrossRefPubMedGoogle Scholar
  121. Rohrig UF, Majjigapu SR, Vogel P, Zoete V, Michielin O (2015) Challenges in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. J Med Chem 58(24):9421–9437.  https://doi.org/10.1021/acs.jmedchem.5b00326CrossRefPubMedGoogle Scholar
  122. Ross SH, Rollings C, Anderson KE, Hawkins PT, Stephens LR, Cantrell DA (2016) Phosphoproteomic analyses of interleukin 2 signaling reveal integrated JAK kinase-dependent and -independent networks in CD8(+) T cells. Immunity 45(3):685–700.  https://doi.org/10.1016/j.immuni.2016.07.022CrossRefPubMedPubMedCentralGoogle Scholar
  123. Rosse C, Linch M, Kermorgant S, Cameron AJ, Boeckeler K, Parker PJ (2010) PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11(2):103–112.  https://doi.org/10.1038/nrm2847CrossRefPubMedGoogle Scholar
  124. Sakane F, Mizuno S, Komenoi S (2016) Diacylglycerol kinases as emerging potential drug targets for a variety of diseases: an update. Front Cell Dev Biol 4.  https://doi.org/10.3389/fcell.2016.00082
  125. Salmond RJ, Brownlie RJ, Zamoyska R (2015) Multifunctional roles of the autoimmune disease-associated tyrosine phosphatase PTPN22 in regulating T cell homeostasis. Cell Cycle 14(5):705–711.  https://doi.org/10.1080/15384101.2015.1007018CrossRefPubMedPubMedCentralGoogle Scholar
  126. Satani N, Lin YH, Hammoudi N, Raghavan S, Georgiou DK, Muller FL (2016) ENOblock does not inhibit the activity of the glycolytic enzyme enolase. PLoS ONE 11(12):e0168739.  https://doi.org/10.1371/journal.pone.0168739CrossRefPubMedPubMedCentralGoogle Scholar
  127. Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H, Bista P, Zeng W, Ryan S, Yamamoto M, Lukashev M, Rhodes KJ (2012) Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 341(1):274–284.  https://doi.org/10.1124/jpet.111.190132CrossRefPubMedGoogle Scholar
  128. Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, Tsukamoto T, Rojas CJ, Slusher BS, Rabinowitz JD, Dang CV, Riggins GJ (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70(22):8981–8987.  https://doi.org/10.1158/0008-5472.CAN-10-1666CrossRefPubMedPubMedCentralGoogle Scholar
  129. Shin M, Franks CE, Hsu KL (2018a) Isoform-selective activity-based profiling of ERK signaling. Chem Sci 9(9):2419–2431.  https://doi.org/10.1039/c8sc00043cCrossRefPubMedPubMedCentralGoogle Scholar
  130. Shin M, Snyder HW, Donvito G, Schurman LD, Fox TE, Lichtman AH, Kester M, Hsu KL (2018b) Liposomal delivery of diacylglycerol lipase-beta inhibitors to macrophages dramatically enhances selectivity and efficacy in vivo. Mol Pharm 15(3):721–728.  https://doi.org/10.1021/acs.molpharmaceut.7b00657CrossRefPubMedGoogle Scholar
  131. Shindo M, Irie K, Masuda A, Ohigashi H, Shirai Y, Miyasaka K, Saito N (2003) Synthesis and phorbol ester binding of the cysteine-rich domains of diacylglycerol kinase (DGK) isozymes. DGKgamma and DGKbeta are new targets of tumor-promoting phorbol esters. J Biol Chem 278(20):18448–18454CrossRefGoogle Scholar
  132. Shulga YV, Topham MK, Epand RM (2011) Regulation and functions of diacylglycerol kinases. Chem Rev 111:6186–6208.  https://doi.org/10.1021/cr1004106CrossRefPubMedGoogle Scholar
  133. Simon GM, Cravatt BF (2010) Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J Biol Chem 285(15):11051–11055.  https://doi.org/10.1074/jbc.R109.097600CrossRefPubMedPubMedCentralGoogle Scholar
  134. Sin N, Kim KB, Elofsson M, Meng L, Auth H, Kwok BH, Crews CM (1999) Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg Med Chem Lett 9(15):2283–2288CrossRefGoogle Scholar
  135. Speers AE, Cravatt BF (2005) A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J Am Chem Soc 127(28):10018–10019.  https://doi.org/10.1021/ja0532842CrossRefPubMedPubMedCentralGoogle Scholar
  136. Spitaler M, Emslie E, Wood CD, Cantrell D (2006) Diacylglycerol and protein kinase D localization during T lymphocyte activation. Immunity 24(5):535–546.  https://doi.org/10.1016/j.immuni.2006.02.013CrossRefPubMedGoogle Scholar
  137. Srivastava N, Sudan R, Kerr WG (2013) Role of inositol poly-phosphatases and their targets in T cell biology. Front Immunol 4:288.  https://doi.org/10.3389/fimmu.2013.00288CrossRefPubMedPubMedCentralGoogle Scholar
  138. Stapleton D, Balan I, Pawson T, Sicheri F (1999) The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol 6(1):44–49.  https://doi.org/10.1038/4917CrossRefPubMedGoogle Scholar
  139. Subramanian A, Miller DM (2000) Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 275(8):5958–5965CrossRefGoogle Scholar
  140. Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells: Devoted Mol Cell Mech 16(2):123–140.  https://doi.org/10.1111/j.1365-2443.2010.01473.xCrossRefGoogle Scholar
  141. Tamas P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG, Cantrell DA (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203(7):1665–1670.  https://doi.org/10.1084/jem.20052469CrossRefPubMedPubMedCentralGoogle Scholar
  142. Tamas P, Macintyre A, Finlay D, Clarke R, Feijoo-Carnero C, Ashworth A, Cantrell D (2010) LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur J Immunol 40(1):242–253.  https://doi.org/10.1002/eji.200939677CrossRefPubMedPubMedCentralGoogle Scholar
  143. Thornberry NA, Weber AE (2007) Discovery of JANUVIA (Sitagliptin), a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Curr Top Med Chem 7(6):557–568CrossRefGoogle Scholar
  144. Tu-Sekine B, Goldschmidt HL, Raben DM (2016) DGK-θ: structure, enzymology, and physiological roles. Front Cell Dev Biol 4.  https://doi.org/10.3389/fcell.2016.00101
  145. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Blosser RL, Tam AJ, Bruno T, Zhang H, Pardoll D, Kim Y (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Investig 123(4):1580–1589.  https://doi.org/10.1172/JCI60083CrossRefPubMedGoogle Scholar
  146. Vazquez-Cintron EJ, Monu NR, Frey AB (2010) Tumor-induced disruption of proximal TCR-mediated signal transduction in tumor-infiltrating CD8+ lymphocytes inactivates antitumor effector phase. J Immunol 185(12):7133–7140.  https://doi.org/10.4049/jimmunol.1001157CrossRefPubMedPubMedCentralGoogle Scholar
  147. Vocadlo DJ, Bertozzi CR (2004) A strategy for functional proteomic analysis of glycosidase activity from cell lysates. Angew Chem Int Ed Engl 43(40):5338–5342.  https://doi.org/10.1002/anie.200454235CrossRefPubMedGoogle Scholar
  148. Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18(3):207–219.  https://doi.org/10.1016/j.ccr.2010.08.009CrossRefPubMedPubMedCentralGoogle Scholar
  149. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882.  https://doi.org/10.1016/j.immuni.2011.09.021CrossRefPubMedPubMedCentralGoogle Scholar
  150. Wang C, Weerapana E, Blewett MM, Cravatt BF (2014) A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat Methods 11(1):79–85.  https://doi.org/10.1038/nmeth.2759CrossRefPubMedGoogle Scholar
  151. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468(7325):790–795.  https://doi.org/10.1038/nature09472CrossRefPubMedPubMedCentralGoogle Scholar
  152. Wright AT, Cravatt BF (2007) Chemical proteomic probes for profiling cytochrome p450 activities and drug interactions in vivo. Chem Biol 14(9):1043–1051.  https://doi.org/10.1016/j.chembiol.2007.08.008CrossRefPubMedPubMedCentralGoogle Scholar
  153. Wu C, Jin X, Tsueng G, Afrasiabi C, Su AI (2016) BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res 44:D313–D316.  https://doi.org/10.1093/nar/gkv1104CrossRefPubMedGoogle Scholar
  154. Yamaoka K, Saharinen P, Pesu M, Holt VE 3rd, Silvennoinen O, O’Shea JJ (2004) The janus kinases (jaks). Genome Biol 5(12):253.  https://doi.org/10.1186/gb-2004-5-12-253CrossRefPubMedPubMedCentralGoogle Scholar
  155. Yatim N, Cullen S, Albert ML (2017) Dying cells actively regulate adaptive immune responses. Nat Rev Immunol 17(4):262–275.  https://doi.org/10.1038/nri.2017.9CrossRefPubMedGoogle Scholar
  156. Yeh JH, Sidhu SS, Chan AC (2008) Regulation of a late phase of T cell polarity and effector functions by Crtam. Cell 132(5):846–859.  https://doi.org/10.1016/j.cell.2008.01.013CrossRefPubMedGoogle Scholar
  157. Yun B, Lee H, Ghosh M, Cravatt BF, Hsu KL, Bonventre JV, Ewing H, Gelb MH, Leslie CC (2014) Serine hydrolase inhibitors block necrotic cell death by preventing calcium overload of the mitochondria and permeability transition pore formation. J Biol Chem 289(3):1491–1504.  https://doi.org/10.1074/jbc.M113.497651CrossRefPubMedGoogle Scholar
  158. Zeng H, Chi H (2017) mTOR signaling in the differentiation and function of regulatory and effector T cells. Curr Opin Immunol 46:103–111.  https://doi.org/10.1016/j.coi.2017.04.005CrossRefPubMedPubMedCentralGoogle Scholar
  159. Zha Y, Marks R, Ho AW, Peterson AC, Janardhan S, Brown I, Praveen K, Stang S, Stone JC, Gajewski TF (2006) T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol 7(11):1166–1173.  https://doi.org/10.1038/ni1394CrossRefPubMedGoogle Scholar
  160. Zhou P, Shaffer DR, Alvarez Arias DA, Nakazaki Y, Pos W, Torres AJ, Cremasco V, Dougan SK, Cowley GS, Elpek K, Brogdon J, Lamb J, Turley SJ, Ploegh HL, Root DE, Love JC, Dranoff G, Hacohen N, Cantor H, Wucherpfennig KW (2014) In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature 506(7486):52–57.  https://doi.org/10.1038/nature12988CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Adam L. Borne
    • 2
  • Tao Huang
    • 1
  • Rebecca L. McCloud
    • 1
  • Boobalan Pachaiyappan
    • 1
  • Timothy N. J. Bullock
    • 3
  • Ku-Lung Hsu
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of PharmacologyUniversity of Virginia School of MedicineCharlottesvilleUSA
  3. 3.Department of PathologyUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations