Advertisement

Molecular Control of HIV and SIV Latency

  • Gilles Darcis
  • Benoit Van Driessche
  • Sophie Bouchat
  • Frank Kirchhoff
  • Carine Van Lint
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 417)

Abstract

The HIV latent reservoirs are considered as the main hurdle to viral eradication. Numerous mechanisms lead to the establishment of HIV latency and act at the transcriptional and post-transcriptional levels. A better understanding of latency is needed in order to ultimately achieve a cure for HIV. The mechanisms underlying latency vary between patients, tissues, anatomical compartments, and cell types. From this point of view, simian immunodeficiency virus (SIV) infection and the use of nonhuman primate (NHP) models that recapitulate many aspects of HIV-associated latency establishment and disease progression are essential tools since they allow extensive tissue sampling as well as a control of infection parameters (virus type, dose, route, and time).

Notes

Funding

This project has received funding from the Belgian Fund for Scientific Research (FRS-FNRS, Belgium), the European Union’s Horizon 2020 research and innovation programme (grant agreement N° 691119 EU4HIVCURE H2020-MSCA-RISE-2015), the ANRS (France Recherche Nord & Sud Sida-HIV Hépatites), the “Fondation Roi Baudouin”, the NEAT Program, the Walloon Region (the Excellence Program “Cibles” and the “Fond de maturation” program), the ARC program (ULB) and the Internationale Brachet Stiftung (IBS). BVD and SB are postdoctoral fellows (ARC program and PDR project from the FRS-FNRS, respectively). CVL is “Directeur de Recherches” of the FRS-FNRS (Belgium).

References

  1. Abdel-Mohsen M et al (2016) Human galectin-9 is a potent mediator of HIV transcription and reactivation. PLoS Pathog 12:e1005677CrossRefGoogle Scholar
  2. Abu-Farha M et al (2008) The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 7:560–572CrossRefGoogle Scholar
  3. Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731CrossRefGoogle Scholar
  4. Boehm D et al (2017) SMYD2-mediated histone methylation contributes to HIV-1 latency. Cell Host Microbe 21:569–579 e566CrossRefGoogle Scholar
  5. Alexaki A, Liu Y, Wigdahl B (2008) Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res 6:388–400CrossRefGoogle Scholar
  6. Avettand-Fenoel V et al (2016) Total HIV-1 DNA, a marker of viral reservoir dynamics with clinical implications. Clin Microbiol Rev 29:859–880CrossRefGoogle Scholar
  7. Barber SA et al (2006) Mechanism for the establishment of transcriptional HIV latency in the brain in a simian immunodeficiency virus-macaque model. J Infect Dis 193:963–970CrossRefGoogle Scholar
  8. Barboric M, Nissen RM, Kanazawa S, Jabrane-Ferrat N, Peterlin BM (2001) NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol Cell 8:327–337CrossRefGoogle Scholar
  9. Berkhout B (1992) Structural features in TAR RNA of human and simian immunodeficiency viruses: a phylogenetic analysis. Nucleic Acids Res 20:27–31CrossRefGoogle Scholar
  10. Besnard E et al (2016) The mTOR complex controls HIV latency. Cell Host Microbe 20:785–797CrossRefGoogle Scholar
  11. Bignami F et al (2012) Stable changes in CD4+ T lymphocyte miRNA expression after exposure to HIV-1. Blood 119:6259–6267CrossRefGoogle Scholar
  12. Blazkova J et al (2009) CpG methylation controls reactivation of HIV from latency. PLoS Pathog 5:e1000554CrossRefGoogle Scholar
  13. Brady J, Kashanchi F (2005) Tat gets the “green” light on transcription initiation. Retrovirology 2:69CrossRefGoogle Scholar
  14. Brown MA, Sims RJ 3rd, Gottlieb PD, Tucker PW (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:26CrossRefGoogle Scholar
  15. Budhiraja S, Famiglietti M, Bosque A, Planelles V, Rice AP (2013) Cyclin T1 and CDK9 T-loop phosphorylation are downregulated during establishment of HIV-1 latency in primary resting memory CD4+ T cells. J Virol 87:1211–1220CrossRefGoogle Scholar
  16. Capelson M, Doucet C, Hetzer MW (2010) Nuclear pore complexes: guardians of the nuclear genome. Cold Spring Harb Symp Quant Biol 75:585–597CrossRefGoogle Scholar
  17. Chen HC, Martinez JP, Zorita E, Meyerhans A, Filion GJ (2017) Position effects influence HIV latency reversal. Nat Struct Mol Biol 24:47–54CrossRefGoogle Scholar
  18. Cherrier T et al (2013) CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci USA 110:12655–12660CrossRefGoogle Scholar
  19. Chiang K, Rice AP (2012) MicroRNA-mediated restriction of HIV-1 in resting CD4+ T cells and monocytes. Viruses 4:1390–1409CrossRefGoogle Scholar
  20. Chiang K, Sung TL, Rice AP (2012) Regulation of cyclin T1 and HIV-1 Replication by microRNAs in resting CD4+ T lymphocytes. J Virol 86:3244–3252CrossRefGoogle Scholar
  21. Choudhary SK, Archin NM, Margolis DM (2008) Hexamethylbisacetamide and disruption of human immunodeficiency virus type 1 latency in CD4(+) T cells. J Infect Dis 197:1162–1170CrossRefGoogle Scholar
  22. Chun TW et al (1995) In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med 1:1284–1290CrossRefGoogle Scholar
  23. Chun TW et al (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188CrossRefGoogle Scholar
  24. Chun TW et al (2000) Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat Med 6:757–761CrossRefGoogle Scholar
  25. Coley W et al (2010) Absence of DICER in monocytes and its regulation by HIV-1. J Biol Chem 285:31930–31943CrossRefGoogle Scholar
  26. Colin L, Van Lint C (2009) Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 6:111CrossRefGoogle Scholar
  27. Crise B et al (2005) Simian immunodeficiency virus integration preference is similar to that of human immunodeficiency virus type 1. J Virol 79:12199–12204CrossRefGoogle Scholar
  28. Darcis G et al (2015) An in-depth comparison of latency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified bryostatin-1+ JQ1 and ingenol-B+ JQ1 to potently reactivate viral gene expression. PLoS Pathog 11:e1005063CrossRefGoogle Scholar
  29. Darcis G et al (2017) Reactivation capacity by latency-reversing agents ex vivo correlates with the size of the HIV-1 reservoir. AIDS 31:181–189CrossRefGoogle Scholar
  30. Das AT, Harwig A, Berkhout B (2011) The HIV-1 Tat protein has a versatile role in activating viral transcription. J Virol 85:9506–9516CrossRefGoogle Scholar
  31. Davey RT Jr et al (1999) HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci USA 96:15109–15114CrossRefGoogle Scholar
  32. Deleage C, Turkbey B, Estes JD (2016) Imaging lymphoid tissues in nonhuman primates to understand SIV pathogenesis and persistence. Curr Opin Virol 19:77–84CrossRefGoogle Scholar
  33. Doucas V, Tini M, Egan DA, Evans RM (1999) Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc Natl Acad Sci U S A 96:2627–2632CrossRefGoogle Scholar
  34. Duverger A et al (2013) An AP-1 binding site in the enhancer/core element of the HIV-1 promoter controls the ability of HIV-1 to establish latent infection. J Virol 87:2264–2277CrossRefGoogle Scholar
  35. Eilebrecht S et al (2014) HMGA1 recruits CTIP2-repressed P-TEFb to the HIV-1 and cellular target promoters. Nucleic Acids Res 42:4962–4971CrossRefGoogle Scholar
  36. Finzi D et al (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5:512–517CrossRefGoogle Scholar
  37. Fortin JF, Barat C, Beausejour Y, Barbeau B, Tremblay MJ (2004) Hyper-responsiveness to stimulation of human immunodeficiency virus-infected CD4+ T cells requires Nef and Tat virus gene products and results from higher NFAT, NF-kappaB, and AP-1 induction. J Biol Chem 279:39520–39531CrossRefGoogle Scholar
  38. Friedman J et al (2011) Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J Virol 85:9078–9089CrossRefGoogle Scholar
  39. Gama L et al (2017) Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS 31:5–14CrossRefGoogle Scholar
  40. Goffin V et al (2005) Transcription factor binding sites in the pol gene intragenic regulatory region of HIV-1 are important for virus infectivity. Nucleic Acids Res 33:4285–4310CrossRefGoogle Scholar
  41. Hayes AM, Qian S, Yu L, Boris-Lawrie K (2011) Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1. Retrovirology 8:36CrossRefGoogle Scholar
  42. Hematti P et al (2004) Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2:e423CrossRefGoogle Scholar
  43. Heusinger E, Kirchhoff F (2017) Primate Lentiviruses Modulate NF-kappaB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression. Front Microbiol 8:198CrossRefGoogle Scholar
  44. Hogan TH et al (2003) Structural and functional evolution of human immunodeficiency virus type 1 long terminal repeat CCAAT/enhancer binding protein sites and their use as molecular markers for central nervous system disease progression. J Neurovirol 9:55–68CrossRefGoogle Scholar
  45. Houzet L et al (2008) MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology 5:118CrossRefGoogle Scholar
  46. Huang J et al (2007) Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 13:1241–1247CrossRefGoogle Scholar
  47. Imai K, Togami H, Okamoto T (2010) Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol Chem 285:16538–16545CrossRefGoogle Scholar
  48. Imam H, Bano AS, Patel P, Holla P, Jameel S (2015) The lncRNA NRON modulates HIV-1 replication in a NFAT-dependent manner and is differentially regulated by early and late viral proteins. Sci Rep 5:8639CrossRefGoogle Scholar
  49. Jiang G, Espeseth A, Hazuda DJ, Margolis DM (2007) c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J Virol 81:10914–10923CrossRefGoogle Scholar
  50. Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22:1868–1877CrossRefGoogle Scholar
  51. Karn J, Stoltzfus CM (2012) Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2:a006916CrossRefGoogle Scholar
  52. Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E (2009) Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog 5:e1000495CrossRefGoogle Scholar
  53. Khalid M et al (2012) Efficient Nef-mediated downmodulation of TCR-CD3 and CD28 is associated with high CD4+ T cell counts in viremic HIV-2 infection. J Virol 86:4906–4920CrossRefGoogle Scholar
  54. Klase Z et al (2007) HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 8:63CrossRefGoogle Scholar
  55. Kula A, Marcello A (2012) Dynamic post-transcriptional regulation of HIV-1 gene expression. Biology (Basel) 1:116–133Google Scholar
  56. Kula A, Gharu L, Marcello A (2013) HIV-1 pre-mRNA commitment to Rev mediated export through PSF and Matrin 3. Virology 435:329–340CrossRefGoogle Scholar
  57. Kumar A, Abbas W, Herbein G (2014) HIV-1 latency in monocytes/macrophages. Viruses 6:1837–1860CrossRefGoogle Scholar
  58. Lamond AI, Sleeman JE (2003) Nuclear substructure and dynamics. Curr Biol 13:R825–828CrossRefGoogle Scholar
  59. Le Douce V, Cherrier T, Riclet R, Rohr O, Schwartz C (2014) The many lives of CTIP2: from AIDS to cancer and cardiac hypertrophy. J Cell Physiol 229:533–537CrossRefGoogle Scholar
  60. Lelek M et al (2015) Chromatin organization at the nuclear pore favours HIV replication. Nat Commun 6:6483CrossRefGoogle Scholar
  61. Lenasi T, Peterlin BM, Barboric M (2011) Cap-binding protein complex links pre-mRNA capping to transcription elongation and alternative splicing through positive transcription elongation factor b (P-TEFb). J Biol Chem 286:22758–22768CrossRefGoogle Scholar
  62. Lewinski MK et al (2005) Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol 79:6610–6619CrossRefGoogle Scholar
  63. Li J et al (2016) Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation. Nat Commun 7:11730CrossRefGoogle Scholar
  64. Ling B et al (2014) Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA) on SIV-infected Chinese rhesus macaques. PLoS ONE 9:e102795CrossRefGoogle Scholar
  65. Liu Y, Nonnemacher MR, Wigdahl B (2009) CCAAT/enhancer-binding proteins and the pathogenesis of retrovirus infection. Future Microbiol 4:299–321CrossRefGoogle Scholar
  66. Lusic M et al (2013) Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells. Cell Host Microbe 13:665–677CrossRefGoogle Scholar
  67. Marban C et al (2005) COUP-TF interacting protein 2 represses the initial phase of HIV-1 gene transcription in human microglial cells. Nucleic Acids Res 33:2318–2331CrossRefGoogle Scholar
  68. Marban C et al (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26:412–423CrossRefGoogle Scholar
  69. Marcello A et al (2003) Recruitment of human cyclin T1 to nuclear bodies through direct interaction with the PML protein. EMBO J 22:2156–2166CrossRefGoogle Scholar
  70. Marini B et al (2015) Nuclear architecture dictates HIV-1 integration site selection. Nature 521:227–231CrossRefGoogle Scholar
  71. Marsili G, Remoli AL, Sgarbanti M, Battistini A (2004) Role of acetylases and deacetylase inhibitors in IRF-1-mediated HIV-1 long terminal repeat transcription. Ann N Y Acad Sci 1030:636–643CrossRefGoogle Scholar
  72. Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800CrossRefGoogle Scholar
  73. Nguyen K, Das B, Dobrowolski C, Karn J (2017) Multiple histone lysine methyltransferases are required for the establishment and maintenance of HIV-1 latency. MBio 8Google Scholar
  74. Omoto S et al (2004) HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1:44CrossRefGoogle Scholar
  75. Ouellet DL et al (2008) Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res 36:2353–2365CrossRefGoogle Scholar
  76. Perkins ND et al (1997) Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275:523–527CrossRefGoogle Scholar
  77. Purcell DF, Martin MA (1993) Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 67:6365–6378PubMedPubMedCentralGoogle Scholar
  78. Qian S et al (2009) HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1. Proc Natl Acad Sci U S A 106:605–610CrossRefGoogle Scholar
  79. Ravimohan S, Gama L, Barber SA, Clements JE (2010) Regulation of SIV mac 239 basal long terminal repeat activity and viral replication in macrophages: functional roles of two CCAAT/enhancer-binding protein beta sites in activation and interferon beta-mediated suppression. J Biol Chem 285:2258–2273CrossRefGoogle Scholar
  80. Ravimohan S, Gama L, Engle EL, Zink MC, Clements JE (2012) Early emergence and selection of a SIV-LTR C/EBP site variant in SIV-infected macaques that increases virus infectivity. PLoS ONE 7:e42801CrossRefGoogle Scholar
  81. Schindler M et al (2006) Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell 125:1055–1067CrossRefGoogle Scholar
  82. Schindler M et al (2008) Inefficient Nef-mediated downmodulation of CD3 and MHC-I correlates with loss of CD4+ T cells in natural SIV infection. PLoS Pathog 4:e1000107CrossRefGoogle Scholar
  83. Schrijvers R et al (2012) LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog 8:e1002558CrossRefGoogle Scholar
  84. Shan L et al (2011) Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J Virol 85:5384–5393CrossRefGoogle Scholar
  85. Siliciano JD et al (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9:727–728CrossRefGoogle Scholar
  86. Sung TL, Rice AP (2009) miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS Pathog 5:e1000263CrossRefGoogle Scholar
  87. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476CrossRefGoogle Scholar
  88. Trejbalova K et al (2016) Development of 5’ LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenetics 8:19CrossRefGoogle Scholar
  89. Triboulet R et al (2007) Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315:1579–1582CrossRefGoogle Scholar
  90. van der Velden GJ, Vink MA, Berkhout B, Das AT (2012) Tat has a dual role in simian immunodeficiency virus transcription. J Gen Virol 93:2279–2289CrossRefGoogle Scholar
  91. Van Lint C, Emiliani S, Ott M, Verdin E (1996) Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J 15:1112–1120CrossRefGoogle Scholar
  92. Van Lint C, Bouchat S, Marcello A (2013) HIV-1 transcription and latency: an update. Retrovirology 10:67CrossRefGoogle Scholar
  93. Verdin E, Paras P Jr, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12:3249–3259CrossRefGoogle Scholar
  94. Vire E et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874CrossRefGoogle Scholar
  95. Wagner TA et al (2014) HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345:570–573CrossRefGoogle Scholar
  96. Witwer KW, Watson AK, Blankson JN, Clements JE (2012) Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients. Retrovirology 9:5CrossRefGoogle Scholar
  97. Wong RW, Mamede JI, Hope TJ (2015) The impact of nucleoporin mediated chromatin localization and nuclear architecture on HIV integration site selection. J VirolGoogle Scholar
  98. Yang G, Thompson MA, Brandt SJ, Hiebert SW (2007) Histone deacetylase inhibitors induce the degradation of the t(8;21) fusion oncoprotein. Oncogene 26:91–101CrossRefGoogle Scholar
  99. Yedavalli VS, Jeang KT (2011) Matrin 3 is a co-factor for HIV-1 Rev in regulating post-transcriptional viral gene expression. Retrovirology 8:61CrossRefGoogle Scholar
  100. Zhang Q, Chen CY, Yedavalli VS, Jeang KT (2013) NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio 4:e00596–00512CrossRefGoogle Scholar
  101. Zolotukhin AS et al (2003) PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol 23:6618–6630CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gilles Darcis
    • 1
    • 2
    • 3
  • Benoit Van Driessche
    • 1
  • Sophie Bouchat
    • 1
  • Frank Kirchhoff
    • 4
  • Carine Van Lint
    • 1
  1. 1.Service of Molecular Virology, Département de Biologie Moléculaire (DBM)Université Libre de Bruxelles (ULB)GosseliesBelgium
  2. 2.Service des Maladies InfectieusesUniversité de Liège, CHU de Liège, Domaine Universitaire du Sart-TilmanLiègeBelgium
  3. 3.Laboratory of Experimental Virology, Department of Medical MicrobiologyAcademic Medical Center of the University of AmsterdamAmsterdamThe Netherlands
  4. 4.Institute of Molecular Virology, Ulm University Medical CenterUlmGermany

Personalised recommendations