Advertisement

ER Stress and Neurodegenerative Disease: A Cause or Effect Relationship?

  • Felipe Cabral-Miranda
  • Claudio Hetz
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 414)

Abstract

The accumulation of protein aggregates has a fundamental role in the patophysiology of distinct neurodegenerative diseases. This phenomenon may have a common origin, where disruption of intracellular mechanisms related to protein homeostasis (here termed proteostasis) control during aging may result in abnormal protein aggregation. The unfolded protein response (UPR) embodies a major element of the proteostasis network triggered by endoplasmic reticulum (ER) stress. Chronic ER stress may operate as possible mechanism of neurodegenerative and synaptic dysfunction, and in addition contribute to the abnormal aggregation of key disease-related proteins. In this article we overview the most recent findings suggesting a causal role of ER stress in neurodegenerative diseases.

Notes

Acknowledgements

Supported by Millennium Institute No. P09-015-F, FONDAP program 15150012, CONICYT-Brazil 441921/2016-7, ALS Therapy Alliance 2014-F-059, Muscular Dystrophy Association 382453, Michael J. Fox Foundation for Parkinson’s Research—Target Validation grant No 9277, FONDECYT No. 1140549, Office of Naval Research-Global (ONR-G) N62909-16-1-2003, FONDEF D11E1007, U.S. Air Force Office of Scientific Research FA9550-16-1-0384, FONDEF ID16I10223, and ALSRP Therapeutic Idea Award AL150111 (CH). FC is a postdoctoral fellow funded by FONDAP program 15150012.

References

  1. Abisambra JF, Jinwal UK, Blair LJ et al (2013) Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J Neurosci Off J Soc Neurosci 33(22):9498–9507CrossRefGoogle Scholar
  2. Acosta-Alvear D, Zhou Y, Blais A et al (2007) XBP1 controls diverse cell type-and condition-specific transcriptional regulatory networks. Mol Cell 27(1):53–66PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alzheimer’s Association (2015) Alzheimer’s Dementia: J Alzheimer’s Assoc 11(3):332–384Google Scholar
  4. Apodaca J, Kim I, Rao H (2006) Cellular tolerance of prion protein PrP in yeast involves proteolysis and the unfolded protein response. Biochem Biophys Res Commun 347(1):319–326PubMedCrossRefGoogle Scholar
  5. Atkin JD, Farg MA, Turner BJ et al (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281(40):30152–30165PubMedCrossRefGoogle Scholar
  6. Balch WE, Morimoto RI, Dillin A et al (2008) Adapting proteostasis for disease intervention. Science 319(5865):916–919PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baleriola J, Walker CA, Jean YY et al (2014) Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell 158(5):1159–1172PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ballard C, Gauthier S, Corbett A et al (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031PubMedCrossRefGoogle Scholar
  9. Belal C, Ameli NJ, El Kommos A et al (2012) The homocysteine-inducible endoplasmic reticulum (ER) stress protein Herp counteracts mutant α-synuclein-induced ER stress via the homeostatic regulation of ER-resident calcium release channel proteins. Hum Mol Genet 21(5):963–977PubMedCrossRefGoogle Scholar
  10. Bellucci A, Navarria L, Zaltieri M et al (2011) Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson’s disease. J Neurochem 116(4):588–605PubMedCrossRefGoogle Scholar
  11. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292(5521):1552–1555PubMedCrossRefGoogle Scholar
  12. Bennett EJ, Shaler TA, Woodman B et al (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448(7154):704–708PubMedCrossRefGoogle Scholar
  13. Berezovska O, Lleo A, Herl LD, Frosch MP et al (2005) Familial Alzheimer’s disease presenilin 1 mutations cause alterations in the conformation of presenilin and interactions with amyloid precursor protein. J Neurosci Off J Soc Neurosci 25(11):3009–3017CrossRefGoogle Scholar
  14. Bernard-Marissal N, Sunyach C, Marissal T, Raoul C et al (2015) Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis 73:130–136PubMedCrossRefGoogle Scholar
  15. Betarbet R, Sherer TB, MacKenzie G et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306PubMedCrossRefGoogle Scholar
  16. Bouman L, Schlierf A, Lutz AK et al (2011) Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ 18(5):769–782CrossRefPubMedGoogle Scholar
  17. Boyce M et al (2005) A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Sci 307(5711):935–939CrossRefGoogle Scholar
  18. Brandt R, Hundelt M, Shahani N (2005) Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochem Biophys Acta 1739(2–3):331–354PubMedGoogle Scholar
  19. Brown AR, Rebus S, McKimmie CS et al (2005) Gene expression profiling of the preclinical scrapie-infected hippocampus. Biochem Biophys Res Commun 334(1):86–95PubMedCrossRefGoogle Scholar
  20. Brown RH (1998) SOD1 aggregates in ALS: cause, correlate or consequence? Nat Med 4(12):1362–1364PubMedCrossRefGoogle Scholar
  21. Carnemolla A, Fossale E, Agostoni E et al (2009) Rrs1 is involved in endoplasmic reticulum stress response in Huntington disease. J Biol Chem 284(27):18167–18173PubMedPubMedCentralCrossRefGoogle Scholar
  22. Casas-Tinto S, Zhang Y, Sanchez-Garcia J et al (2011) The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum Mol Genet 20(11):2144–2160PubMedPubMedCentralCrossRefGoogle Scholar
  23. Castillo-Carranza DL, Zhang Y, Guerrero-Munoz MJ et al (2012) Differential activation of the ER stress factor XBP1 by oligomeric assemblies. Neurochem Res 37(8):1707–1717PubMedPubMedCentralCrossRefGoogle Scholar
  24. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298PubMedCrossRefGoogle Scholar
  25. Cavedo E, Lista S, Khachaturian Z et al (2014) The road ahead to cure Alzheimer’s disease: development of biological markers and neuroimaging methods for prevention trials across all stages and target populations. J Prev Alzheimer’s Dis 1(3):181–202Google Scholar
  26. Cho KJ, Lee BI, Cheon SY et al (2009) Inhibition of apoptosis signal-regulating kinase 1 reduces endoplasmic reticulum stress and nuclear huntingtin fragments in a mouse model of Huntington disease. Neuroscience 163(4):1128–1134PubMedCrossRefGoogle Scholar
  27. Chung CY, Khurana V, Auluck PK et al (2013) Identification and rescue of α-synuclein toxicity in Parkinson patient–derived neurons. Sci 342(6161):983–987CrossRefGoogle Scholar
  28. Cisse M, Duplan E, Lorivel T et al (2016) The transcription factor XBP1s restores hippocampal synaptic plasticity and memory by control of the Kalirin-7 pathway in Alzheimer model. Mol PsychiatryGoogle Scholar
  29. Colla E, Jensen PH, Pletnikova O, Troncoso JC et al (2012a) Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J Neurosci: Off J Soc Neurosci 32(10):3301–3305CrossRefGoogle Scholar
  30. Colla E, Coune P, Liu Y et al (2012b) Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J Neurosci: Off J Soc Neurosci 32(10):3306–3320CrossRefGoogle Scholar
  31. Conn KJ, Gao W, McKee A et al (2004) Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson’s disease and Lewy body pathology. Brain Res 1022(1–2):164–172PubMedCrossRefGoogle Scholar
  32. Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Sci (New York, N.Y.) 313(5785):324–328CrossRefGoogle Scholar
  33. Cornejo VH, Hetz C (2013) Seminars in immunopathology. In: The unfolded protein response in Alzheimers disease, pp 277–292Google Scholar
  34. Cornejo VH, Pihán P, Vidal RL et al (2013) Role of the unfolded protein response in organ physiology: lessons from mouse models. IUBMB Life 65(12):962–975PubMedCrossRefGoogle Scholar
  35. Costa-Mattioli M, Sossin WS, Klann E et al (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61(1):10–26PubMedPubMedCentralCrossRefGoogle Scholar
  36. Coune PG, Bensadoun J-C, Aebischer P et al (2011) Rab1A over-expression prevents Golgi apparatus fragmentation and partially corrects motor deficits in an alpha-synuclein based rat model of Parkinson’s disease. J Parkinson’s Dis 1(4):373–387Google Scholar
  37. Credle JJ, Forcelli PA, Delannoy M et al (2015) α-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson’s disease. Neurobiol Dis 76:112–125PubMedCrossRefGoogle Scholar
  38. Crunkhorn S (2015) Neurodegenerative disease: phosphatase inhibitor prevents protein-misfolding diseases. Nat Rev Drug Discov 14(6):386PubMedGoogle Scholar
  39. Culmsee C, Landshamer S (2006) Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. Curr Alzheimer Res 3(4):269–283PubMedCrossRefGoogle Scholar
  40. Das I, Krzyzosiak A, Schneider K, Wrabetz L et al (2015) Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science (New York, N.Y.) 348(6231):239–242CrossRefGoogle Scholar
  41. Deitch JS, Alexander GM, Bensinger A et al (2014) Phenotype of transgenic mice carrying a very low copy number of the mutant human G93A superoxide dismutase-1 gene associated with amyotrophic lateral sclerosis. PLoS ONE 9(6):e99879PubMedPubMedCentralCrossRefGoogle Scholar
  42. Di Domenico F, Head E, Butterfield DA et al (2014) Oxidative stress and proteostasis network: culprit and casualty of Alzheimers-like neurodegeneration. Adv GeriatricsGoogle Scholar
  43. Dion PA, Daoud H, Rouleau GA (2009) Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 10(11):769–782PubMedCrossRefGoogle Scholar
  44. Dovey HF, John V, Anderson JP et al (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76(1):173–181PubMedCrossRefGoogle Scholar
  45. Duennwald ML, Lindquist S (2008) Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev 22(23):3308–3319PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dufey E, Sepúlveda D, Rojas-Rivera D et al (2014) Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview. Am J Physiol Cell Physiol 307(7):C582–C594PubMedCrossRefGoogle Scholar
  47. Duran-Aniotz C, Martínez G, Hetz C (2014) Memory loss in Alzheimer’s disease: are the alterations in the UPR network involved in the cognitive impairment? Front Aging Neurosci 6:8PubMedPubMedCentralCrossRefGoogle Scholar
  48. Duran-Aniotz C et al (2017) IRE1 signaling exacerbates Alzheimer’s disease pathogenesis. Acta Neuropathol 1–18Google Scholar
  49. Duvoisin RC (1995) Recent advances in the genetics of Parkinson’s disease. Adv Neurol 69:33–40Google Scholar
  50. Egawa N, Yamamoto K, Inoue H et al (2011) The endoplasmic reticulum stress sensor, ATF6α, protects against neurotoxin-induced dopaminergic neuronal death. J Biol Chem 286(10):7947–7957PubMedCrossRefGoogle Scholar
  51. Endres K, Reinhardt S (2013) ER-stress in Alzheimer’s disease: turning the scale? Am J Neurodegener Dis 2(4):247–265PubMedPubMedCentralGoogle Scholar
  52. Fawcett EM, Hoyt JM, Johnson JK et al (2015) Hypoxia disrupts proteostasis in Caenorhabditis elegans. Aging Cell 14(1):92–101PubMedCrossRefGoogle Scholar
  53. Ferreiro E, Oliveira CR, Pereira CM (2008) The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol Dis 30(3):331–342PubMedCrossRefGoogle Scholar
  54. Filézac de L’Etang A, Maharjan N, Braña C et al (2015) Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nat Neurosci 18(2):227–238PubMedCrossRefGoogle Scholar
  55. Fouillet A, Levet C, Virgone A, Robin M et al (2012) ER stress inhibits neuronal death by promoting autophagy. Autophagy 8(6):915–926PubMedPubMedCentralCrossRefGoogle Scholar
  56. Freeman OJ, Mallucci GR (2016) The UPR and synaptic dysfunction in neurodegeneration. Brain ResPubMedCrossRefGoogle Scholar
  57. Gkogkas C, Middleton S, Kremer AM et al (2008) VAPB interacts with and modulates the activity of ATF6. Hum Mol Genet 17(11):1517–1526PubMedCrossRefGoogle Scholar
  58. Glenner GG, Wong CW (2012) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein 1984. Biochem Biophys Res Commun 425(3):534–539PubMedCrossRefGoogle Scholar
  59. Gonzalez-Perez P, Woehlbier U, Chian RJ et al (2015) Identification of rare protein disulfide isomerase gene variants in amyotrophic lateral sclerosis patients. Gene 566(2):158–165PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gorbatyuk MS, Shabashvili A, Chen W et al (2012) Glucose regulated protein 78 diminishes α-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther 20(7):1327–1337PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gunawardena S, Goldstein LS (2005) Polyglutamine diseases and transport problems: deadly traffic jams on neuronal highways. Arch Neurol 62(1):46–51PubMedCrossRefGoogle Scholar
  62. Haass C (2004) Take five–BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO J 23(3):483–488PubMedPubMedCentralCrossRefGoogle Scholar
  63. Halliday M, Radford H, Sekine Y et al (2015) Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis 6:e1672PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hamos JE, Oblas B, Pulaski-Salo D et al (1991) Expression of heat shock proteins in Alzheimer’s disease. Neurol 41(3):345PubMedCrossRefGoogle Scholar
  65. Hashida K, Kitao Y, Sudo H et al (2012) ATF6alpha promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinsons disease. PLoS ONE 7(10):e47950PubMedPubMedCentralCrossRefGoogle Scholar
  66. Henstridge CM, Pickett E, Spires-Jones TL (2016) Synaptic pathology: a shared mechanism in neurological disease. Ageing Res Rev 28:72–84PubMedCrossRefGoogle Scholar
  67. Herms JW, Korte S, Gall S et al (2000) Altered intracellular calcium homeostasis in cerebellar granule cells of prion protein-deficient mice. J Neurochem 75(4):1487–1492PubMedCrossRefGoogle Scholar
  68. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102CrossRefGoogle Scholar
  69. Hetz CA, Soto C (2006) Stressing out the ER: a role of the unfolded protein response in prion-related disorders. Curr Mol Med 6(1):37–43Google Scholar
  70. Hetz Flores C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15(4):233PubMedCrossRefGoogle Scholar
  71. Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J et al (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22(20):5435–5445PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hetz C, Russelakis-Carneiro M, Wälchli S et al (2005a) The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J Neurosci 25(11):2793–2802PubMedCrossRefGoogle Scholar
  73. Hetz C, Lee A-H, Gonzalez-Romero D, Thielen P et al (2008) Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Natl Acad Sci 105(2):757–762PubMedPubMedCentralCrossRefGoogle Scholar
  74. Hetz C, Thielen P, Matus S et al (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 23(19):2294–2306PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12(9):703–719CrossRefPubMedGoogle Scholar
  76. Hetz C, Russelakis-Carneiro M, Walchli S et al (2005) The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J Neurosci 25:2793–2802PubMedCrossRefGoogle Scholar
  77. Hippius H, Neundörfer G (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5(1):101–108PubMedPubMedCentralGoogle Scholar
  78. Ho YS, Yang X, Lau JC et al (2012) Endoplasmic reticulum stress induces tau pathology and forms a vicious cycle: implication in Alzheimer’s disease pathogenesis. J Alzheimer’s Dis: JAD 28(4):839–854CrossRefGoogle Scholar
  79. Honjo Y, Ito H, Horibe T, Takahashi R et al (2010) Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease. Brain Res 1349:90–96PubMedCrossRefGoogle Scholar
  80. Honjo Y, Kaneko S, Ito H et al (2011) Protein disulfide isomerase-immunopositive inclusions in patients with amyotrophic lateral sclerosis. Amyotroph Later Scler Off Publ World Fed Neurol Res Gr Mot Neuron Dis 12(6):444–450Google Scholar
  81. Hoozemans JJM, Veerhuis R, Van Haastert ES et al (2005) The unfolded protein response is activated in Alzheimers disease. Acta Neuropathol 110(2):165–172PubMedCrossRefGoogle Scholar
  82. Hoozemans JJM, Van Haastert ES, Eikelenboom P et al (2007) Activation of the unfolded protein response in Parkinsons disease. Biochem Biophys Res Commun 354(3):707–711PubMedCrossRefGoogle Scholar
  83. Hoozemans JJ, van Haastert ES, Nijholt DA et al (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174(4):1241–1251PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hoozemans JJ, van Haastert ES, Nijholt DA et al (2012) Activation of the unfolded protein response is an early event in Alzheimer’s and Parkinson’s disease. Neuro-Degener Dis 10(1–4):212–215CrossRefGoogle Scholar
  85. Hu B-R, Janelidze S, Ginsberg MD et al (2001) Protein aggregation after focal brain ischemia and reperfusion. J Cereb Blood Flow Metab 21(7):865–875PubMedCrossRefGoogle Scholar
  86. Ito Y, Yamada M, Tanaka H et al (2009) Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice. Neurobiol Dis 36(3):470–476PubMedCrossRefGoogle Scholar
  87. Jankovic J, Aguilar LG (2008) Current approaches to the treatment of Parkinsons disease. Neuropsychiatry Dis Treat 4(4):743–757CrossRefGoogle Scholar
  88. Jiang Y, Chadwick SR, Lajoie P (2016) Endoplasmic reticulum stress: the cause and solution to Huntington’s disease? Brain ResGoogle Scholar
  89. Jiang HQ, Ren M, Jiang HZ et al (2014) Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuroscience 277:132–138PubMedCrossRefGoogle Scholar
  90. Jiang P, Gan M, Ebrahim AS et al (2010) ER stress response plays an important role in aggregation of α-synuclein. Mol Neurodegener 5:56PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kalathur RK, Giner-Lamia J, Machado S et al (2015) The unfolded protein response and its potential role in Huntington’s disease elucidated by a systems biology approach. F1000Res 4:103Google Scholar
  92. Katayama T, Imaizumi K, Manabe T et al (2004) Induction of neuronal death by ER stress in Alzheimer’s disease. J Chem Neuroanat 28(1–2):67–78PubMedCrossRefGoogle Scholar
  93. Katayama T, Imaizumi K, Sato N et al (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1(8):479–485PubMedCrossRefGoogle Scholar
  94. Kaushik S, Cuervo AM (2015) Proteostasis and aging. Nat Med 21(12):1406–1415PubMedCrossRefGoogle Scholar
  95. Kern A, Behl C (2009) The unsolved relationship of brain aging and late-onset Alzheimer disease. Biochem Biophys Acta 1790(10):1124–1132PubMedCrossRefGoogle Scholar
  96. Kikuchi H, Almer G, Yamashita S et al (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci 103(15):6025–6030PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kim HJ, Raphael AR, LaDow ES et al (2014) Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46(2):152–160PubMedCrossRefGoogle Scholar
  98. Kitao Y, Imai Y, Ozawa K et al (2007) Pael receptor induces death of dopaminergic neurons in the substantia nigra via endoplasmic reticulum stress and dopamine toxicity, which is enhanced under condition of parkin inactivation. Hum Mol Genet 16(1):50–60PubMedCrossRefGoogle Scholar
  99. Kouroku Y, Fujita E, Jimbo A et al (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet 11(13):1505–1515PubMedCrossRefGoogle Scholar
  100. Kouroku Y, Fujita E, Tanida I et al (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14(2):230–239PubMedCrossRefGoogle Scholar
  101. Kwok CT, Morris AG, Frampton J et al (2013) Association studies indicate that protein disulfide isomerase is a risk factor in amyotrophic lateral sclerosis. Free Radic Biol Med 58:81–86PubMedCrossRefGoogle Scholar
  102. Labbadia J, Morimoto RI (2014) Proteostasis and longevity: when does aging really begin? F1000Prime Rep 6:7Google Scholar
  103. De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535PubMedCrossRefGoogle Scholar
  104. Lautenschlaeger J, Prell T, Grosskreutz J (2012) Endoplasmic reticulum stress and the ER mitochondria calcium cycle in amyotrophic lateral sclerosis. Amyotroph Later Scler 13(2):166–177CrossRefGoogle Scholar
  105. Ledesma MD, Galvan C, Hellias B et al (2002) Astrocytic but not neuronal increased expression and redistribution of parkin during unfolded protein stress. J Neurochem 83(6):1431–1440PubMedCrossRefGoogle Scholar
  106. Lee H-J, Patel S, Lee S-J (2005) Intravesicular localization and exocytosis of α-synuclein and its aggregates. J Neurosci 25(25):6016–6024PubMedCrossRefGoogle Scholar
  107. Lee DY, Lee KS, Lee HJ et al (2010a) Activation of PERK signaling attenuates Abeta-mediated ER stress. PLoS ONE 5(5):e10489PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lee JH, Won SM et al (2010b) Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp Mol Med 42(5):386–394PubMedPubMedCentralCrossRefGoogle Scholar
  109. Lee H, Noh JY, Oh Y et al (2012) IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet 21(1):101–114PubMedCrossRefGoogle Scholar
  110. Liu SY, Wang W, Cai ZY et al (2013) Polymorphism -116C/G of human X-box-binding protein 1 promoter is associated with risk of Alzheimer’s disease. CNS Neurosci Ther 19(4):229–234PubMedCrossRefGoogle Scholar
  111. Loewen CA, Feany MB (2010) The unfolded protein response protects from tau neurotoxicity in vivo. PloS One 5(9)Google Scholar
  112. Lourenco MV, Ferreira ST, De Felice FG (2015) Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer’s disease and diabetes. Prog Neurobiol 129:37–57PubMedCrossRefGoogle Scholar
  113. Luo Y, Bolon B, Kahn S et al (2001) Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 4(3):231–232PubMedCrossRefGoogle Scholar
  114. Ma T, Trinh MA, Wexler AJ et al (2013) Suppression of eIF2α kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat Neurosci 16(9):1299–1305PubMedPubMedCentralCrossRefGoogle Scholar
  115. Maekawa S, Leigh PN, King A et al (2009) TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology 29(6):672–683PubMedCrossRefGoogle Scholar
  116. Maharjan N, Saxena S (2016) ER strikes again: proteostasis dysfunction in ALS. EMBO J 35(8):798–800PubMedPubMedCentralCrossRefGoogle Scholar
  117. Maly DJ, Papa FR (2014) Druggable sensors of the unfolded protein response. Nat Chem Biol 10(11):892–901PubMedPubMedCentralCrossRefGoogle Scholar
  118. Martínez G, Vidal RL, Mardones P et al (2016) Regulation of memory formation by the transcription factor XBP1. Cell Rep 14(6):1382–1394PubMedCrossRefGoogle Scholar
  119. Martinez-Vicente M, Talloczy Z, Wong E et al (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13(5):567–576PubMedPubMedCentralCrossRefGoogle Scholar
  120. Masters CL, Multhaup G, Simms G et al (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4(11):2757PubMedPubMedCentralCrossRefGoogle Scholar
  121. Matus S, Castillo K, Hetz C (2012) Hormesis: protecting neurons against cellular stress in Parkinson disease. Autophagy 8(6):997–1001PubMedPubMedCentralCrossRefGoogle Scholar
  122. Matus S, Lopez E, Valenzuela V, Nassif M et al (2013) Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis. PLoS ONE 8(7):e66672PubMedPubMedCentralCrossRefGoogle Scholar
  123. Mays CE, Soto C (2016) The stress of prion disease. Brain ResGoogle Scholar
  124. McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126(4):479–497PubMedCrossRefGoogle Scholar
  125. Mercado G, Valdés P, Hetz C (2013) An ERcentric view of Parkinson’s disease. Trends Mol Med 19(3):165–175PubMedCrossRefGoogle Scholar
  126. Mercado G, Castillo V, Soto P et al (2016) ER stress and Parkinson’s disease: pathological inputs that converge into the secretory pathway. Brain Res 1648(Pt B):626–632PubMedCrossRefGoogle Scholar
  127. Mitsuda T, Hayakawa Y, Itoh M et al (2007) ATF4 regulates γ-secretase activity during amino acid imbalance. Biochem Biophys Res Commun 352(3):722–727PubMedCrossRefGoogle Scholar
  128. Moreno JA, Radford H, Peretti D et al (2012) Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nat 485(7399):507–511CrossRefGoogle Scholar
  129. Moreno JA, Halliday M, Molloy C et al (2013) Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 5(206):206ra138PubMedCrossRefGoogle Scholar
  130. Mukherjee A, Morales-Scheihing D, Gonzalez-Romero D et al (2010) Calcineurin inhibition at the clinical phase of prion disease reduces neurodegeneration, improves behavioral alterations and increases animal survival. PLoS Pathog 6(10):e1001138PubMedPubMedCentralCrossRefGoogle Scholar
  131. Nagata T, Ilieva H, Murakami T et al (2007) Increased ER stress during motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol Res 29(8):767–771PubMedCrossRefGoogle Scholar
  132. Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75(5):822–831PubMedPubMedCentralCrossRefGoogle Scholar
  133. Nishitoh H, Matsuzawa A, Tobiume K et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16(11):1345–1355PubMedPubMedCentralCrossRefGoogle Scholar
  134. Nishitoh H, Kadowaki H, Nagai A et al (2008) ALS-linked mutant SOD1 induces ER stress-and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22(11):1451–1464PubMedPubMedCentralCrossRefGoogle Scholar
  135. Oakley H, Cole SL, Logan S, Maus E et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci Off J Soc Neurosci 26(40):10129–10140CrossRefGoogle Scholar
  136. Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194PubMedCrossRefGoogle Scholar
  137. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621PubMedCrossRefGoogle Scholar
  138. Page G, Rioux Bilan A, Ingrand S et al (2006) Activated double-stranded RNA-dependent protein kinase and neuronal death in models of Alzheimer’s disease. Neurosci 139(4):1343–1354CrossRefGoogle Scholar
  139. Pasini S, Corona C, Liu J et al (2015) Specific downregulation of hippocampal ATF4 reveals a necessary role in synaptic plasticity and memory. Cell Rep 11(2):183–191PubMedPubMedCentralCrossRefGoogle Scholar
  140. Powers ET, Balch WE (2013) Diversity in the origins of proteostasis networks–a driver for protein function in evolution. Nat Rev Mol Cell Biol 14(4):237–248PubMedPubMedCentralCrossRefGoogle Scholar
  141. Prudencio M, Belzil VV, Batra R, Ross CA et al (2015) Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci 18(8):1175–1182PubMedPubMedCentralCrossRefGoogle Scholar
  142. Prusiner SB (1998) Prions. Proc Natl Acad Sci 95(23):13363–13383PubMedPubMedCentralCrossRefGoogle Scholar
  143. Prusiner SB, Scott MR (1997) Genetics of prions. Annu Rev Genet 31:139–175PubMedCrossRefGoogle Scholar
  144. Reitz C (2012) Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012Google Scholar
  145. Rozas P, Bargsted L, Martínez F et al (2016) The ER proteostasis network in ALS: determining the differential motoneuron vulnerability. Neurosci LettGoogle Scholar
  146. Ross CA, Poirier MA (2005) What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6(11):891–898PubMedCrossRefGoogle Scholar
  147. Ryu EJ, Harding HP, Angelastro JM et al (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 22(24):10690–10698PubMedCrossRefGoogle Scholar
  148. Sado M, Yamasaki Y, Iwanaga T et al (2009) Protective effect against Parkinson’s disease-related insults through the activation of XBP1. Brain Res 1257:16–24PubMedCrossRefGoogle Scholar
  149. Salminen A, Kauppinen A, Suuronen T et al (2009) ER stress in Alzheimer’s disease: a novel neuronal trigger for inflammation and Alzheimer’s pathology. J Neuroinflamm 6:41CrossRefGoogle Scholar
  150. Sato N, Urano F, Yoon Leem J et al (2000) Upregulation of BiP and CHOP by the unfolded-protein response is independent of presenilin expression. Nat Cell Biol 2(12):863–870PubMedCrossRefGoogle Scholar
  151. Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71(1):35–48PubMedCrossRefGoogle Scholar
  152. Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12(5):627–636PubMedCrossRefGoogle Scholar
  153. Sämann J, Hegermann J, von Gromoff E et al (2009) Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem 284(24):16482–16491PubMedPubMedCentralCrossRefGoogle Scholar
  154. Scheff SW, Ansari MA, Mufson EJ (2016) Oxidative stress and hippocampal synaptic protein levels in elderly cognitively intact individuals with Alzheimer’s disease pathology. Neurobiol Aging 42:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  155. Scheper W, Hoozemans JJ (2015) The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol 130(3):315–331PubMedPubMedCentralCrossRefGoogle Scholar
  156. Si L, Xu T, Wang F, Liu Q (2012) X-box-binding protein 1-modified neural stem cells for treatment of Parkinson’s disease. Neural Regener Res 7(10):736–740Google Scholar
  157. Silva RM, Ries V, Oo TF, Yarygina O et al (2005) CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J Neurochem 95(4):974–986PubMedPubMedCentralCrossRefGoogle Scholar
  158. Slodzinski H, Moran LB, Michael GJ et al (2009) Homocysteine-induced endoplasmic reticulum protein (herp) is up-regulated in parkinsonian substantia nigra and present in the core of Lewy bodies. Clin Neuropathol 28(5):333–343PubMedGoogle Scholar
  159. Smith HL, Mallucci GR (2016) The unfolded protein response: mechanisms and therapy of neurodegeneration. Brain J Neurol 139(Pt 8):2113–2121CrossRefGoogle Scholar
  160. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60PubMedCrossRefGoogle Scholar
  161. Sreedharan J, Brown RH (2013) Amyotrophic lateral sclerosis: problems and prospects. Ann Neurol 74(3):309–316PubMedCrossRefGoogle Scholar
  162. Steele AD, Hetz C, Yi CH et al (2007) Prion pathogenesis is independent of caspase-12. Prion 1(4):243–247PubMedPubMedCentralCrossRefGoogle Scholar
  163. De Strooper B, Karran E (2016) The cellular phase of Alzheimers disease. Cell 164(4):603–615PubMedCrossRefGoogle Scholar
  164. Sun S, Sun Y, Ling SC et al (2015) Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc Natl Acad Sci USA 112(50):E6993–E7002PubMedPubMedCentralCrossRefGoogle Scholar
  165. Suzuki H, Matsuoka M (2012) TDP-43 toxicity is mediated by the unfolded protein response-unrelated induction of C/EBP homologous protein expression. J Neurosci Res 90(3):641–647PubMedCrossRefGoogle Scholar
  166. Suzuki H, Kanekura K, Levine TP et al (2009) ALS-linked P56S-VAPB, an aggregated loss-of-function mutant of VAPB, predisposes motor neurons to ER stress-related death by inducing aggregation of co-expressed wild-type VAPB. J Neurochem 108(4):973–985PubMedCrossRefGoogle Scholar
  167. Tobisawa S, Hozumi Y, Arawaka S et al (2003) Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. Biochem Biophys Res Commun 303(2):496–503PubMedCrossRefGoogle Scholar
  168. Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775(1–2):24–29PubMedCrossRefGoogle Scholar
  169. Torres M, Castillo K, Armisén R et al (2010) Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress. PLoS ONE 5(12):e15658PubMedPubMedCentralCrossRefGoogle Scholar
  170. Torres M, Medinas DB, Matamala JM et al (2015) The protein-disulfide isomerase ERp57 regulates the steady-state levels of the prion protein. J Biol Chem 290(39):23631–23645PubMedPubMedCentralCrossRefGoogle Scholar
  171. Tsaytler P et al (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Sci 332(6025):91–94CrossRefGoogle Scholar
  172. Unterberger U, Höftberger R, Gelpi E et al (2006) Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 65(4):348–357PubMedCrossRefGoogle Scholar
  173. Urano F, Wang X, Bertolotti A et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Sci 287(5453):664–666CrossRefGoogle Scholar
  174. Valdés P, Mercado G, Vidal RL et al (2014) Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. Proc Natl Acad Sci USA 111(18):6804–6809PubMedPubMedCentralCrossRefGoogle Scholar
  175. Valenzuela V, Martínez G, Duran-Aniotz C et al (2016) Gene therapy to target ER stress in brain diseases. Brain ResPubMedCrossRefGoogle Scholar
  176. van der Harg JM, Nölle A, Zwart R et al (2014) The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress. Cell Death Dis 5:e1393PubMedPubMedCentralCrossRefGoogle Scholar
  177. Varma D, Sen D (2015) Role of the unfolded protein response in the pathogenesis of Parkinson’s disease. Acta Neurobiol Exp 75(1):1–26Google Scholar
  178. Vassar R (2009) Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Alzheimer’s Dementia 5(4):P81–P82CrossRefGoogle Scholar
  179. Vidal R, Caballero B, Couve A, Hetz C (2011) Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington’s disease. Curr Mol Med 11(1):1–12PubMedCrossRefGoogle Scholar
  180. Vidal RL, Figueroa A, Court FA et al (2012) Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet 21(10):2245–2262PubMedPubMedCentralCrossRefGoogle Scholar
  181. Vieira FG, Ping Q, Moreno AJ et al (2015) Guanabenz treatment accelerates disease in a mutant SOD1 mouse model of ALS. PLoS ONE 10(8):e0135570PubMedPubMedCentralCrossRefGoogle Scholar
  182. Vitte J, Traver S, De Paula M et al (2010) Leucine-rich repeat kinase 2 is associated with the endoplasmic reticulum in dopaminergic neurons and accumulates in the core of Lewy bodies in Parkinson disease. J Neuropathol Exp Neurol 69(9):959–972PubMedCrossRefGoogle Scholar
  183. Vossel KA, Zhang K, Brodbeck J et al (2010) Tau reduction prevents Abeta-induced defects in axonal transport. Sci (New York, N.Y.) 330(6001):198CrossRefGoogle Scholar
  184. Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228PubMedCrossRefGoogle Scholar
  185. Walker L, McAleese KE, Thomas AJ et al (2015) Neuropathologically mixed Alzheimer’s and Lewy body disease: burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol 129(5):729–748PubMedCrossRefGoogle Scholar
  186. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Sci 334(6059):1081–1086CrossRefGoogle Scholar
  187. Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nat 529(7586):326–335CrossRefGoogle Scholar
  188. Wang L, Popko B, Roos RP (2011) The unfolded protein response in familial amyotrophic lateral sclerosis. Hum Mol Genet 20(5):1008–1015PubMedCrossRefGoogle Scholar
  189. Wang M, Ye R, Barron E et al (2010) Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ 17(3):488–498PubMedCrossRefGoogle Scholar
  190. Wang L, Popko B, Tixier E et al (2014) Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis. Neurobiol Dis 71:317–324PubMedCrossRefGoogle Scholar
  191. Wate R, Ito H, Zhang JH et al (2005) Expression of an endoplasmic reticulum-resident chaperone, glucose-regulated stress protein 78, in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Acta Neuropathol 110(6):557–562PubMedCrossRefGoogle Scholar
  192. Woehlbier U, Colombo A, Saaranen MJ et al (2016) ALS-linked protein disulfide isomerase variants cause motor dysfunction. EMBO J 35(8):845–865PubMedPubMedCentralCrossRefGoogle Scholar
  193. Yoo BC, Krapfenbauer K, Cairns N et al (2002) Overexpressed protein disulfide isomerase in brains of patients with sporadic Creutzfeldt-Jakob disease. Neurosci Lett 334(3):196–200PubMedCrossRefGoogle Scholar
  194. Yoon SO, Park DJ, Ryu JC et al (2012) JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 75(5):824–837PubMedPubMedCentralCrossRefGoogle Scholar
  195. Yuan Y, Cao P, Smith MA et al (2011) Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS ONE 6(8):e22354PubMedPubMedCentralCrossRefGoogle Scholar
  196. Zhang YJ, Jansen-West K, Xu YF et al (2014) Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 128(4):505PubMedPubMedCentralCrossRefGoogle Scholar
  197. Zuleta A, Vidal RL, Armentano D et al (2012) AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntingtons disease. Biochem Biophys Res Commun 420(3):558–563PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Medicine, Biomedical Neuroscience InstituteUniversity of ChileSantiagoChile
  2. 2.Faculty of Medicine, Center for Geroscience, Brain Health and MetabolismUniversity of ChileSantiagoChile
  3. 3.Program of Cellular and Molecular Biology, Institute of Biomedical SciencesUniversity of ChileSantiagoChile
  4. 4.Instituto de Ciências BiomédicasUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Buck Institute for Research on AgingNovatoUSA
  6. 6.Department of Immunology and Infectious DiseasesHarvard School of Public HealthBostonUSA

Personalised recommendations