Advertisement

pp 1-27 | Cite as

Host Genetic Signatures of Susceptibility to Fungal Disease

  • Cláudia F. Campos
  • Frank L. van de Veerdonk
  • Samuel M. Gonçalves
  • Cristina Cunha
  • Mihai G. Netea
  • Agostinho Carvalho
Chapter
Part of the Current Topics in Microbiology and Immunology book series

Abstract

Our relative inability to predict the development of fungal disease and its clinical outcome raises fundamental questions about its actual pathogenesis. Several clinical risk factors are described to predispose to fungal disease, particularly in immunocompromised and severely ill patients. However, these alone do not entirely explain why, under comparable clinical conditions, only some patients develop infection. Recent clinical and epidemiological studies have reported an expanding number of monogenic defects and common polymorphisms associated with fungal disease. By directly implicating genetic variation in the functional regulation of immune mediators and interacting pathways, these studies have provided critical insights into the human immunobiology of fungal disease. Most of the common genetic defects reported were described or suggested to impair fungal recognition by the innate immune system. Here, we review common genetic variation in pattern recognition receptors and its impact on the immune response against the two major fungal pathogens Candida albicans and Aspergillus fumigatus. In addition, we discuss potential strategies and opportunities for the clinical translation of genetic information in the field of medical mycology. These approaches are expected to transfigure current clinical practice by unleashing an unprecedented ability to personalize prophylaxis, therapy and monitoring for fungal disease.

Keywords

Single nucleotide polymorphism (SNP) Innate immunity Candida Aspergillus Fungal recognition Pattern recognition receptor Personalized medicine 

Notes

Acknowledgements

This work was supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), the Fundação para a Ciência e Tecnologia (FCT) (IF/00735/2014 to AC, and SFRH/BPD/96176/2013 to CC), the Institut Mérieux (Mérieux Research Grant 2017 to CC), and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID Research Grant 2017 to AC).

References

  1. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25(2):187–191.  https://doi.org/10.1038/76048CrossRefGoogle Scholar
  2. Arts RJ, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, Lachmandas E, Rodrigues F, Silvestre R, Cheng SC, Wang SY, Habibi E, Goncalves LG, Mesquita I, Cunha C, van Laarhoven A, van de Veerdonk FL, Williams DL, van der Meer JW, Logie C, O’Neill LA, Dinarello CA, Riksen NP, van Crevel R, Clish C, Notebaart RA, Joosten LA, Stunnenberg HG, Xavier RJ, Netea MG (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab.  https://doi.org/10.1016/j.cmet.2016.10.008CrossRefGoogle Scholar
  3. Babula O, Lazdane G, Kroica J, Ledger WJ, Witkin SS (2003) Relation between recurrent vulvovaginal candidiasis, vaginal concentrations of mannose-binding lectin, and a mannose-binding lectin gene polymorphism in Latvian women. Clin Infect Dis 37(5):733–737.  https://doi.org/10.1086/377234CrossRefGoogle Scholar
  4. Bekkering S, Arts RJW, Novakovic B, Kourtzelis I, van der Heijden C, Li Y, Popa CD, Ter Horst R, van Tuijl J, Netea-Maier RT, van de Veerdonk FL, Chavakis T, Joosten LAB, van der Meer JWM, Stunnenberg H, Riksen NP, Netea MG (2018) Metabolic induction of trained immunity through the mevalonate pathway. Cell 172(1–2):135–146(e139).  https://doi.org/10.1016/j.cell.2017.11.025Google Scholar
  5. Bidula S, Schelenz S (2016) A sweet response to a sour situation: The role of soluble pattern recognition receptors in the innate immune response to invasive Aspergillus fumigatus Infections. PLoS Pathog 12(7):e1005637.  https://doi.org/10.1371/journal.ppat.1005637CrossRefGoogle Scholar
  6. Bochud PY, Chien JW, Marr KA, Leisenring WM, Upton A, Janer M, Rodrigues SD, Li S, Hansen JA, Zhao LP, Aderem A, Boeckh M (2008) Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. The New England J Med 359(17):1766–1777.  https://doi.org/10.1056/NEJMoa0802629CrossRefGoogle Scholar
  7. Borghi M, De Luca A, Puccetti M, Jaeger M, Mencacci A, Oikonomou V, Pariano M, Garlanda C, Moretti S, Bartoli A, Sobel J, van de Veerdonk FL, Dinarello CA, Netea MG, Romani L (2015) Pathogenic NLRP3 inflammasome activity during Candida infection is negatively regulated by IL-22 via activation of NLRC4 and IL-1Ra. Cell Host Microbe 18(2):198–209.  https://doi.org/10.1016/j.chom.2015.07.004CrossRefGoogle Scholar
  8. Bozza S, Campo S, Arseni B, Inforzato A, Ragnar L, Bottazzi B, Mantovani A, Moretti S, Oikonomous V, De Santis R, Carvalho A, Salvatori G, Romani L (2014) PTX3 binds MD-2 and promotes TRIF-dependent immune protection in aspergillosis. J Immunol 193(5):2340–2348.  https://doi.org/10.4049/jimmunol.1400814CrossRefGoogle Scholar
  9. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):165rv113.  https://doi.org/10.1126/scitranslmed.3004404Google Scholar
  10. Brown GD, Gordon S (2001) Immune recognition. A new receptor for beta-glucans. Nature 413(6851):36–37.  https://doi.org/10.1038/35092620CrossRefGoogle Scholar
  11. Brown GD, Willment JA, Whitehead L (2018) C-type lectins in immunity and homeostasis. Nat Rev Immunol.  https://doi.org/10.1038/s41577-018-0004-8CrossRefGoogle Scholar
  12. Caruso R, Warner N, Inohara N, Nunez G (2014) NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41(6):898–908.  https://doi.org/10.1016/j.immuni.2014.12.010CrossRefGoogle Scholar
  13. Carvalho A, Cunha C, Bistoni F, Romani L (2012a) Immunotherapy of aspergillosis. Clin Microbiol Infect: The Official Publ Eur Soc Clin Microbiol Infect Dis 18(2):120–125.  https://doi.org/10.1111/j.1469-0691.2011.03681.xCrossRefGoogle Scholar
  14. Carvalho A, Cunha C, Carotti A, Aloisi T, Guarrera O, Di Ianni M, Falzetti F, Bistoni F, Aversa F, Pitzurra L, Rodrigues F, Romani L (2009) Polymorphisms in toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. Exp Hematol 37(9):1022–1029.  https://doi.org/10.1016/j.exphem.2009.06.004CrossRefGoogle Scholar
  15. Carvalho A, Cunha C, Pasqualotto AC, Pitzurra L, Denning DW, Romani L (2010) Genetic variability of innate immunity impacts human susceptibility to fungal diseases. Int J Infect Dis: IJID: Official Publ Int Soc Infect Dis 14(6):e460–468.  https://doi.org/10.1016/j.ijid.2009.06.028CrossRefGoogle Scholar
  16. Carvalho A, De Luca A, Bozza S, Cunha C, D’Angelo C, Moretti S, Perruccio K, Iannitti RG, Fallarino F, Pierini A, Latge JP, Velardi A, Aversa F, Romani L (2012b) TLR3 essentially promotes protective class I-restricted memory CD8(+) T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood 119(4):967–977.  https://doi.org/10.1182/blood-2011-06-362582CrossRefGoogle Scholar
  17. Carvalho A, Giovannini G, De Luca A, D’Angelo C, Casagrande A, Iannitti RG, Ricci G, Cunha C, Romani L (2012c) Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in mucosal candidiasis. Cell Mol Immunol 9(3):276–286.  https://doi.org/10.1038/cmi.2012.1CrossRefGoogle Scholar
  18. Carvalho A, Pasqualotto AC, Pitzurra L, Romani L, Denning DW, Rodrigues F (2008) Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis 197(4):618–621.  https://doi.org/10.1086/526500CrossRefGoogle Scholar
  19. Casadevall A (2018) Melanin triggers antifungal defences. Nature 555(7696):319–320.  https://doi.org/10.1038/d41586-018-02370-xCrossRefGoogle Scholar
  20. Chai LY, de Boer MG, van der Velden WJ, Plantinga TS, van Spriel AB, Jacobs C, Halkes CJ, Vonk AG, Blijlevens NM, van Dissel JT, Donnelly PJ, Kullberg BJ, Maertens J, Netea MG (2011) The Y238X stop codon polymorphism in the human beta-glucan receptor dectin-1 and susceptibility to invasive aspergillosis. J Infect Dis 203(5):736–743.  https://doi.org/10.1093/infdis/jiq102CrossRefGoogle Scholar
  21. Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, Manjeri GR, Li Y, Ifrim DC, Arts RJ, van der Veer BM, Deen PM, Logie C, O’Neill LA, Willems P, van de Veerdonk FL, van der Meer JW, Ng A, Joosten LA, Wijmenga C, Stunnenberg HG, Xavier RJ, Netea MG (2014) mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345(6204):1250684.  https://doi.org/10.1126/science.1250684CrossRefGoogle Scholar
  22. Cheng SC, van de Veerdonk FL, Lenardon M, Stoffels M, Plantinga T, Smeekens S, Rizzetto L, Mukaremera L, Preechasuth K, Cavalieri D, Kanneganti TD, van der Meer JW, Kullberg BJ, Joosten LA, Gow NA, Netea MG (2011) The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J Leukoc Biol 90(2):357–366.  https://doi.org/10.1189/jlb.1210702CrossRefGoogle Scholar
  23. Chiarini M, Sabelli C, Melotti P, Garlanda C, Savoldi G, Mazza C, Padoan R, Plebani A, Mantovani A, Notarangelo LD, Assael BM, Badolato R (2010) PTX3 genetic variations affect the risk of Pseudomonas aeruginosa airway colonization in cystic fibrosis patients. Genes Immun 11(8):665–670.  https://doi.org/10.1038/gene.2010.41CrossRefGoogle Scholar
  24. Chorny A, Casas-Recasens S, Sintes J, Shan M, Polentarutti N, Garcia-Escudero R, Walland AC, Yeiser JR, Cassis L, Carrillo J, Puga I, Cunha C, Bastos H, Rodrigues F, Lacerda JF, Morais A, Dieguez-Gonzalez R, Heeger PS, Salvatori G, Carvalho A, Garcia-Sastre A, Blander JM, Mantovani A, Garlanda C, Cerutti A (2016) The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells. J Exp Med 213(10):2167–2185.  https://doi.org/10.1084/jem.20150282CrossRefGoogle Scholar
  25. Cohen J, Vincent JL, Adhikari NK, Machado FR, Angus DC, Calandra T, Jaton K, Giulieri S, Delaloye J, Opal S, Tracey K, van der Poll T, Pelfrene E (2015) Sepsis: a roadmap for future research. Lancet Infect Dis 15(5):581–614.  https://doi.org/10.1016/S1473-3099(15)70112-XCrossRefGoogle Scholar
  26. Crosdale DJ, Poulton KV, Ollier WE, Thomson W, Denning DW (2001) Mannose-binding lectin gene polymorphisms as a susceptibility factor for chronic necrotizing pulmonary aspergillosis. J Infect Dis 184(5):653–656.  https://doi.org/10.1086/322791CrossRefGoogle Scholar
  27. Cunha C, Aversa F, Bistoni G, Casagrande A, Rodrigues F, Romani L, Carvalho A (2011a) Immunogenetic profiling to predict risk of invasive fungal diseases: where are we now? Immunol Invest 40(7–8):723–734.  https://doi.org/10.3109/08820139.2011.586395CrossRefGoogle Scholar
  28. Cunha C, Aversa F, Lacerda JF, Busca A, Kurzai O, Grube M, Loffler J, Maertens JA, Bell AS, Inforzato A, Barbati E, Almeida B, Santos e Sousa P, Barbui A, Potenza L, Caira M, Rodrigues F, Salvatori G, Pagano L, Luppi M, Mantovani A, Velardi A, Romani L, Carvalho A (2014) Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. The New England J Med 370(5):421–432.  https://doi.org/10.1056/nejmoa1211161Google Scholar
  29. Cunha C, Aversa F, Romani L, Carvalho A (2013) Human genetic susceptibility to invasive aspergillosis. PLoS Pathog 9(8):e1003434.  https://doi.org/10.1371/journal.ppat.1003434CrossRefGoogle Scholar
  30. Cunha C, Carvalho A (2012) Host genetics and invasive fungal diseases: towards improved diagnosis and therapy? Expert Rev Anti-infect Ther 10(3):257–259.  https://doi.org/10.1586/eri.12.3CrossRefGoogle Scholar
  31. Cunha C, Carvalho A (2018) Toward the identification of a genetic risk signature for pulmonary aspergillosis in chronic obstructive pulmonary disease. Clin Infect Dis 66(7):1153–1154.  https://doi.org/10.1093/cid/cix944CrossRefGoogle Scholar
  32. Cunha C, Carvalho A, Esposito A, Bistoni F, Romani L (2012) DAMP signaling in fungal infections and diseases. Front Immunol 3:286.  https://doi.org/10.3389/fimmu.2012.00286CrossRefGoogle Scholar
  33. Cunha C, Di Ianni M, Bozza S, Giovannini G, Zagarella S, Zelante T, D’Angelo C, Pierini A, Pitzurra L, Falzetti F, Carotti A, Perruccio K, Latge JP, Rodrigues F, Velardi A, Aversa F, Romani L, Carvalho A (2010a) Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 116(24):5394–5402.  https://doi.org/10.1182/blood-2010-04-279307CrossRefGoogle Scholar
  34. Cunha C, Goncalves SM, Duarte-Oliveira C, Leite L, Lagrou K, Marques A, Lupianez CB, Mesquita I, Gaifem J, Barbosa AM, Pinho Vaz C, Branca R, Campilho F, Freitas F, Ligeiro D, Lass-Florl C, Loffler J, Jurado M, Saraiva M, Kurzai O, Rodrigues F, Castro AG, Silvestre R, Sainz J, Maertens JA, Torrado E, Jacobsen ID, Lacerda JF, Campos A Jr, Carvalho A (2017) IL-10 overexpression predisposes to invasive aspergillosis by suppressing antifungal immunity. J Allergy Clin Immunol.  https://doi.org/10.1016/j.jaci.2017.02.034CrossRefGoogle Scholar
  35. Cunha C, Monteiro AA, Oliveira-Coelho A, Kuhne J, Rodrigues F, Sasaki SD, Schio SM, Camargo JJ, Mantovani A, Carvalho A, Pasqualotto AC (2015) PTX3-based genetic testing for risk of aspergillosis after lung transplant. Clin Infect Dis 61(12):1893–1894.  https://doi.org/10.1093/cid/civ679CrossRefGoogle Scholar
  36. Cunha C, Rodrigues F, Zelante T, Aversa F, Romani L, Carvalho A (2011b) Genetic susceptibility to aspergillosis in allogeneic stem-cell transplantation. Med Mycol 49(Suppl 1):S137–143.  https://doi.org/10.3109/13693786.2010.508797CrossRefGoogle Scholar
  37. Cunha C, Romani L, Carvalho A (2010b) Cracking the toll-like receptor code in fungal infections. Expert Rev Anti-infect Ther 8(10):1121–1137.  https://doi.org/10.1586/eri.10.93CrossRefGoogle Scholar
  38. Dambuza IM, Brown GD (2015) C-type lectins in immunity: recent developments. Curr Opin Immunol 32:21–27.  https://doi.org/10.1016/j.coi.2014.12.002CrossRefGoogle Scholar
  39. Damiens S, Poissy J, Francois N, Salleron J, Jawhara S, Jouault T, Poulain D, Sendid B (2012) Mannose-binding lectin levels and variation during invasive candidiasis. J Clin Immunol 32(6):1317–1323.  https://doi.org/10.1007/s10875-012-9748-2CrossRefGoogle Scholar
  40. de Boer MG, Jolink H, Halkes CJ, van der Heiden PL, Kremer D, Falkenburg JH, van de Vosse E, van Dissel JT (2011) Influence of polymorphisms in innate immunity genes on susceptibility to invasive aspergillosis after stem cell transplantation. PLoS ONE 6(4):e18403.  https://doi.org/10.1371/journal.pone.0018403CrossRefGoogle Scholar
  41. De Luca A, Carvalho A, Cunha C, Iannitti RG, Pitzurra L, Giovannini G, Mencacci A, Bartolommei L, Moretti S, Massi-Benedetti C, Fuchs D, De Bernardis F, Puccetti P, Romani L (2013) IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog 9(7):e1003486.  https://doi.org/10.1371/journal.ppat.1003486CrossRefGoogle Scholar
  42. Dix A, Vlaic S, Guthke R, Linde J (2016) Use of systems biology to decipher host-pathogen interaction networks and predict biomarkers. Clin Microbiol Infect: The Official Publ Eur Soc Clin Microbiol Infect Dis 22(7):600–606.  https://doi.org/10.1016/j.cmi.2016.04.014CrossRefGoogle Scholar
  43. Donders GG, Babula O, Bellen G, Linhares IM, Witkin SS (2008) Mannose-binding lectin gene polymorphism and resistance to therapy in women with recurrent vulvovaginal candidiasis. BJOG 115(10):1225–1231.  https://doi.org/10.1111/j.1471-0528.2008.01830.xCrossRefGoogle Scholar
  44. Durrant C, Tayem H, Yalcin B, Cleak J, Goodstadt L, de Villena FP, Mott R, Iraqi FA (2011) Collaborative cross mice and their power to map host susceptibility to Aspergillus fumigatus infection. Genome Res 21(8):1239–1248.  https://doi.org/10.1101/gr.118786.110CrossRefGoogle Scholar
  45. Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, Elbers CC, Johnson MD, Cambi A, Huysamen C, Jacobs L, Jansen T, Verheijen K, Masthoff L, Morre SA, Vriend G, Williams DL, Perfect JR, Joosten LA, Wijmenga C, van der Meer JW, Adema GJ, Kullberg BJ, Brown GD, Netea MG (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. The New England J Med 361(18):1760–1767.  https://doi.org/10.1056/NEJMoa0901053CrossRefGoogle Scholar
  46. Fischer M, Muller JP, Spies-Weisshart B, Grafe C, Kurzai O, Hunniger K, Hochhaus A, Scholl S, Schnetzke U (2017) Isoform localization of Dectin-1 regulates the signaling quality of anti-fungal immunity. Eur J Immunol 47(5):848–859.  https://doi.org/10.1002/eji.201646849CrossRefGoogle Scholar
  47. Fischer M, Spies-Weisshart B, Schrenk K, Gruhn B, Wittig S, Glaser A, Hochhaus A, Scholl S, Schnetzke U (2016) Polymorphisms of Dectin-1 and TLR2 predispose to invasive fungal disease in patients with acute myeloid leukemia. PLoS ONE 11(3):e0150632.  https://doi.org/10.1371/journal.pone.0150632CrossRefGoogle Scholar
  48. Fisher CE, Hohl TM, Fan W, Storer BE, Levine DM, Zhao LP, Martin PJ, Warren EH, Boeckh M, Hansen JA (2017) Validation of single nucleotide polymorphisms in invasive aspergillosis following hematopoietic cell transplantation. Blood 129(19):2693–2701.  https://doi.org/10.1182/blood-2016-10-743294CrossRefGoogle Scholar
  49. Foo SS, Reading PC, Jaillon S, Mantovani A, Mahalingam S (2015) Pentraxins and collectins: friend or foe during pathogen invasion? Trends Microbiol 23(12):799–811.  https://doi.org/10.1016/j.tim.2015.09.006CrossRefGoogle Scholar
  50. Garlanda C, Hirsch E, Bozza S, Salustri A, De Acetis M, Nota R, Maccagno A, Riva F, Bottazzi B, Peri G, Doni A, Vago L, Botto M, De Santis R, Carminati P, Siracusa G, Altruda F, Vecchi A, Romani L, Mantovani A (2002) Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 420(6912):182–186.  https://doi.org/10.1038/nature01195CrossRefGoogle Scholar
  51. Gazendam RP, van Hamme JL, Tool AT, van Houdt M, Verkuijlen PJ, Herbst M, Liese JG, van de Veerdonk FL, Roos D, van den Berg TK, Kuijpers TW (2014) Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood 124(4):590–597.  https://doi.org/10.1182/blood-2014-01-551473CrossRefGoogle Scholar
  52. Geijtenbeek TB, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9(7):465–479Google Scholar
  53. Giraldo PC, Babula O, Goncalves AK, Linhares IM, Amaral RL, Ledger WJ, Witkin SS (2007) Mannose-binding lectin gene polymorphism, vulvovaginal candidiasis, and bacterial vaginosis. Obstet Gynecol 109(5):1123–1128.  https://doi.org/10.1097/01.AOG.0000260386.17555.a5CrossRefGoogle Scholar
  54. Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, Salzer U, Pfeifer D, Veelken H, Warnatz K, Tahami F, Jamal S, Manguiat A, Rezaei N, Amirzargar AA, Plebani A, Hannesschlager N, Gross O, Ruland J, Grimbacher B (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. The New England J Med 361(18):1727–1735.  https://doi.org/10.1056/NEJMoa0810719CrossRefGoogle Scholar
  55. Gonçalves SM, Lagrou K, Rodrigues CS, Campos CF, Bernal-Martínez L, Rodrigues F, Silvestre R, Alcazar-Fuoli L, Maertens JA, Cunha C, Carvalho A (2017) Evaluation of bronchoalveolar lavage fluid cytokines as biomarkers for invasive pulmonary aspergillosis in at-risk patients. Front Microbiol 8:2362.  https://doi.org/10.3389/fmicb.2017.02362CrossRefGoogle Scholar
  56. Gow NA, Hube B (2012) Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 15(4):406–412.  https://doi.org/10.1016/j.mib.2012.04.005CrossRefGoogle Scholar
  57. Gresnigt MS, Cunha C, Jaeger M, Gonçalves SM, Subbarao Malireddi RK, Ammerdorfer A, Lubbers R, Oosting M, Rasid O, Jouvion G, Fitting C, De Jong D, Lacerda JF, Campos Jr A, Melchers WJ, Lagrou K, Maertens J, Kanneganti TD, Carvalho A, Ibrahim-Granet O, Van de Veerdonk FL (2018) Genetic deficiency of NOD2 confers resistance to invasive aspergillosis. Nat Commun; PMID: 29980664,  https://doi.org/10.1038/s41467-018-04912-3
  58. Gresnigt MS, Jaeger M, Subbarao Malireddi RK, Rasid O, Jouvion G, Fitting C, Melchers WJG, Kanneganti TD, Carvalho A, Ibrahim-Granet O, van de Veerdonk FL (2017) The absence of NOD1 enhances killing of Aspergillus fumigatus through modulation of Dectin-1 expression. Front Immunol 8:1777.  https://doi.org/10.3389/fimmu.2017.01777CrossRefGoogle Scholar
  59. Grimm MJ, Vethanayagam RR, Almyroudis NG, Dennis CG, Khan AN, D’Auria AC, Singel KL, Davidson BA, Knight PR, Blackwell TS, Hohl TM, Mansour MK, Vyas JM, Rohm M, Urban CF, Kelkka T, Holmdahl R, Segal BH (2013) Monocyte- and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice. J Immunol 190(8):4175–4184.  https://doi.org/10.4049/jimmunol.1202800CrossRefGoogle Scholar
  60. Grube M, Loeffler J, Mezger M, Kruger B, Echtenacher B, Hoffmann P, Edinger M, Einsele H, Andreesen R, Holler E (2013) TLR5 stop codon polymorphism is associated with invasive aspergillosis after allogeneic stem cell transplantation. Med Mycol 51(8):818–825.  https://doi.org/10.3109/13693786.2013.809630CrossRefGoogle Scholar
  61. Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, Ozinsky A, Smith KD, Aderem A (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198(10):1563–1572.  https://doi.org/10.1084/jem.20031220CrossRefGoogle Scholar
  62. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by toll-like receptor 5. Nature 410(6832):1099–1103.  https://doi.org/10.1038/35074106CrossRefGoogle Scholar
  63. He Q, Li H, Rui Y, Liu L, He B, Shi Y, Su X (2018) Pentraxin 3 gene polymorphisms and pulmonary aspergillosis in chronic obstructive pulmonary disease patients. Clin Infect Dis 66(2):261–267.  https://doi.org/10.1093/cid/cix749CrossRefGoogle Scholar
  64. Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5(5):487–497.  https://doi.org/10.1016/j.chom.2009.05.002CrossRefGoogle Scholar
  65. Jaeger M, Carvalho A, Cunha C, Plantinga TS, van de Veerdonk F, Puccetti M, Galosi C, Joosten LA, Dupont B, Kullberg BJ, Sobel JD, Romani L, Netea MG (2016) Association of a variable number tandem repeat in the NLRP3 gene in women with susceptibility to RVVC. Eur J Clin Microbiol Infect Dis: Official Publ Eur Soc Clin Microbiol 35(5):797–801.  https://doi.org/10.1007/s10096-016-2600-5CrossRefGoogle Scholar
  66. Jaeger M, van der Lee R, Cheng SC, Johnson MD, Kumar V, Ng A, Plantinga TS, Smeekens SP, Oosting M, Wang X, Barchet W, Fitzgerald K, Joosten LAB, Perfect JR, Wijmenga C, van de Veerdonk FL, Huynen MA, Xavier RJ, Kullberg BJ, Netea MG (2015) The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. Eur J Clin Microbiol Infect Dis: Official Publ Eur Soc Clin Microbiol 34(5):963–974.  https://doi.org/10.1007/s10096-014-2309-2CrossRefGoogle Scholar
  67. Jaillon S, Moalli F, Ragnarsdottir B, Bonavita E, Puthia M, Riva F, Barbati E, Nebuloni M, Cvetko Krajinovic L, Markotic A, Valentino S, Doni A, Tartari S, Graziani G, Montanelli A, Delneste Y, Svanborg C, Garlanda C, Mantovani A (2014) The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection. Immunity 40(4):621–632.  https://doi.org/10.1016/j.immuni.2014.02.015CrossRefGoogle Scholar
  68. Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin O, Alpsoy E, Hamann L, Schumann RR, Tapping RI (2007) Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol 178(12):7520–7524Google Scholar
  69. Johnson MD, Plantinga TS, van de Vosse E, Velez Edwards DR, Smith PB, Alexander BD, Yang JC, Kremer D, Laird GM, Oosting M, Joosten LA, van der Meer JW, van Dissel JT, Walsh TJ, Perfect JR, Kullberg BJ, Scott WK, Netea MG (2012) Cytokine gene polymorphisms and the outcome of invasive candidiasis: a prospective cohort study. Clin Infect Dis 54(4):502–510.  https://doi.org/10.1093/cid/cir827CrossRefGoogle Scholar
  70. Karki R, Man SM, Malireddi RK, Gurung P, Vogel P, Lamkanfi M, Kanneganti TD (2015) Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe 17(3):357–368.  https://doi.org/10.1016/j.chom.2015.01.006CrossRefGoogle Scholar
  71. Kesh S, Mensah NY, Peterlongo P, Jaffe D, Hsu K, M VDB, O’Reilly R, Pamer E, Satagopan J, Papanicolaou GA (2005) TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann New York Acad Sci 1062:95–103.  https://doi.org/10.1196/annals.1358.012Google Scholar
  72. Koehler FC, Cornely OA, Wisplinghoff H, Chang DH, Richter A, Koehler P (2018) Candida-reactive T cells for the diagnosis of invasive Candida infection of the lumbar vertebral spine. Mycoses 61(1):48–52.  https://doi.org/10.1111/myc.12696CrossRefGoogle Scholar
  73. Koldehoff M, Beelen DW, Elmaagacli AH (2013) Increased susceptibility for aspergillosis and post-transplant immune deficiency in patients with gene variants of TLR4 after stem cell transplantation. Transplant Infect Dis: An Official J Transplant Soc 15(5):533–539.  https://doi.org/10.1111/tid.12115CrossRefGoogle Scholar
  74. Kumar V, Cheng SC, Johnson MD, Smeekens SP, Wojtowicz A, Giamarellos-Bourboulis E, Karjalainen J, Franke L, Withoff S, Plantinga TS, van de Veerdonk FL, van der Meer JW, Joosten LA, Sokol H, Bauer H, Herrmann BG, Bochud PY, Marchetti O, Perfect JR, Xavier RJ, Kullberg BJ, Wijmenga C, Netea MG (2014) Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nature Commun 5:4675.  https://doi.org/10.1038/ncomms5675CrossRefGoogle Scholar
  75. Kyrmizi I, Gresnigt MS, Akoumianaki T, Samonis G, Sidiropoulos P, Boumpas D, Netea MG, van de Veerdonk FL, Kontoyiannis DP, Chamilos G (2013) Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J Immunol 191(3):1287–1299.  https://doi.org/10.4049/jimmunol.1300132CrossRefGoogle Scholar
  76. Lambourne J, Agranoff D, Herbrecht R, Troke PF, Buchbinder A, Willis F, Letscher-Bru V, Agrawal S, Doffman S, Johnson E, White PL, Barnes RA, Griffin G, Lindsay JA, Harrison TS (2009) Association of mannose-binding lectin deficiency with acute invasive aspergillosis in immunocompromised patients. Clin Infect Dis 49(10):1486–1491.  https://doi.org/10.1086/644619CrossRefGoogle Scholar
  77. Latge JP, Beauvais A, Chamilos G (2017) The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu Rev Microbiol 71:99–116.  https://doi.org/10.1146/annurev-micro-030117-020406CrossRefGoogle Scholar
  78. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983Google Scholar
  79. Lev-Sagie A, Prus D, Linhares IM, Lavy Y, Ledger WJ, Witkin SS (2009) Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am J Obstet Gynecol 200(3):303(e301–306).  https://doi.org/10.1016/j.ajog.2008.10.039Google Scholar
  80. Li Y, Oosting M, Deelen P, Ricano-Ponce I, Smeekens S, Jaeger M, Matzaraki V, Swertz MA, Xavier RJ, Franke L, Wijmenga C, Joosten LA, Kumar V, Netea MG (2016a) Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nat Med 22(8):952–960.  https://doi.org/10.1038/nm.4139CrossRefGoogle Scholar
  81. Li Y, Oosting M, Smeekens SP, Jaeger M, Aguirre-Gamboa R, Le KT, Deelen P, Ricano-Ponce I, Schoffelen T, Jansen AF, Swertz MA, Withoff S, van de Vosse E, van Deuren M, van de Veerdonk F, Zhernakova A, van der Meer JW, Xavier RJ, Franke L, Joosten LA, Wijmenga C, Kumar V, Netea MG (2016b) A functional genomics approach to understand variation in cytokine production in humans. Cell 167(4):1099–1110(e1014).  https://doi.org/10.1016/j.cell.2016.10.017Google Scholar
  82. Lionakis MS, Levitz SM (2017) Host control of fungal infections: lessons from basic studies and human cohorts. Annu Rev Immunol.  https://doi.org/10.1146/annurev-immunol-042617-053318CrossRefGoogle Scholar
  83. Lionakis MS, Levitz SM (2018) Host control of fungal infections: lessons from basic studies and human cohorts. Annu Rev Immunol 36:157–191.  https://doi.org/10.1146/annurev-immunol-042617-053318CrossRefGoogle Scholar
  84. Lo Giudice P, Campo S, De Santis R, Salvatori G (2012) Effect of PTX3 and voriconazole combination in a rat model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 56(12):6400–6402.  https://doi.org/10.1128/AAC.01000-12CrossRefGoogle Scholar
  85. Marra E, Sousa VL, Gaziano R, Pacello ML, Arseni B, Aurisicchio L, De Santis R, Salvatori G (2014) Efficacy of PTX3 and posaconazole combination in a rat model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 58(10):6284–6286.  https://doi.org/10.1128/AAC.03038-14CrossRefGoogle Scholar
  86. Mauri T, Coppadoro A, Bombino M, Bellani G, Zambelli V, Fornari C, Berra L, Bittner EA, Schmidt U, Sironi M, Bottazzi B, Brambilla P, Mantovani A, Pesenti A (2014) Alveolar pentraxin 3 as an early marker of microbiologically confirmed pneumonia: a threshold-finding prospective observational study. Crit Care 18(5):562.  https://doi.org/10.1186/s13054-014-0562-5CrossRefGoogle Scholar
  87. Nahum A, Dadi H, Bates A, Roifman CM (2011) The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J Allergy Clin Immunol 127(2):528–531.  https://doi.org/10.1016/j.jaci.2010.09.031CrossRefGoogle Scholar
  88. Nedovic B, Posteraro B, Leoncini E, Ruggeri A, Amore R, Sanguinetti M, Ricciardi W, Boccia S (2014) Mannose-binding lectin codon 54 gene polymorphism and vulvovaginal candidiasis: a systematic review and meta-analysis. Biomed Res Int 2014:738298.  https://doi.org/10.1155/2014/738298CrossRefGoogle Scholar
  89. Netea MG, Joosten LA, van der Meer JW, Kullberg BJ, van de Veerdonk FL (2015) Immune defence against Candida fungal infections. Nat Rev Immunol 15(10):630–642.  https://doi.org/10.1038/nri3897CrossRefGoogle Scholar
  90. Netea MG, van der Meer JW (2017) Trained immunity: an ancient way of remembering. Cell Host Microbe 21(3):297–300.  https://doi.org/10.1016/j.chom.2017.02.003CrossRefGoogle Scholar
  91. Netea MG, Wijmenga C, O’Neill LA (2012) Genetic variation in toll-like receptors and disease susceptibility. Nat Immunol 13(6):535–542.  https://doi.org/10.1038/ni.2284CrossRefGoogle Scholar
  92. Oliveira-Coelho A, Rodrigues F, Campos A Jr, Lacerda JF, Carvalho A, Cunha C (2015) Paving the way for predictive diagnostics and personalized treatment of invasive aspergillosis. Front Microbiol 6:411.  https://doi.org/10.3389/fmicb.2015.00411CrossRefGoogle Scholar
  93. Overton NL, Simpson A, Bowyer P, Denning DW (2017) Genetic susceptibility to severe asthma with fungal sensitization. Int J Immunogenet 44(3):93–106.  https://doi.org/10.1111/iji.12312CrossRefGoogle Scholar
  94. Patin EC, Thompson A, Orr SJ (2018) Pattern recognition receptors in fungal immunity. Semin Cell Dev Biol.  https://doi.org/10.1016/j.semcdb.2018.03.003CrossRefGoogle Scholar
  95. Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36(1):1–53.  https://doi.org/10.3109/10408410903241444CrossRefGoogle Scholar
  96. Plantinga TS, Hamza OJ, Willment JA, Ferwerda B, van de Geer NM, Verweij PE, Matee MI, Banahan K, O’Neill LA, Kullberg BJ, Brown GD, van der Ven AJ, Netea MG (2010) Genetic variation of innate immune genes in HIV-infected african patients with or without oropharyngeal candidiasis. J Acquir Immune Defic Syndr 55(1):87–94.  https://doi.org/10.1097/QAI.0b013e3181e53c64CrossRefGoogle Scholar
  97. Plantinga TS, Johnson MD, Scott WK, van de Vosse E, Velez Edwards DR, Smith PB, Alexander BD, Yang JC, Kremer D, Laird GM, Oosting M, Joosten LA, van der Meer JW, van Dissel JT, Walsh TJ, Perfect JR, Kullberg BJ, Netea MG (2012) Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis 205(6):934–943.  https://doi.org/10.1093/infdis/jir867CrossRefGoogle Scholar
  98. Plantinga TS, van der Velden WJ, Ferwerda B, van Spriel AB, Adema G, Feuth T, Donnelly JP, Brown GD, Kullberg BJ, Blijlevens NM, Netea MG (2009) Early stop polymorphism in human DECTIN-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clin Infect Dis 49(5):724–732.  https://doi.org/10.1086/604714CrossRefGoogle Scholar
  99. Potenza L, Vallerini D, Barozzi P, Riva G, Forghieri F, Beauvais A, Beau R, Candoni A, Maertens J, Rossi G, Morselli M, Zanetti E, Quadrelli C, Codeluppi M, Guaraldi G, Pagano L, Caira M, Del Giovane C, Maccaferri M, Stefani A, Morandi U, Tazzioli G, Girardis M, Delia M, Specchia G, Longo G, Marasca R, Narni F, Merli F, Imovilli A, Apolone G, Carvalho A, Comoli P, Romani L, Latge JP, Luppi M (2013) Characterization of specific immune responses to different Aspergillus antigens during the course of invasive aspergillosis in hematologic patients. PLoS ONE 8(9):e74326.  https://doi.org/10.1371/journal.pone.0074326CrossRefGoogle Scholar
  100. Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C, Cobat A, Ouachee-Chardin M, Toulon A, Bustamante J, Al-Muhsen S, Al-Owain M, Arkwright PD, Costigan C, McConnell V, Cant AJ, Abinun M, Polak M, Bougneres PF, Kumararatne D, Marodi L, Nahum A, Roifman C, Blanche S, Fischer A, Bodemer C, Abel L, Lilic D, Casanova JL (2010) Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 207(2):291–297.  https://doi.org/10.1084/jem.20091983CrossRefGoogle Scholar
  101. Quach H, Wilson D, Laval G, Patin E, Manry J, Guibert J, Barreiro LB, Nerrienet E, Verschoor E, Gessain A, Przeworski M, Quintana-Murci L (2013) Different selective pressures shape the evolution of toll-like receptors in human and African great ape populations. Hum Mol Genet 22(23):4829–4840.  https://doi.org/10.1093/hmg/ddt335CrossRefGoogle Scholar
  102. Radovanovic I, Mullick A, Gros P (2011) Genetic control of susceptibility to infection with Candida albicans in mice. PLoS ONE 6(4):e18957.  https://doi.org/10.1371/journal.pone.0018957CrossRefGoogle Scholar
  103. Rello J, van Engelen TSR, Alp E, Calandra T, Cattoir V, Kern WV, Netea MG, Nseir S, Opal SM, van de Veerdonk FL, Wilcox MH, Wiersinga WJ (2018) Towards precision medicine in sepsis: a position paper from the European society of clinical microbiology and infectious diseases. Clin Microbiol Infect: The Official Publ Eur Soc Clin Microbiol Infect Dis.  https://doi.org/10.1016/j.cmi.2018.03.011CrossRefGoogle Scholar
  104. Rieber N, Gazendam RP, Freeman AF, Hsu AP, Collar AL, Sugui JA, Drummond RA, Rongkavilit C, Hoffman K, Henderson C, Clark L, Mezger M, Swamydas M, Engeholm M, Schule R, Neumayer B, Ebel F, Mikelis CM, Pittaluga S, Prasad VK, Singh A, Milner JD, Williams KW, Lim JK, Kwon-Chung KJ, Holland SM, Hartl D, Kuijpers TW, Lionakis MS (2016) Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight 1(17):e89890.  https://doi.org/10.1172/jci.insight.89890CrossRefGoogle Scholar
  105. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95(2):588–593Google Scholar
  106. Rosentul DC, Delsing CE, Jaeger M, Plantinga TS, Oosting M, Costantini I, Venselaar H, Joosten LA, van der Meer JW, Dupont B, Kullberg BJ, Sobel JD, Netea MG (2014) Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis. Front Microbiol 5:483.  https://doi.org/10.3389/fmicb.2014.00483CrossRefGoogle Scholar
  107. Rubino I, Coste A, Le Roy D, Roger T, Jaton K, Boeckh M, Monod M, Latge JP, Calandra T, Bochud PY (2012) Species-specific recognition of Aspergillus fumigatus by toll-like receptor 1 and toll-like receptor 6. J Infect Dis 205(6):944–954.  https://doi.org/10.1093/infdis/jir882CrossRefGoogle Scholar
  108. Said-Sadier N, Padilla E, Langsley G, Ojcius DM (2010) Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS ONE 5(4):e10008.  https://doi.org/10.1371/journal.pone.0010008CrossRefGoogle Scholar
  109. Sainz J, Lupianez CB, Segura-Catena J, Vazquez L, Rios R, Oyonarte S, Hemminki K, Forsti A, Jurado M (2012) Dectin-1 and DC-SIGN polymorphisms associated with invasive pulmonary aspergillosis infection. PLoS ONE 7(2):e32273.  https://doi.org/10.1371/journal.pone.0032273CrossRefGoogle Scholar
  110. Salazar F, Brown GD (2018) Antifungal innate immunity: a perspective from the last 10 years. J Innate Immun 1–25.  https://doi.org/10.1159/000488539
  111. Smeekens SP, Ng A, Kumar V, Johnson MD, Plantinga TS, van Diemen C, Arts P, Verwiel ET, Gresnigt MS, Fransen K, van Sommeren S, Oosting M, Cheng SC, Joosten LA, Hoischen A, Kullberg BJ, Scott WK, Perfect JR, van der Meer JW, Wijmenga C, Netea MG, Xavier RJ (2013a) Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun 4:1342.  https://doi.org/10.1038/ncomms2343CrossRefGoogle Scholar
  112. Smeekens SP, van de Veerdonk FL, Kullberg BJ, Netea MG (2013b) Genetic susceptibility to Candida infections. EMBO Mol Med 5(6):805–813.  https://doi.org/10.1002/emmm.201201678CrossRefGoogle Scholar
  113. Sprong T, van Deuren M (2008) Mannose-binding lectin: ancient molecule, interesting future. Clin Infect Dis 47(4):517–518.  https://doi.org/10.1086/590007CrossRefGoogle Scholar
  114. Stappers MHT, Clark AE, Aimanianda V, Bidula S, Reid DM, Asamaphan P, Hardison SE, Dambuza IM, Valsecchi I, Kerscher B, Plato A, Wallace CA, Yuecel R, Hebecker B, da Gloria Teixeira Sousa M, Cunha C, Liu Y, Feizi T, Brakhage AA, Kwon-Chung KJ, Gow NAR, Zanda M, Piras M, Zanato C, Jaeger M, Netea MG, van de Veerdonk FL, Lacerda JF, Campos A, Carvalho A, Willment JA, Latge JP, Brown GD (2018) Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature 555(7696):382–386.  https://doi.org/10.1038/nature25974Google Scholar
  115. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820.  https://doi.org/10.1016/j.cell.2010.01.022CrossRefGoogle Scholar
  116. Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8(1):31–38.  https://doi.org/10.1038/ni1408CrossRefGoogle Scholar
  117. Tierney L, Linde J, Muller S, Brunke S, Molina JC, Hube B, Schock U, Guthke R, Kuchler K (2012) An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front Microbiol 3:85.  https://doi.org/10.3389/fmicb.2012.00085CrossRefGoogle Scholar
  118. Tomalka J, Ganesan S, Azodi E, Patel K, Majmudar P, Hall BA, Fitzgerald KA, Hise AG (2011) A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog 7(12):e1002379.  https://doi.org/10.1371/journal.ppat.1002379 PPATHOGENS-D-11-00989 [pii]CrossRefGoogle Scholar
  119. Usluogullari B, Gumus I, Gunduz E, Kaygusuz I, Simavli S, Acar M, Oznur M, Gunduz M, Kafali H (2014) The role of human Dectin-1 Y238X gene polymorphism in recurrent vulvovaginal candidiasis infections. Mol Biol Rep 41(10):6763–6768.  https://doi.org/10.1007/s11033-014-3562-2CrossRefGoogle Scholar
  120. Vaid M, Kaur S, Sambatakou H, Madan T, Denning DW, Sarma PU (2007) Distinct alleles of mannose-binding lectin (MBL) and surfactant proteins A (SP-A) in patients with chronic cavitary pulmonary aspergillosis and allergic bronchopulmonary aspergillosis. Clin Chem Lab Med 45(2):183–186.  https://doi.org/10.1515/CCLM.2007.033CrossRefGoogle Scholar
  121. van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latge JP (2017) Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol 15(11):661–674.  https://doi.org/10.1038/nrmicro.2017.90CrossRefGoogle Scholar
  122. van de Veerdonk FL, Joosten LA, Netea MG (2015) The interplay between inflammasome activation and antifungal host defense. Immunol Rev 265(1):172–180.  https://doi.org/10.1111/imr.12280CrossRefGoogle Scholar
  123. van der Velden WJ, Blijlevens NM, Donnelly JP (2011) Genetic variants and the risk for invasive mould disease in immunocompromised hematology patients. Curr Opin Infect Dis 24(6):554–563.  https://doi.org/10.1097/QCO.0b013e32834ab1f4CrossRefGoogle Scholar
  124. Wagener J, Malireddi RK, Lenardon MD, Koberle M, Vautier S, MacCallum DM, Biedermann T, Schaller M, Netea MG, Kanneganti TD, Brown GD, Brown AJ, Gow NA (2014) Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog 10(4):e1004050.  https://doi.org/10.1371/journal.ppat.1004050CrossRefGoogle Scholar
  125. White PL, Parr C, Barnes RA (2018) Predicting invasive aspergillosis in hematology patients by combining clinical and genetic risk factors with early diagnostic biomarkers. J Clin Microbiol 56(1).  https://doi.org/10.1128/jcm.01122-17
  126. Wlasiuk G, Khan S, Switzer WM, Nachman MW (2009) A history of recurrent positive selection at the toll-like receptor 5 in primates. Mol Biol Evol 26(4):937–949.  https://doi.org/10.1093/molbev/msp018CrossRefGoogle Scholar
  127. Wojitani MD, de Aguiar LM, Baracat EC, Linhares IM (2012) Association between mannose-binding lectin and interleukin-1 receptor antagonist gene polymorphisms and recurrent vulvovaginal candidiasis. Arch Gynecol Obstet 285(1):149–153.  https://doi.org/10.1007/s00404-011-1920-zCrossRefGoogle Scholar
  128. Wojtowicz A, Bochud PY (2014) Host genetics of invasive Aspergillus and Candida infections. Semin Immunopathol.  https://doi.org/10.1007/s00281-014-0468-yCrossRefGoogle Scholar
  129. Wojtowicz A, Lecompte TD, Bibert S, Manuel O, Rueger S, Berger C, Boggian K, Cusini A, Garzoni C, Hirsch H, Khanna N, Mueller NJ, Meylan PR, Pascual M, van Delden C, Bochud PY, Swiss Transplant Cohort S (2015) PTX3 polymorphisms and invasive mold infections after solid organ transplant. Clin Infect Dis 61(4):619–622.  https://doi.org/10.1093/cid/civ386CrossRefGoogle Scholar
  130. Wurfel MM, Gordon AC, Holden TD, Radella F, Strout J, Kajikawa O, Ruzinski JT, Rona G, Black RA, Stratton S, Jarvik GP, Hajjar AM, Nickerson DA, Rieder M, Sevransky J, Maloney JP, Moss M, Martin G, Shanholtz C, Garcia JG, Gao L, Brower R, Barnes KC, Walley KR, Russell JA, Martin TR (2008) Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med 178(7):710–720.  https://doi.org/10.1164/rccm.200803-462OCCrossRefGoogle Scholar
  131. Xu X, Xu JF, Zheng G, Lu HW, Duan JL, Rui W, Guan JH, Cheng LQ, Yang DD, Wang MC, Lv QZ, Li JX, Zhao X, Chen CX, Shi P, Jia XM, Lin X (2018) CARD9(S12 N) facilitates the production of IL-5 by alveolar macrophages for the induction of type 2 immune responses. Nat Immunol.  https://doi.org/10.1038/s41590-018-0112-4CrossRefGoogle Scholar
  132. Zaas AK, Liao G, Chien JW, Weinberg C, Shore D, Giles SS, Marr KA, Usuka J, Burch LH, Perera L, Perfect JR, Peltz G, Schwartz DA (2008) Plasminogen alleles influence susceptibility to invasive aspergillosis. PLoS Genet 4(6):e1000101.  https://doi.org/10.1371/journal.pgen.1000101CrossRefGoogle Scholar
  133. Zhang SY, Herman M, Ciancanelli MJ, Perez de Diego R, Sancho-Shimizu V, Abel L, Casanova JL (2013) TLR3 immunity to infection in mice and humans. Curr Opin Immunol 25(1):19–33.  https://doi.org/10.1016/j.coi.2012.11.001CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cláudia F. Campos
    • 1
    • 2
  • Frank L. van de Veerdonk
    • 3
  • Samuel M. Gonçalves
    • 1
    • 2
  • Cristina Cunha
    • 1
    • 2
  • Mihai G. Netea
    • 3
  • Agostinho Carvalho
    • 1
    • 2
  1. 1.Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
  2. 2.ICVS/3B’s—PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboudumc, NijmegenThe Netherlands

Personalised recommendations