Advertisement

Role of Innate Genes in HIV Replication

  • Kerstin Schott
  • Maximilian Riess
  • Renate König
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 419)

Abstract

Cells use an elaborate innate immune surveillance and defense system against virus infections. Here, we discuss recent studies that reveal how HIV-1 is sensed by the innate immune system. Furthermore, we present mechanisms on the counteraction of HIV-1. We will provide an overview how HIV-1 actively utilizes host cellular factors to avoid sensing. Additionally, we will summarize effectors of the innate response that provide an antiviral cellular state. HIV-1 has evolved passive mechanism to avoid restriction and to regulate the innate response. We review in detail two prominent examples of these cellular factors: (i) NLRX1, a negative regulator of the innate response that HIV-1 actively usurps to block cytosolic innate sensing; (ii) SAMHD1, a restriction factor blocking the virus at the reverse transcription step that HIV-1 passively avoids to escape sensing.

Notes

Acknowledgements

We thank Dr. Manja Burggraf for critical reading and helpful discussions.

References

  1. Abdul-Sater AA, Said-Sadier N, Lam VM, Singh B, Pettengill MA, Soares F, Tattoli I, Lipinski S, Girardin SE, Rosenstiel P, Ojcius DM (2010) Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1. J Biol Chem 285:41637–41645. doi: 10.1074/jbc.M110.137885CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aebi M, Fah J, Hurt N, Samuel CE, Thomis D, Bazzigher L, Pavlovic J, Haller O, Staeheli P (1989) cDNA structures and regulation of two interferon-induced human Mx proteins. Mol Cell Biol 9:5062–5072CrossRefGoogle Scholar
  3. Ahn J, Hao C, Yan J, DeLucia M, Mehrens J, Wang C, Gronenborn AM, Skowronski J (2012) HIV/simian immunodeficiency virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1. J Biol Chem 287:12550–12558. doi: 10.1074/jbc.M112.340711CrossRefPubMedPubMedCentralGoogle Scholar
  4. Allen IC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA, Gris D, Roney KE, Zimmermann AG, Bowzard JB, Ranjan P, Monroe KM, Pickles RJ, Sambhara S, Ting JPY (2011) NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways. Immunity 34:854–865. doi: 10.1016/j.immuni.2011.03.026CrossRefPubMedPubMedCentralGoogle Scholar
  5. Allouch A, Di Primio C, Alpi E, Lusic M, Arosio D, Giacca M, Cereseto A (2011) The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe 9:484–495. doi: 10.1016/j.chom.2011.05.004CrossRefPubMedGoogle Scholar
  6. Almine JF, O’Hare CAJ, Dunphy G, Haga IR, Naik RJ, Atrih A, Connolly DJ, Taylor J, Kelsall IR, Bowie AG, Beard PM, Unterholzner L (2017) IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat Commun 8:14392. doi: 10.1038/ncomms14392CrossRefGoogle Scholar
  7. Amie SM, Bambara RA, Kim B (2013) GTP is the primary activator of the anti-HIV restriction factor SAMHD1. J Biol Chem 288:25001–25006. doi: 10.1074/jbc.C113.493619CrossRefPubMedPubMedCentralGoogle Scholar
  8. An P, Wang LH, Hutcheson-Dilks H, Nelson G, Donfield S, Goedert JJ, Rinaldo CR, Buchbinder S, Kirk GD, O’Brien SJ, Winkler CA (2007) Regulatory polymorphisms in the cyclophilin A gene, PPIA, accelerate progression to AIDS. PLoS Pathog 3:e88. doi: 10.1371/journal.ppat.0030088CrossRefPubMedPubMedCentralGoogle Scholar
  9. Antonucci JM, St Gelais C, de Silva S, Yount JS, Tang C, Ji X, Shepard C, Xiong Y, Kim B, Wu L (2016) SAMHD1-mediated HIV-1 restriction in cells does not involve ribonuclease activity. Nat Med 22:1072–1074. doi: 10.1038/nm.4163CrossRefPubMedPubMedCentralGoogle Scholar
  10. Arnold LH, Groom HCT, Kunzelmann S, Schwefel D, Caswell SJ, Ordonez P, Mann MC, Rueschenbaum S, Goldstone DC, Pennell S, Howell SA, Stoye JP, Webb M, Taylor IA, Bishop KN (2015) Phospho-dependent regulation of SAMHD1 oligomerisation couples catalysis and restriction. PLoS Pathog 11:e1005194. doi: 10.1371/journal.ppat.1005194CrossRefPubMedPubMedCentralGoogle Scholar
  11. Arnoult D, Soares F, Tattoli I, Castanier C, Philpott DJ, Girardin SE (2009) An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci 122:3161–3168. doi: 10.1242/jcs.051193CrossRefPubMedPubMedCentralGoogle Scholar
  12. Asaoka K, Ikeda K, Hishinuma T, Horie-Inoue K, Takeda S, Inoue S (2005) A retrovirus restriction factor TRIM5alpha is transcriptionally regulated by interferons. Biochem Biophys Res Commun 338:1950–1956. doi: 10.1016/j.bbrc.2005.10.173CrossRefPubMedGoogle Scholar
  13. Ayinde D, Bruel T, Cardinaud S, Porrot F, Prado JG, Moris A, Schwartz O (2015) SAMHD1 limits HIV-1 antigen presentation by monocyte-derived dendritic cells. J Virol 89:6994–7006. doi: 10.1128/JVI.00069-15CrossRefGoogle Scholar
  14. Baldauf H-M, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, Schenkova K, Ambiel I, Wabnitz G, Gramberg T, Panitz S, Flory E, Landau NR, Sertel S, Rutsch F, Lasitschka F, Kim B, Konig R, Fackler OT, Keppler OT (2012) SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 18:1682–1687. doi: 10.1038/nm.2964CrossRefPubMedGoogle Scholar
  15. Barouch DH, Ghneim K, Bosche WJ, Li Y, Berkemeier B, Hull M, Bhattacharyya S, Cameron M, Liu J, Smith K, Borducchi E, Cabral C, Peter L, Brinkman A, Shetty M, Li H, Gittens C, Baker C, Wagner W, Lewis MG, Colantonio A, Kang H-J, Li W, Lifson JD, Piatak M Jr, Sekaly R-P (2016) Rapid inflammasome activation following mucosal SIV infection of rhesus monkeys. Cell 165:656–667. doi: 10.1016/j.cell.2016.03.021CrossRefPubMedPubMedCentralGoogle Scholar
  16. Behrendt R, Schumann T, Gerbaulet A, Nguyen LA, Schubert N, Alexopoulou D, Berka U, Lienenklaus S, Peschke K, Gibbert K, Wittmann S, Lindemann D, Weiss S, Dahl A, Naumann R, Dittmer U, Kim B, Mueller W, Gramberg T, Roers A (2013) Mouse SAMHD1 has antiretroviral activity and suppresses a spontaneous cell-intrinsic antiviral response. Cell Rep 4:689–696. doi: 10.1016/j.celrep.2013.07.037CrossRefPubMedPubMedCentralGoogle Scholar
  17. Beignon A-S, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG, Larsson M, Gorelick RJ, Lifson JD, Bhardwaj N (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Investig 115:3265–3275. doi: 10.1172/JCI26032CrossRefPubMedGoogle Scholar
  18. Beloglazova N, Flick R, Tchigvintsev A, Brown G, Popovic A, Nocek B, Yakunin AF (2013) Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J Biol Chem 288:8101–8110. doi: 10.1074/jbc.M112.431148CrossRefPubMedPubMedCentralGoogle Scholar
  19. Belshan M, Kimata JT, Brown C, Cheng X, McCulley A, Larsen A, Thippeshappa R, Hodara V, Giavedoni L, Hirsch V, Ratner L (2012) Vpx is critical for SIVmne infection of pigtail macaques. Retrovirology 9:32. doi: 10.1186/1742-4690-9-32CrossRefPubMedPubMedCentralGoogle Scholar
  20. Berg RK, Melchjorsen J, Rintahaka J, Diget E, Soby S, Horan KA, Gorelick RJ, Matikainen S, Larsen CS, Ostergaard L, Paludan SR, Mogensen TH (2012) Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNA. PLoS ONE 7:e29291. doi: 10.1371/journal.pone.0029291CrossRefPubMedPubMedCentralGoogle Scholar
  21. Berger A, Sommer AFR, Zwarg J, Hamdorf M, Welzel K, Esly N, Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LCF, Fernandez-Sesma A, Rutsch F, Simon V, Konig R, Flory E (2011) SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutieres syndrome are highly susceptible to HIV-1 infection. PLoS Pathog 7:e1002425. doi: 10.1371/journal.ppat.1002425CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bhattacharya A, Wang Z, White T, Buffone C, Nguyen LA, Shepard CN, Kim B, Demeler B, Diaz-Griffero F, Ivanov DN (2016) Effects of T592 phosphomimetic mutations on tetramer stability and dNTPase activity of SAMHD1 can not explain the retroviral restriction defect. Sci Rep 6:31353. doi: 10.1038/srep31353CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bishop KN, Verma M, Kim E-Y, Wolinsky SM, Malim MH (2008) APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 4:e1000231. doi: 10.1371/journal.ppat.1000231CrossRefPubMedPubMedCentralGoogle Scholar
  24. Biswas N, Wang T, Ding M, Tumne A, Chen Y, Wang Q, Gupta P (2012) ADAR1 is a novel multi targeted anti-HIV-1 cellular protein. Virology 422:265–277. doi: 10.1016/j.virol.2011.10.024CrossRefPubMedGoogle Scholar
  25. Böhnlein E, Lowenthal JW, Siekevitz M, Ballard DW, Franza B, Greene WC (1988) The same inducible nuclear proteins regulates mitogen activation of both the interleukin-2 receptor-alpha gene and type 1 HIV. Cell 53:827–836. doi: 10.1016/0092-8674(88)90099-2CrossRefPubMedGoogle Scholar
  26. Braaten D, Franke EK, Luban J (1996) Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J Virol 70:3551–3560PubMedPubMedCentralGoogle Scholar
  27. Brandariz-Nunez A, Valle-Casuso JC, White TE, Laguette N, Benkirane M, Brojatsch J, Diaz-Griffero F (2012) Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology 9:49. doi: 10.1186/1742-4690-9-49CrossRefPubMedPubMedCentralGoogle Scholar
  28. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science (New York, N.Y.) 319:921–926. doi: 10.1126/science.1152725CrossRefGoogle Scholar
  29. Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y, Mayer A, Dong T, Kaever V, Borrow P, Rehwinkel J (2015) Viruses transfer the antiviral second messenger cGAMP between cells. Science (New York, N.Y.) 349:1228–1232. doi: 10.1126/science.aab3632CrossRefGoogle Scholar
  30. Bulli L, Apolonia L, Kutzner J, Pollpeter D, Goujon C, Herold N, Schwarz S-M, Giernat Y, Keppler OT, Malim MH, Schaller T (2016) Complex interplay between HIV-1 capsid and MX2-independent alpha interferon-induced antiviral factors. J Virol 90:7469–7480. doi: 10.1128/JVI.00458-16CrossRefPubMedPubMedCentralGoogle Scholar
  31. Burdick R, Smith JL, Chaipan C, Friew Y, Chen J, Venkatachari NJ, Delviks-Frankenberry KA, Hu W-S, Pathak VK (2010) P body-associated protein Mov10 inhibits HIV-1 replication at multiple stages. J Virol 84:10241–10253. doi: 10.1128/JVI.00585-10CrossRefPubMedPubMedCentralGoogle Scholar
  32. Bushman FD, Malani N, Fernandes J, D’Orso I, Cagney G, Diamond TL, Zhou H, Hazuda DJ, Espeseth AS, Konig R, Bandyopadhyay S, Ideker T, Goff SP, Krogan NJ, Frankel AD, Young JAT, Chanda SK (2009) Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog 5:e1000437. doi: 10.1371/journal.ppat.1000437CrossRefPubMedPubMedCentralGoogle Scholar
  33. Busnadiego I, Kane M, Rihn SJ, Preugschas HF, Hughes J, Blanco-Melo D, Strouvelle VP, Zang TM, Willett BJ, Boutell C, Bieniasz PD, Wilson SJ (2014) Host and viral determinants of Mx2 antiretroviral activity. J Virol 88:7738–7752. doi: 10.1128/JVI.00214-14CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cagliani R, Forni D, Biasin M, Comabella M, Guerini FR, Riva S, Pozzoli U, Agliardi C, Caputo D, Malhotra S, Montalban X, Bresolin N, Clerici M, Sironi M (2014) Ancient and recent selective pressures shaped genetic diversity at AIM2-like nucleic acid sensors. Genome Biol Evol 6:830–845. doi: 10.1093/gbe/evu066CrossRefPubMedPubMedCentralGoogle Scholar
  35. Calantone N, Wu F, Klase Z, Deleage C, Perkins M, Matsuda K, Thompson EA, Ortiz AM, Vinton CL, Ourmanov I, Lore K, Douek DC, Estes JD, Hirsch VM, Brenchley JM (2014) Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells. Immunity 41:493–502. doi: 10.1016/j.immuni.2014.08.014CrossRefPubMedPubMedCentralGoogle Scholar
  36. Campbell EM, Hope TJ (2015) HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol 13:471–483. doi: 10.1038/nrmicro3503CrossRefPubMedPubMedCentralGoogle Scholar
  37. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17:1142–1149. doi: 10.1038/ni.3558CrossRefPubMedGoogle Scholar
  38. Cheney KM, McKnight A (2010) Interferon-alpha mediates restriction of human immunodeficiency virus type-1 replication in primary human macrophages at an early stage of replication. PLoS ONE 5:e13521. doi: 10.1371/journal.pone.0013521CrossRefPubMedPubMedCentralGoogle Scholar
  39. Chin KC, Cresswell P (2001) Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc Natl Acad Sci USA 98:15125–15130. doi: 10.1073/pnas.011593298CrossRefPubMedGoogle Scholar
  40. Chow J, Franz KM, Kagan JC (2015) PRRs are watching you: localization of innate sensing and signaling regulators. Virology 479–480:104–109. doi: 10.1016/j.virol.2015.02.051CrossRefPubMedGoogle Scholar
  41. Chun T-W, Engel D, Berrey MM, Shea T, Corey L, Fauci AS (1998) Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. Proc Natl Acad Sci 95:8869–8873. doi: 10.1073/pnas.95.15.8869CrossRefPubMedGoogle Scholar
  42. Cobos Jimenez V, Booiman T, de Taeye SW, van Dort KA, Rits MAN, Hamann J, Kootstra NA (2012) Differential expression of HIV-1 interfering factors in monocyte-derived macrophages stimulated with polarizing cytokines or interferons. Sci Rep 2:763. doi: 10.1038/srep00763CrossRefPubMedPubMedCentralGoogle Scholar
  43. Coiras M, Bermejo M, Descours B, Mateos E, Garcia-Perez J, Lopez-Huertas M-R, Lederman MM, Benkirane M, Alcami J (2016) IL-7 Induces SAMHD1 Phosphorylation in CD4+ T Lymphocytes, Improving Early Steps of HIV-1 Life Cycle. Cell Rep 14:2100–2107. doi: 10.1016/j.celrep.2016.02.022CrossRefPubMedPubMedCentralGoogle Scholar
  44. Cooper A, Garcia M, Petrovas C, Yamamoto T, Koup RA, Nabel GJ (2013) HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature 498:376–379. doi: 10.1038/nature12274CrossRefPubMedGoogle Scholar
  45. Coutermarsh-Ott S, Eden K, Allen IC (2016a) Beyond the inflammasome: regulatory NOD-like receptor modulation of the host immune response following virus exposure. J Gen Virol 97:825–838. doi: 10.1099/jgv.0.000401CrossRefPubMedPubMedCentralGoogle Scholar
  46. Coutermarsh-Ott S, Simmons A, Capria V, LeRoith T, Wilson JE, Heid B, Philipson CW, Qin Q, Hontecillas-Magarzo R, Bassaganya-Riera J, Ting JP-Y, Dervisis N, Allen IC (2016b) NLRX1 suppresses tumorigenesis and attenuates histiocytic sarcoma through the negative regulation of NF-kappaB signaling. Oncotarget 7:33096–33110. doi: 10.18632/oncotarget.8861CrossRefPubMedPubMedCentralGoogle Scholar
  47. Cribier A, Descours B, Valadao ALC, Laguette N, Benkirane M (2013) Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep 3:1036–1043. doi: 10.1016/j.celrep.2013.03.017CrossRefPubMedGoogle Scholar
  48. Dastur A, Beaudenon S, Kelley M, Krug RM, Huibregtse JM (2006) Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J Biol Chem 281:4334–4338. doi: 10.1074/jbc.M512830200CrossRefPubMedGoogle Scholar
  49. Dawson MJ, Trapani JA (1995) IFI 16 gene encodes a nuclear protein whose expression is induced by interferons in human myeloid leukaemia cell lines. J Cell Biochem 57:39–51. doi: 10.1002/jcb.240570106CrossRefPubMedGoogle Scholar
  50. Dempsey A, Bowie AG (2015) Innate immune recognition of DNA: a recent history. Virology 479–480:146–152. doi: 10.1016/j.virol.2015.03.013CrossRefPubMedGoogle Scholar
  51. Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, Yatim A, Schwartz O, Laguette N, Benkirane M (2012) SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 9:87. doi: 10.1186/1742-4690-9-87CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ding S, Pan Q, Liu S-L, Liang C (2014) HIV-1 mutates to evade IFITM1 restriction. Virology 454–455:11–24. doi: 10.1016/j.virol.2014.01.020CrossRefPubMedGoogle Scholar
  53. Doehle BP, Chang K, Fleming L, McNevin J, Hladik F, McElrath MJ, Gale M Jr (2012) Vpu-deficient HIV strains stimulate innate immune signaling responses in target cells. J Virol 86:8499–8506. doi: 10.1128/JVI.00424-12CrossRefPubMedPubMedCentralGoogle Scholar
  54. Doehle BP, Hladik F, McNevin JP, McElrath MJ, Gale M Jr (2009) Human immunodeficiency virus type 1 mediates global disruption of innate antiviral signaling and immune defenses within infected cells. J Virol 83:10395–10405. doi: 10.1128/JVI.00849-09CrossRefPubMedPubMedCentralGoogle Scholar
  55. Doitsh G, Galloway NLK, Geng X, Yang Z, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Munoz-Arias I, Greene WC (2014) Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505:509–514. doi: 10.1038/nature12940CrossRefPubMedPubMedCentralGoogle Scholar
  56. Donahue DA, Amraoui S, Di Nunzio F, Kieffer C, Porrot F, Opp S, Diaz-Griffero F, Casartelli N, Schwartz O (2016) SUN2 overexpression deforms nuclear shape and inhibits HIV. J Virol 90:4199–4214. doi: 10.1128/JVI.03202-15CrossRefPubMedPubMedCentralGoogle Scholar
  57. Doria M, Neri F, Gallo A, Farace MG, Michienzi A (2009) Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res 37:5848–5858. doi: 10.1093/nar/gkp604CrossRefPubMedPubMedCentralGoogle Scholar
  58. Doria M, Tomaselli S, Neri F, Ciafre SA, Farace MG, Michienzi A, Gallo A (2011) ADAR2 editing enzyme is a novel human immunodeficiency virus-1 proviral factor. J Gen Virol 92:1228–1232. doi: 10.1099/vir.0.028043-0CrossRefPubMedGoogle Scholar
  59. Doyle T, Goujon C, Malim MH (2015) HIV-1 and interferons: who’s interfering with whom? Nature reviews. Microbiology 13:403–413. doi: 10.1038/nrmicro3449CrossRefPubMedGoogle Scholar
  60. Duggal NK, Emerman M (2012) Evolutionary conflicts between viruses and restriction factors shape immunity. Nat Rev Immunol 12:687–695. doi: 10.1038/nri3295CrossRefPubMedPubMedCentralGoogle Scholar
  61. Duh EJ, Maury WJ, Folks TM, Fauci AS, Rabson AB (1989) Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proc Natl Acad Sci USA 86:5974–5978CrossRefGoogle Scholar
  62. Eitas TK, Chou W-C, Wen H, Gris D, Robbins GR, Brickey J, Oyama Y, Ting JP-Y (2014) The nucleotide-binding leucine-rich repeat (NLR) family member NLRX1 mediates protection against experimental autoimmune encephalomyelitis and represses macrophage/microglia-induced inflammation. J Biol Chem 289:4173–4179. doi: 10.1074/jbc.M113.533034CrossRefPubMedGoogle Scholar
  63. Esbjornsson J, Mansson F, Kvist A, Isberg P-E, Nowroozalizadeh S, Biague AJ, da Silva ZJ, Jansson M, Fenyo EM, Norrgren H, Medstrand P (2012) Inhibition of HIV-1 disease progression by contemporaneous HIV-2 infection. N Engl J Med 367:224–232. doi: 10.1056/NEJMoa1113244CrossRefPubMedGoogle Scholar
  64. Etienne L, Hahn BH, Sharp PM, Matsen FA, Emerman M (2013) Gene loss and adaptation to hominids underlie the ancient origin of HIV-1. Cell Host Microbe 14:85–92. doi: 10.1016/j.chom.2013.06.002CrossRefPubMedPubMedCentralGoogle Scholar
  65. Farrell PJ, Broeze RJ, Lengyel P (1979) Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature 279:523–525CrossRefGoogle Scholar
  66. Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M (2001) Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol (Baltimore, Md.: 1950) 166:2018–2024Google Scholar
  67. Forni D, Mozzi A, Pontremoli C, Vertemara J, Pozzoli U, Biasin M, Bresolin N, Clerici M, Cagliani R, Sironi M (2015) Diverse selective regimes shape genetic diversity at ADAR genes and at their coding targets. RNA Biol 12:149–161. doi: 10.1080/15476286.2015.1017215CrossRefPubMedPubMedCentralGoogle Scholar
  68. Friedman RL, Manly SP, McMahon M, Kerr IM, Stark GR (1984) Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell 38:745–755CrossRefGoogle Scholar
  69. Furtak V, Mulky A, Rawlings SA, Kozhaya L, Lee K, Kewalramani VN, Unutmaz D (2010) Perturbation of the P-body component Mov10 inhibits HIV-1 infectivity. PLoS ONE 5:e9081. doi: 10.1371/journal.pone.0009081CrossRefPubMedPubMedCentralGoogle Scholar
  70. Galao RP, Le Tortorec A, Pickering S, Kueck T, Neil SJD (2012) Innate sensing of HIV-1 assembly by tetherin induces NFkappaB-dependent proinflammatory responses. Cell Host Microbe 12:633–644. doi: 10.1016/j.chom.2012.10.007CrossRefPubMedPubMedCentralGoogle Scholar
  71. Galao RP, Pickering S, Curnock R, Neil SJD (2014) Retroviral retention activates a Syk-dependent HemITAM in human tetherin. Cell Host Microbe 16:291–303. doi: 10.1016/j.chom.2014.08.005CrossRefPubMedPubMedCentralGoogle Scholar
  72. Galloway NLK, Doitsh G, Monroe KM, Yang Z, Munoz-Arias I, Levy DN, Greene WC (2015) Cell-to-cell transmission of HIV-1 is required to trigger pyroptotic death of lymphoid-tissue-derived CD4 T cells. Cell Rep 12:1555–1563. doi: 10.1016/j.celrep.2015.08.011CrossRefPubMedPubMedCentralGoogle Scholar
  73. Gao D, Wu J, Wu Y-T, Du F, Aroh C, Yan N, Sun L, Chen ZJ (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science (New York, N.Y.) 341:903–906. doi: 10.1126/science.1240933CrossRefGoogle Scholar
  74. Genovesio A, Kwon Y-J, Windisch MP, Kim NY, Choi SY, Kim HC, Jung S, Mammano F, Perrin V, Boese AS, Casartelli N, Schwartz O, Nehrbass U, Emans N (2011) Automated genome-wide visual profiling of cellular proteins involved in HIV infection. J Biomol Screen 16:945–958. doi: 10.1177/1087057111415521CrossRefPubMedGoogle Scholar
  75. Gentili M, Kowal J, Tkach M, Satoh T, Lahaye X, Conrad C, Boyron M, Lombard B, Durand S, Kroemer G, Loew D, Dalod M, Thery C, Manel N (2015) Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science (New York, N.Y.) 349:1232–1236. doi: 10.1126/science.aab3628CrossRefGoogle Scholar
  76. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505. doi: 10.1016/j.bcp.2006.04.011CrossRefPubMedGoogle Scholar
  77. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HCT, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho Luiz, Pedro S, Stoye JP, Crow YJ, Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480:379–382. doi: 10.1038/nature10623CrossRefPubMedGoogle Scholar
  78. Goncalves A, Karayel E, Rice GI, Bennett KL, Crow YJ, Superti-Furga G, Burckstummer T (2012) SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutieres syndrome-associated mutations. Hum Mutat 33:1116–1122. doi: 10.1002/humu.22087CrossRefPubMedGoogle Scholar
  79. Goujon C, Arfi V, Pertel T, Luban J, Lienard J, Rigal D, Darlix J-L, Cimarelli A (2008) Characterization of simian immunodeficiency virus SIVSM/human immunodeficiency virus type 2 Vpx function in human myeloid cells. J Virol 82:12335–12345. doi: 10.1128/JVI.01181-08CrossRefPubMedPubMedCentralGoogle Scholar
  80. Goujon C, Malim MH (2010) Characterization of the alpha interferon-induced postentry block to HIV-1 infection in primary human macrophages and T cells. J Virol 84:9254–9266. doi: 10.1128/JVI.00854-10CrossRefPubMedPubMedCentralGoogle Scholar
  81. Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC, Schaller T, Hue S, Barclay WS, Schulz R, Malim MH (2013) Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502:559–562. doi: 10.1038/nature12542CrossRefPubMedGoogle Scholar
  82. Goujon C, Riviere L, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix J-L, Cimarelli A (2007) SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4:2. doi: 10.1186/1742-4690-4-2CrossRefPubMedPubMedCentralGoogle Scholar
  83. Gringhuis SI, Hertoghs N, Kaptein TM, Zijlstra-Willems EM, Sarrami-Fooroshani R, Sprokholt JK, van Teijlingen NH, Kootstra NA, Booiman T, van Dort KA, Ribeiro CMS, Drewniak A, Geijtenbeek TBH (2017) HIV-1 blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA by the host helicase DDX3. Nat Immunol 18:225–235. doi: 10.1038/ni.3647CrossRefGoogle Scholar
  84. Guo H, Konig R, Deng M, Riess M, Mo J, Zhang L, Petrucelli A, Yoh SM, Barefoot B, Samo M, Sempowski GD, Zhang A, Colberg-Poley AM, Feng H, Lemon SM, Liu Y, Zhang Y, Wen H, Zhang Z, Damania B, Tsao L-C, Wang Q, Su L, Duncan JA, Chanda SK, Ting JP-Y (2016) NLRX1 sequesters STING to negatively regulate the interferon response, thereby facilitating the replication of HIV-1 and DNA viruses. Cell Host Microbe 19:515–528. doi: 10.1016/j.chom.2016.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  85. Gupta S, Termini JM, Issac B, Guirado E, Stone GW (2016) Constitutively active MAVS inhibits HIV-1 replication via Type I interferon secretion and induction of HIV-1 restriction factors. PLoS ONE 11:e0148929. doi: 10.1371/journal.pone.0148929CrossRefPubMedPubMedCentralGoogle Scholar
  86. Hancks DC, Hartley MK, Hagan C, Clark NL, Elde NC (2015) Overlapping patterns of rapid evolution in the nucleic acid sensors cGAS and OAS1 suggest a common mechanism of pathogen antagonism and escape. PLoS Genet 11:e1005203. doi: 10.1371/journal.pgen.1005203CrossRefPubMedPubMedCentralGoogle Scholar
  87. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science (New York, N.Y.) 303:1526–1529. doi: 10.1126/science.1093620CrossRefGoogle Scholar
  88. Henning MS, Morham SG, Goff SP, Naghavi MH (2010) PDZD8 is a novel Gag-interacting factor that promotes retroviral infection. J Virol 84:8990–8995. doi: 10.1128/JVI.00843-10CrossRefPubMedPubMedCentralGoogle Scholar
  89. Herzner A-M, Hagmann CA, Goldeck M, Wolter S, Kubler K, Wittmann S, Gramberg T, Andreeva L, Hopfner K-P, Mertens C, Zillinger T, Jin T, Xiao TS, Bartok E, Coch C, Ackermann D, Hornung V, Ludwig J, Barchet W, Hartmann G, Schlee M (2015) Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat Immunol 16:1025–1033. doi: 10.1038/ni.3267CrossRefPubMedPubMedCentralGoogle Scholar
  90. Hirsch VM, Sharkey ME, Brown CR, Brichacek B, Goldstein S, Wakefield J, Byrum R, Elkins WR, Hahn BH, Lifson JD, Stevenson M (1998) Vpx is required for dissemination and pathogenesis of SIV(SM) PBj: evidence of macrophage-dependent viral amplification. Nat Med 4:1401–1408. doi: 10.1038/3992CrossRefPubMedGoogle Scholar
  91. Hiscott J (2007) Triggering the innate antiviral response through IRF-3 activation. J Biol Chem 282:15325–15329. doi: 10.1074/jbc.R700002200CrossRefPubMedGoogle Scholar
  92. Hofmann H, Logue EC, Bloch N, Daddacha W, Polsky SB, Schultz ML, Kim B, Landau NR (2012) The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus. J Virol 86:12552–12560. doi: 10.1128/JVI.01657-12CrossRefPubMedPubMedCentralGoogle Scholar
  93. Hofmann H, Norton TD, Schultz ML, Polsky SB, Sunseri N, Landau NR (2013) Inhibition of CUL4A Neddylation causes a reversible block to SAMHD1-mediated restriction of HIV-1. J Virol 87:11741–11750. doi: 10.1128/JVI.02002-13CrossRefPubMedPubMedCentralGoogle Scholar
  94. Hogan CM, Degruttola V, Sun X, Fiscus SA, Del Rio C, Hare CB, Markowitz M, Connick E, Macatangay B, Tashima KT, Kallungal B, Camp R, Morton T, Daar ES, Little S (2012) The setpoint study (ACTG A5217): effect of immediate versus deferred antiretroviral therapy on virologic set point in recently HIV-1-infected individuals. J Infect Dis 205:87–96. doi: 10.1093/infdis/jir699CrossRefPubMedGoogle Scholar
  95. Honda K, Takaoka A, Taniguchi T (2006) Type I interferon corrected gene induction by the interferon regulatory factor family of transcription factors. Immunity 25:349–360. doi: 10.1016/j.immuni.2006.08.009CrossRefPubMedGoogle Scholar
  96. Hong M, S-i Yoon, Wilson IA (2012) Structure and functional characterization of the RNA-binding element of the NLRX1 innate immune modulator. Immunity 36:337–347. doi: 10.1016/j.immuni.2011.12.018CrossRefPubMedPubMedCentralGoogle Scholar
  97. Hori T, Takeuchi H, Saito H, Sakuma R, Inagaki Y, Yamaoka S (2013) A carboxy-terminally truncated human CPSF6 lacking residues encoded by exon 6 inhibits HIV-1 cDNA synthesis and promotes capsid disassembly. J Virol 87:7726–7736. doi: 10.1128/JVI.00124-13CrossRefPubMedPubMedCentralGoogle Scholar
  98. Horner SM, Liu HM, Park HS, Briley J, Gale M Jr (2011) Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci USA 108:14590–14595. doi: 10.1073/pnas.1110133108CrossRefPubMedGoogle Scholar
  99. Hotter D, Kirchhoff F, Sauter D (2013) HIV-1 Vpu does not degrade interferon regulatory factor 3. J Virol 87:7160–7165. doi: 10.1128/JVI.00526-13CrossRefPubMedPubMedCentralGoogle Scholar
  100. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474:658–661. doi: 10.1038/nature10195CrossRefPubMedPubMedCentralGoogle Scholar
  101. de Iaco A, Luban J (2014) Cyclophilin A promotes HIV-1 reverse transcription but its effect on transduction correlates best with its effect on nuclear entry of viral cDNA. Retrovirology 11:11. doi: 10.1186/1742-4690-11-11CrossRefPubMedPubMedCentralGoogle Scholar
  102. de Iaco A, Santoni F, Vannier A, Guipponi M, Antonarakis S, Luban J (2013) TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm. Retrovirology 10:20. doi: 10.1186/1742-4690-10-20CrossRefPubMedPubMedCentralGoogle Scholar
  103. Imaizumi T, Hatakeyama M, Yamashita K, Yoshida H, Ishikawa A, Taima K, Satoh K, Mori F, Wakabayashi K (2004) Interferon-gamma induces retinoic acid-inducible gene-I in endothelial cells. Endothelium: J Endothelial Cell Res 11:169–173. doi: 10.1080/10623320490512156CrossRefGoogle Scholar
  104. Imbeault E, Mahvelati TM, Braun R, Gris P, Gris D (2014) Nlrx1 regulates neuronal cell death. Mol Brain 7:90. doi: 10.1186/s13041-014-0090-xCrossRefPubMedPubMedCentralGoogle Scholar
  105. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678. doi: 10.1038/nature07317CrossRefPubMedPubMedCentralGoogle Scholar
  106. Jacobs ES, Keating SM, Abdel-Mohsen M, Gibb SL, Heitman JW, Inglis HC, Martin JN, Zhang J, Kaidarova Z, Deng X, Wu S, Anastos K, Crystal H, Villacres MC, Young M, Greenblatt RM, Landay AL, Gange SJ, Deeks SG, Golub ET, Pillai SK, Norris PJ (2017) Cytokines elevated in HIV elite controllers reduce HIV replication in vitro and modulate HIV restriction factor expression. J Virol. doi: 10.1128/JVI.02051-16
  107. Jakobsen MR, Bak RO, Andersen A, Berg RK, Jensen SB, Tengchuan J, Laustsen A, Hansen K, Ostergaard L, Fitzgerald KA, Xiao TS, Mikkelsen JG, Mogensen TH, Paludan SR (2013) IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc Natl Acad Sci USA 110:E4571–E4580. doi: 10.1073/pnas.1311669110CrossRefPubMedGoogle Scholar
  108. Jakobsen MR, Olagnier D, Hiscott J (2015) Innate immune sensing of HIV-1 infection. Curr Opin HIV AIDS 10:96–102. doi: 10.1097/COH.0000000000000129CrossRefPubMedGoogle Scholar
  109. Jaworska J, Coulombe F, Downey J, Tzelepis F, Shalaby K, Tattoli I, Berube J, Rousseau S, Martin JG, Girardin SE, McCullers JA, Divangahi M (2014) NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein. Proc Natl Acad Sci USA 111:E2110–E2119. doi: 10.1073/pnas.1322118111CrossRefPubMedGoogle Scholar
  110. Jin C, Peng X, Liu F, Cheng L, Xie T, Lu X, Wu H, Wu N (2016) Interferon-induced sterile alpha motif and histidine/aspartic acid domain-containing protein 1 expression in astrocytes and microglia is mediated by microRNA-181a. AIDS (London, England) 30:2053–2064. doi: 10.1097/QAD.0000000000001166CrossRefGoogle Scholar
  111. Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin K-Q, Ishii KJ, Kawai T, Akira S, Suzuki K, Okuda K (2007) The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA 104:14050–14055. doi: 10.1073/pnas.0704014104CrossRefPubMedGoogle Scholar
  112. Jønsson KL, Laustsen A, Krapp C, Skipper KA, Thavachelvam K, Hotter D, Egedal JH, Kjolby M, Mohammadi P, Prabakaran T, Sørensen LK, Sun C, Jensen SB, Holm CK, Lebbink RJ, Johannsen M, Nyegaard M, Mikkelsen JG, Kirchhoff F, Paludan SR, Jakobsen MR (2017) IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat Commun 8:14391. doi: 10.1038/ncomms14391CrossRefGoogle Scholar
  113. Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, Schoggins JW, Rice CM, Yamashita M, Hatziioannou T, Bieniasz PD (2013) MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502:563–566. doi: 10.1038/nature12653CrossRefPubMedPubMedCentralGoogle Scholar
  114. Kang M-J, Yoon CM, Kim BH, Lee C-M, Zhou Y, Sauler M, Homer R, Dhamija A, Boffa D, West AP, Shadel GS, Ting JP, Tedrow Jr, Kaminski N, Kim WJ, Lee CG, Oh Y-M, Elias JA (2015) Suppression of NLRX1 in chronic obstructive pulmonary disease. J Clin Investig 125:2458–2462. doi: 10.1172/JCI71747CrossRefPubMedGoogle Scholar
  115. Kappes JC, Morrow CD, Lee SW, Jameson BA, Kent SB, Hood LE, Shaw GM, Hahn BH (1988) Identification of a novel retroviral gene unique to human immunodeficiency virus type 2 and simian immunodeficiency virus SIVMAC. J Virol 62:3501–3505PubMedPubMedCentralGoogle Scholar
  116. Koblansky AA, Truax AD, Liu R, Montgomery SA, Ding S, Wilson JE, Brickey WJ, Muhlbauer M, McFadden R-MT, Hu P, Li Z, Jobin C, Lund PK, Ting JP-Y (2016) The innate immune receptor NLRX1 functions as a tumor suppressor by reducing colon tumorigenesis and key tumor-promoting signals. Cell Rep 14:2562–2575. doi: 10.1016/j.celrep.2016.02.064CrossRefPubMedPubMedCentralGoogle Scholar
  117. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC, Irelan JT, Chiang C-Y, Tu BP, de Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell JS, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth AP, Miraglia LJ, Bushman FD, Young JA, Chanda SK (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60. doi: 10.1016/j.cell.2008.07.032CrossRefPubMedPubMedCentralGoogle Scholar
  118. Koning FA, Newman ENC, Kim E-Y, Kunstman KJ, Wolinsky SM, Malim MH (2009) Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol 83:9474–9485. doi: 10.1128/JVI.01089-09CrossRefPubMedPubMedCentralGoogle Scholar
  119. Konno H, Konno K, Barber GN (2013) Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155:688–698. doi: 10.1016/j.cell.2013.09.049CrossRefPubMedGoogle Scholar
  120. Korant BD, Blomstrom DC, Jonak GJ, Knight E Jr (1984) Interferon-induced proteins. Purification and characterization of a 15,000-dalton protein from human and bovine cells induced by interferon. J Biol Chem 259:14835–14839PubMedGoogle Scholar
  121. Krapp C, Hotter D, Gawanbacht A, McLaren PJ, Kluge SF, Sturzel CM, Mack K, Reith E, Engelhart S, Ciuffi A, Hornung V, Sauter D, Telenti A, Kirchhoff F (2016) Guanylate binding protein (GBP) 5 is an interferon-inducible inhibitor of HIV-1 infectivity. Cell Host Microbe 19:504–514. doi: 10.1016/j.chom.2016.02.019CrossRefPubMedGoogle Scholar
  122. Laguette N, Bregnard C, Hue P, Basbous J, Yatim A, Larroque M, Kirchhoff F, Constantinou A, Sobhian B, Benkirane M (2014) Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell 156:134–145. doi: 10.1016/j.cell.2013.12.011CrossRefPubMedGoogle Scholar
  123. Laguette N, Rahm N, Sobhian B, Chable-Bessia C, Munch J, Snoeck J, Sauter D, Switzer WM, Heneine W, Kirchhoff F, Delsuc F, Telenti A, Benkirane M (2012) Evolutionary and functional analyses of the interaction between the myeloid restriction factor SAMHD1 and the lentiviral Vpx protein. Cell Host Microbe 11:205–217. doi: 10.1016/j.chom.2012.01.007CrossRefPubMedPubMedCentralGoogle Scholar
  124. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657. doi: 10.1038/nature10117CrossRefPubMedPubMedCentralGoogle Scholar
  125. Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C, Hurbain I, El Marjou A, Lacabaratz C, Lelievre J-D, Manel N (2013) The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 39:1132–1142. doi: 10.1016/j.immuni.2013.11.002CrossRefPubMedGoogle Scholar
  126. Lahaye X, Satoh T, Gentili M, Cerboni S, Silvin A, Conrad C, Ahmed-Belkacem A, Rodriguez EC, Guichou J-F, Bosquet N, Piel M, Le Grand R, King MC, Pawlotsky J-M, Manel N (2016) Nuclear envelope protein SUN2 promotes cyclophilin-A-dependent steps of HIV replication. Cell Rep. doi: 10.1016/j.celrep.2016.03.074CrossRefPubMedPubMedCentralGoogle Scholar
  127. Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13:223–228. doi: 10.1038/ni.2236CrossRefPubMedPubMedCentralGoogle Scholar
  128. Landau NR (2014) The innate immune response to HIV-1: to sense or not to sense. DNA Cell Biol 33:271–274. doi: 10.1089/dna.2014.2378CrossRefPubMedPubMedCentralGoogle Scholar
  129. Le Sage V, Mouland AJ, Valiente-Echeverria F (2014) Roles of HIV-1 capsid in viral replication and immune evasion. Virus Res 193:116–129. doi: 10.1016/j.virusres.2014.07.010CrossRefPubMedGoogle Scholar
  130. Le Tortorec A, Neil SJD (2009) Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J Virol 83:11966–11978. doi: 10.1128/JVI.01515-09CrossRefPubMedPubMedCentralGoogle Scholar
  131. Lebon P, Badoual J, Ponsot G, Goutieres F, Hemeury-Cukier F, Aicardi J (1988) Intrathecal synthesis of interferon-alpha in infants with progressive familial encephalopathy. J Neurol Sci 84:201–208CrossRefGoogle Scholar
  132. Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, Julias JG, Vandegraaff N, Baumann JG, Wang R, Yuen W, Takemura T, Shelton K, Taniuchi I, Li Y, Sodroski J, Littman DR, Coffin JM, Hughes SH, Unutmaz D, Engelman A, Kewalramani VN (2010) Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 7:221–233. doi: 10.1016/j.chom.2010.02.007CrossRefPubMedPubMedCentralGoogle Scholar
  133. Lee K, Mulky A, Yuen W, Martin TD, Meyerson NR, Choi L, Yu H, Sawyer SL, Kewalramani VN (2012) HIV-1 capsid-targeting domain of cleavage and polyadenylation specificity factor 6. J Virol 86:3851–3860. doi: 10.1128/JVI.06607-11CrossRefPubMedPubMedCentralGoogle Scholar
  134. Lee MN, Roy M, Ong S-E, Mertins P, Villani A-C, Li W, Dotiwala F, Sen J, Doench JG, Orzalli MH, Kramnik I, Knipe DM, Lieberman J, Carr SA, Hacohen N (2013) Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach. Nat Immunol 14:179–185. doi: 10.1038/ni.2509CrossRefPubMedGoogle Scholar
  135. Lei Y, Kansy BA, Li J, Cong L, Liu Y, Trivedi S, Wen H, Ting JP-Y, Ouyang H, Ferris RL (2016) EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex. Oncogene 35:4698–4707. doi: 10.1038/onc.2016.11CrossRefPubMedPubMedCentralGoogle Scholar
  136. Lei Y, Wen H, Yu Y, Taxman DJ, Zhang L, Widman DG, Swanson KV, Wen K-W, Damania B, Moore CB, Giguere PM, Siderovski DP, Hiscott J, Razani B, Semenkovich CF, Chen X, Ting JP-Y (2012) The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36:933–946. doi: 10.1016/j.immuni.2012.03.025CrossRefPubMedPubMedCentralGoogle Scholar
  137. Lenzi GM, Domaoal RA, Kim D-H, Schinazi RF, Kim B (2014) Kinetic variations between reverse transcriptases of viral protein X coding and noncoding lentiviruses. Retrovirology 11:111. doi: 10.1186/s12977-014-0111-yCrossRefPubMedPubMedCentralGoogle Scholar
  138. Lepelley A, Louis S, Sourisseau M, Law HKW, Pothlichet J, Schilte C, Chaperot L, Plumas J, Randall RE, Si-Tahar M, Mammano F, Albert ML, Schwartz O (2011) Innate sensing of HIV-infected cells. PLoS Pathog 7:e1001284. doi: 10.1371/journal.ppat.1001284CrossRefPubMedPubMedCentralGoogle Scholar
  139. Lewin AR, Reid LE, McMahon M, Stark GR, Kerr IM (1991) Molecular analysis of a human interferon-inducible gene family. Eur J Biochem 199:417–423CrossRefGoogle Scholar
  140. Lewis GM, Wehrens EJ, Labarta-Bajo L, Streeck H, Zuniga EI (2016) TGF-beta receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Investig 126:3799–3813. doi: 10.1172/JCI87041CrossRefGoogle Scholar
  141. Li H, Zhang S, Li F, Qin L (2016) NLRX1 attenuates apoptosis and inflammatory responses in myocardial ischemia by inhibiting MAVS-dependent NLRP3 inflammasome activation. Mol Immunol 76:90–97. doi: 10.1016/j.molimm.2016.06.013CrossRefPubMedGoogle Scholar
  142. Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, Jones TE, Landry S, Pan T, Weitzman MD, David M (2012) Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 491:125–128. doi: 10.1038/nature11433CrossRefPubMedPubMedCentralGoogle Scholar
  143. Li N, Zhang W, Cao X (2000) Identification of human homologue of mouse IFN-gamma induced protein from human dendritic cells. Immunol Lett 74:221–224CrossRefGoogle Scholar
  144. Lim ES, Fregoso OI, McCoy CO, Matsen FA, Malik HS, Emerman M (2012a) The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx. Cell Host Microbe 11:194–204. doi: 10.1016/j.chom.2012.01.004CrossRefPubMedPubMedCentralGoogle Scholar
  145. Lim ES, Malik HS, Emerman M (2010) Ancient adaptive evolution of tetherin shaped the functions of Vpu and Nef in human immunodeficiency virus and primate lentiviruses. J Virol 84:7124–7134. doi: 10.1128/JVI.00468-10CrossRefPubMedPubMedCentralGoogle Scholar
  146. Lim ES, Wu LI, Malik HS, Emerman M (2012b) The function and evolution of the restriction factor Viperin in primates was not driven by lentiviruses. Retrovirology 9:55. doi: 10.1186/1742-4690-9-55CrossRefPubMedPubMedCentralGoogle Scholar
  147. Lindbäck S, Karlsson AC, Mittler J, Blaxhult A, Carlsson M, Briheim G, Sönnerborg A, Gaines H (2000) Viral dynamics in primary HIV-1 infection. AIDS 14:2283–2291. doi: 10.1097/00002030-200010200-00009CrossRefPubMedGoogle Scholar
  148. Liu L, Oliveira NMM, Cheney KM, Pade C, Dreja H, Bergin A-MH, Borgdorff V, Beach DH, Bishop CL, Dittmar MT, McKnight A (2011) A whole genome screen for HIV restriction factors. Retrovirology 8:94. doi: 10.1186/1742-4690-8-94CrossRefPubMedPubMedCentralGoogle Scholar
  149. Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, Cen S, Guo F, Liang C (2013) The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 14:398–410. doi: 10.1016/j.chom.2013.08.015CrossRefPubMedGoogle Scholar
  150. Liu Z, Pan Q, Liang Z, Qiao W, Cen S, Liang C (2015) The highly polymorphic cyclophilin A-binding loop in HIV-1 capsid modulates viral resistance to MxB. Retrovirology 12:1. doi: 10.1186/s12977-014-0129-1CrossRefPubMedPubMedCentralGoogle Scholar
  151. Lodermeyer V, Suhr K, Schrott N, Kolbe C, Sturzel CM, Krnavek D, Munch J, Dietz C, Waldmann T, Kirchhoff F, Goffinet C (2013) 90 K, an interferon-stimulated gene product, reduces the infectivity of HIV-1. Retrovirology 10:111. doi: 10.1186/1742-4690-10-111CrossRefPubMedPubMedCentralGoogle Scholar
  152. Lu J, Pan Q, Rong L, He W, Liu S-L, Liang C (2011) The IFITM proteins inhibit HIV-1 infection. J Virol 85:2126–2137. doi: 10.1128/JVI.01531-10CrossRefPubMedGoogle Scholar
  153. Luban J (2012) Innate immune sensing of HIV-1 by dendritic cells. Cell Host Microbe 12:408–418. doi: 10.1016/j.chom.2012.10.002CrossRefPubMedPubMedCentralGoogle Scholar
  154. Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73:1067–1078CrossRefGoogle Scholar
  155. Ma B, Herzog EL, Moore M, Lee C-M, Na SH, Lee CG, Elias JA (2016) RIG-like helicase regulation of chitinase 3-like 1 axis and pulmonary metastasis. Sci Rep 6:26299. doi: 10.1038/srep26299CrossRefPubMedPubMedCentralGoogle Scholar
  156. Ma F, Li B, Liu S-y, Iyer SS, Yu Y, Wu A, Cheng G (2015) Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J Immunol (Baltimore, Md.: 1950) 194:1545–1554. doi: 10.4049/jimmunol.1402066CrossRefGoogle Scholar
  157. Maelfait J, Bridgeman A, Benlahrech A, Cursi C, Rehwinkel J (2016) Restriction by SAMHD1 limits cGAS/STING-dependent innate and adaptive immune responses to HIV-1. Cell Rep 16:1492–1501. doi: 10.1016/j.celrep.2016.07.002CrossRefPubMedPubMedCentralGoogle Scholar
  158. Malim MH, Bieniasz PD (2012) HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med 2:a006940. doi: 10.1101/cshperspect.a006940CrossRefPubMedPubMedCentralGoogle Scholar
  159. Mandl JN, Barry AP, Vanderford TH, Kozyr N, Chavan R, Klucking S, Barrat FJ, Coffman RL, Staprans SI, Feinberg MB (2008) Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat Med 14:1077–1087. doi: 10.1038/nm.1871CrossRefPubMedGoogle Scholar
  160. Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR (2010) A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467:214–217. doi: 10.1038/nature09337CrossRefPubMedPubMedCentralGoogle Scholar
  161. Mar KB, Schoggins JW (2016) NLRX1 Helps HIV Avoid a STING Operation. Cell Host Microbe 19:430–431. doi: 10.1016/j.chom.2016.03.011CrossRefPubMedGoogle Scholar
  162. Marchi S, Patergnani S, Pinton P (2014) The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochem Biophys Acta 1837:461–469. doi: 10.1016/j.bbabio.2013.10.015CrossRefPubMedGoogle Scholar
  163. Marth C, Dreps A, Natoli C, Zeimet AG, Lang T, Widschwendter M, Daxenbichler G, Ullrich A, Iacobelli S (1994) Effects of type-I and -II interferons on 90 K antigen expression in ovarian carcinoma cells. Int J Cancer 59:808–813CrossRefGoogle Scholar
  164. Martin-Gayo E, Buzon MJ, Ouyang Z, Hickman T, Cronin J, Pimenova D, Walker BD, Lichterfeld M, Yu XG (2015) Potent cell-intrinsic immune responses in dendritic cells facilitate HIV-1-specific T cell immunity in HIV-1 elite controllers. PLoS Pathog 11:e1004930. doi: 10.1371/journal.ppat.1004930CrossRefPubMedPubMedCentralGoogle Scholar
  165. McLaren PJ, Gawanbacht A, Pyndiah N, Krapp C, Hotter D, Kluge SF, Gotz N, Heilmann J, Mack K, Sauter D, Thompson D, Perreaud J, Rausell A, Munoz M, Ciuffi A, Kirchhoff F, Telenti A (2015) Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology 12:41. doi: 10.1186/s12977-015-0165-5CrossRefPubMedPubMedCentralGoogle Scholar
  166. McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF (2010) The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol 10:11–23. doi: 10.1038/nri2674CrossRefPubMedGoogle Scholar
  167. McNatt MW, Zang T, Hatziioannou T, Bartlett M, Fofana IB, Johnson WE, Neil SJD, Bieniasz PD (2009) Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants. PLoS Pathog 5:e1000300. doi: 10.1371/journal.ppat.1000300CrossRefPubMedPubMedCentralGoogle Scholar
  168. Meier A, Alter G, Frahm N, Sidhu H, Li B, Bagchi A, Teigen N, Streeck H, Stellbrink H-J, Hellman J, van Lunzen J, Altfeld M (2007) MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded Toll-like receptor ligands. J Virol 81:8180–8191. doi: 10.1128/JVI.00421-07CrossRefPubMedPubMedCentralGoogle Scholar
  169. Meyerson NR, Rowley PA, Swan CH, Le DT, Wilkerson GK, Sawyer SL (2014) Positive selection of primate genes that promote HIV-1 replication. Virology 454–455:291–298. doi: 10.1016/j.virol.2014.02.029CrossRefPubMedGoogle Scholar
  170. Miettinen M, Sareneva T, Julkunen I, Matikainen S (2001) IFNs activate toll-like receptor gene expression in viral infections. Genes Immun 2:349–355. doi: 10.1038/sj.gene.6363791CrossRefPubMedGoogle Scholar
  171. Misumi S, Inoue M, Dochi T, Kishimoto N, Hasegawa N, Takamune N, Shoji S (2010) Uncoating of human immunodeficiency virus type 1 requires prolyl isomerase Pin1. J Biol Chem 285:25185–25195. doi: 10.1074/jbc.M110.114256CrossRefPubMedPubMedCentralGoogle Scholar
  172. Miyakawa K, Ryo A, Murakami T, Ohba K, Yamaoka S, Fukuda M, Guatelli J, Yamamoto N (2009) BCA2/Rabring7 promotes tetherin-dependent HIV-1 restriction. PLoS Pathog 5:e1000700. doi: 10.1371/journal.ppat.1000700CrossRefPubMedPubMedCentralGoogle Scholar
  173. Mohan M, Kaushal D, Aye PP, Alvarez X, Veazey RS, Lackner AA (2012) Focused examination of the intestinal lamina propria yields greater molecular insight into mechanisms underlying SIV induced immune dysfunction. PLoS ONE 7:e34561. doi: 10.1371/journal.pone.0034561CrossRefPubMedPubMedCentralGoogle Scholar
  174. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, Greene WC (2014) IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science (New York, N.Y.) 343:428–432. doi: 10.1126/science.1243640CrossRefGoogle Scholar
  175. Moore CB, Bergstralh DT, Duncan JA, Lei Y, Morrison TE, Zimmermann AG, Accavitti-Loper MA, Madden VJ, Sun L, Ye Z, Lich JD, Heise MT, Chen Z, Ting JP-Y (2008) NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451:573–577. doi: 10.1038/nature06501CrossRefPubMedGoogle Scholar
  176. Munoz-Arias I, Doitsh G, Yang Z, Sowinski S, Ruelas D, Greene WC (2015) Blood-derived CD4 T cells naturally resist pyroptosis during abortive HIV-1 infection. Cell Host Microbe 18:463–470. doi: 10.1016/j.chom.2015.09.010CrossRefPubMedPubMedCentralGoogle Scholar
  177. Murrell B, Vollbrecht T, Guatelli J, Wertheim JO (2016) The evolutionary histories of antiretroviral proteins SERINC3 and SERINC5 do not support an evolutionary arms race in primates. J Virol 90:8085–8089. doi: 10.1128/JVI.00972-16CrossRefPubMedPubMedCentralGoogle Scholar
  178. Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326:711–713. doi: 10.1038/326711a0CrossRefPubMedGoogle Scholar
  179. Nasi M, Biasi S de, Bianchini E, Digaetano M, Pinti M, Gibellini L, Pecorini S, Carnevale G, Guaraldi G, Borghi V, Mussini C, Cossarizza A (2015) Analysis of inflammasomes and antiviral sensing components reveals decreased expression of NLRX1 in HIV-positive patients assuming efficient antiretroviral therapy. AIDS (London, England) 29:1937–1941. doi: 10.1097/QAD.0000000000000830CrossRefGoogle Scholar
  180. Nasr N, Maddocks S, Turville SG, Harman AN, Woolger N, Helbig KJ, Wilkinson J, Bye CR, Wright TK, Rambukwelle D, Donaghy H, Beard MR, Cunningham AL (2012) HIV-1 infection of human macrophages directly induces viperin which inhibits viral production. Blood 120:778–788. doi: 10.1182/blood-2012-01-407395CrossRefPubMedGoogle Scholar
  181. Nazli A, Kafka JK, Ferreira VH, Anipindi V, Mueller K, Osborne BJ, Dizzell S, Chauvin S, Mian MF, Ouellet M, Tremblay MJ, Mossman KL, Ashkar AA, Kovacs C, Bowdish DME, Snider DP, Kaul R, Kaushic C (2013) HIV-1 gp120 induces TLR2- and TLR4-mediated innate immune activation in human female genital epithelium. J Immunol (Baltimore, Md.: 1950) 191:4246–4258. doi: 10.4049/jimmunol.1301482CrossRefGoogle Scholar
  182. Neil SJD, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430. doi: 10.1038/nature06553CrossRefPubMedGoogle Scholar
  183. Nityanandam R, Serra-Moreno R (2014) BCA2/Rabring7 targets HIV-1 Gag for lysosomal degradation in a tetherin-independent manner. PLoS Pathog 10:e1004151. doi: 10.1371/journal.ppat.1004151CrossRefPubMedPubMedCentralGoogle Scholar
  184. Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC (2013) Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev Med Virol 23:221–240. doi: 10.1002/rmv.1739CrossRefPubMedGoogle Scholar
  185. Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, James LC, Towers GJ, Young JAT, Chanda SK, Konig R, Malani N, Berry CC, Bushman FD (2011) HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog 7:e1001313. doi: 10.1371/journal.ppat.1001313CrossRefPubMedPubMedCentralGoogle Scholar
  186. Oh D-Y, Baumann K, Hamouda O, Eckert JK, Neumann K, Kucherer C, Bartmeyer B, Poggensee G, Oh N, Pruss A, Jessen H, Schumann RR (2009) A frequent functional toll-like receptor 7 polymorphism is associated with accelerated HIV-1 disease progression. AIDS (London, England) 23:297–307. doi: 10.1097/QAD.0b013e32831fb540CrossRefGoogle Scholar
  187. OhAinle M, Kerns JA, Malik HS, Emerman M (2006) Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H. J Virol 80:3853–3862. doi: 10.1128/JVI.80.8.3853-3862.2006CrossRefPubMedPubMedCentralGoogle Scholar
  188. Okumura A, Alce T, Lubyova B, Ezelle H, Strebel K, Pitha PM (2008) HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology 373:85–97. doi: 10.1016/j.virol.2007.10.042CrossRefPubMedGoogle Scholar
  189. Okumura A, Lu G, Pitha-Rowe I, Pitha PM (2006) Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci USA 103:1440–1445. doi: 10.1073/pnas.0510518103CrossRefPubMedGoogle Scholar
  190. Ortiz M, Guex N, Patin E, Martin O, Xenarios I, Ciuffi A, Quintana-Murci L, Telenti A (2009) Evolutionary trajectories of primate genes involved in HIV pathogenesis. Mol Biol Evol 26:2865–2875. doi: 10.1093/molbev/msp197CrossRefPubMedGoogle Scholar
  191. Paillart JC, Marquet R, Skripkin E, Ehresmann C, Ehresmann B (1996) Dimerization of retroviral genomic RNAs: structural and functional implications. Biochimie 78:639–653CrossRefGoogle Scholar
  192. Patterson JB, Thomis DC, Hans SL, Samuel CE (1995) Mechanism of interferon action: double-stranded RNA-specific adenosine deaminase from human cells is inducible by alpha and gamma interferons. Virology 210:508–511. doi: 10.1006/viro.1995.1370CrossRefPubMedGoogle Scholar
  193. Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil PD, Chatel L, Bisiaux A, Albert ML, Strambio-De-Castillia C, Mothes W, Pizzato M, Grutter MG, Luban J (2011) TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472:361–365. doi: 10.1038/nature09976CrossRefPubMedPubMedCentralGoogle Scholar
  194. Phuphuakrat A, Kraiwong R, Boonarkart C, Lauhakirti D, Lee T-H, Auewarakul P (2008) Double-stranded RNA adenosine deaminases enhance expression of human immunodeficiency virus type 1 proteins. J Virol 82:10864–10872. doi: 10.1128/JVI.00238-08CrossRefPubMedPubMedCentralGoogle Scholar
  195. Pincetic A, Kuang Z, Seo EJ, Leis J (2010) The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process. J Virol 84:4725–4736. doi: 10.1128/JVI.02478-09CrossRefPubMedPubMedCentralGoogle Scholar
  196. Pine SO, McElrath MJ, Bochud PY (2009) Polymorphisms in toll-like receptor 4 and toll-like receptor 9 influence viral load in a seroincident cohort of HIV-1-infected individuals. AIDS (London, England) 23:2387–2395. doi: 10.1097/QAD.0b013e328330b489CrossRefGoogle Scholar
  197. Powell RD, Holland PJ, Hollis T, Perrino FW (2011) Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 286:43596–43600. doi: 10.1074/jbc.C111.317628CrossRefPubMedPubMedCentralGoogle Scholar
  198. Puigdomenech I, Casartelli N, Porrot F, Schwartz O (2013) SAMHD1 restricts HIV-1 cell-to-cell transmission and limits immune detection in monocyte-derived dendritic cells. J Virol 87:2846–2856. doi: 10.1128/JVI.02514-12CrossRefPubMedPubMedCentralGoogle Scholar
  199. Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, Hilditch L, Jacques DA, Selwood DL, James LC, Noursadeghi M, Towers GJ (2013) HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503:402–405. doi: 10.1038/nature12769CrossRefPubMedPubMedCentralGoogle Scholar
  200. Rasheedi S, Shun M-C, Serrao E, Sowd GA, Qian J, Hao C, Dasgupta T, Engelman AN, Skowronski J (2016) The cleavage and polyadenylation specificity factor 6 (CPSF6) subunit of the capsid-recruited pre-messenger RNA cleavage factor I (CFIm) complex mediates HIV-1 integration into genes. J Biol Chem 291:11809–11819. doi: 10.1074/jbc.M116.721647CrossRefPubMedPubMedCentralGoogle Scholar
  201. Raturi A, Simmen T (2013) Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochem Biophys Acta 1833:213–224. doi: 10.1016/j.bbamcr.2012.04.013CrossRefPubMedGoogle Scholar
  202. Rebsamen M, Vazquez J, Tardivel A, Guarda G, Curran J, Tschopp J (2011) NLRX1/NOD5 deficiency does not affect MAVS signalling. Cell Death Differ 18:1387. doi: 10.1038/cdd.2011.64CrossRefPubMedPubMedCentralGoogle Scholar
  203. Rehwinkel J, Maelfait J, Bridgeman A, Rigby R, Hayward B, Liberatore RA, Bieniasz PD, Towers GJ, Moita LF, Crow YJ, Bonthron DT, Reis e Sousa C (2013) SAMHD1-dependent retroviral control and escape in mice. EMBO J 32:2454–2462. doi: 10.1038/emboj.2013.163CrossRefPubMedPubMedCentralGoogle Scholar
  204. Rhee H-W, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science (New York, N.Y.) 339:1328–1331. doi: 10.1126/science.1230593CrossRefGoogle Scholar
  205. Ribeiro IP, Menezes AN, Moreira MAM, Bonvicino CR, Seuanez HN, Soares MA (2005) Evolution of cyclophilin A and TRIMCyp retrotransposition in new world primates. J Virol 79:14998–15003. doi: 10.1128/JVI.79.23.14998-15003.2005CrossRefPubMedPubMedCentralGoogle Scholar
  206. Rice GI, Bond J, Asipu A et al (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41:829–832. doi: 10.1038/ng.373CrossRefPubMedPubMedCentralGoogle Scholar
  207. Riess M, Fuchs NV, Idica A, Hamdorf M, Flory E, Pedersen IM, Konig R (2017) Interferons induce expression of SAMHD1 in monocytes through down-regulation of miR-181a and miR-30a. J Biol Chem 292:264–277. doi: 10.1074/jbc.M116.752584CrossRefGoogle Scholar
  208. Rits MAN, van Dort KA, Kootstra NA (2008) Polymorphisms in the regulatory region of the Cyclophilin A gene influence the susceptibility for HIV-1 infection. PLoS ONE 3:e3975. doi: 10.1371/journal.pone.0003975CrossRefPubMedPubMedCentralGoogle Scholar
  209. Rosa A, Chande A, Ziglio S, de Sanctis V, Bertorelli R, Goh SL, McCauley SM, Nowosielska A, Antonarakis SE, Luban J, Santoni FA, Pizzato M (2015) HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature 526:212–217. doi: 10.1038/nature15399CrossRefPubMedPubMedCentralGoogle Scholar
  210. Rowland-Jones S, Sutton J, Ariyoshi K, Dong T, Gotch F, McAdam S, Whitby D, Sabally S, Gallimore A, Corrah T (1995) HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nat Med 1:59–64CrossRefGoogle Scholar
  211. Rowland-Jones SL, Whittle HC (2007) Out of Africa: what can we learn from HIV-2 about protective immunity to HIV-1? Nat Immunol 8:329–331. doi: 10.1038/ni0407-329CrossRefPubMedGoogle Scholar
  212. Rustagi A, Gale M Jr (2014) Innate antiviral immune signaling, viral evasion and modulation by HIV-1. J Mol Biol 426:1161–1177. doi: 10.1016/j.jmb.2013.12.003CrossRefPubMedGoogle Scholar
  213. Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim S-Y, Seo D, Kim J, White TE, Brandariz-Nunez A, Diaz-Griffero F, Yun C-H, Hollenbaugh JA, Kim B, Baek D, Ahn K (2014) The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 20:936–941. doi: 10.1038/nm.3626CrossRefPubMedPubMedCentralGoogle Scholar
  214. Ryoo J, Hwang S-Y, Choi J, Oh C, Ahn K (2016) SAMHD1, the Aicardi-Goutieres syndrome gene and retroviral restriction factor, is a phosphorolytic ribonuclease rather than a hydrolytic ribonuclease. Biochem Biophys Res Commun 477:977–981. doi: 10.1016/j.bbrc.2016.07.013CrossRefPubMedGoogle Scholar
  215. Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, Akira S (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA 106:20842–20846. doi: 10.1073/pnas.0911267106CrossRefPubMedGoogle Scholar
  216. Samuel CE (2011) Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 411:180–193. doi: 10.1016/j.virol.2010.12.004CrossRefPubMedPubMedCentralGoogle Scholar
  217. Sasaki O, Yoshizumi T, Kuboyama M, Ishihara T, Suzuki E, S-i Kawabata, Koshiba T (2013) A structural perspective of the MAVS-regulatory mechanism on the mitochondrial outer membrane using bioluminescence resonance energy transfer. Biochem Biophys Acta 1833:1017–1027. doi: 10.1016/j.bbamcr.2013.01.010CrossRefPubMedGoogle Scholar
  218. Sauter D, Schindler M, Specht A, Landford WN, Munch J, Kim K-A, Votteler J, Schubert U, Bibollet-Ruche F, Keele BF, Takehisa J, Ogando Y, Ochsenbauer C, Kappes JC, Ayouba A, Peeters M, Learn GH, Shaw G, Sharp PM, Bieniasz P, Hahn BH, Hatziioannou T, Kirchhoff F (2009) Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host Microbe 6:409–421. doi: 10.1016/j.chom.2009.10.004CrossRefPubMedPubMedCentralGoogle Scholar
  219. Sawyer SL, Emerman M, Malik HS (2004) Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2:E275. doi: 10.1371/journal.pbio.0020275CrossRefPubMedPubMedCentralGoogle Scholar
  220. Sawyer SL, Wu LI, Emerman M, Malik HS (2005) Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 102:2832–2837. doi: 10.1073/pnas.0409853102CrossRefPubMedGoogle Scholar
  221. Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hue S, Fletcher AJ, Lee K, Kewalramani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ (2011) HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog 7:e1002439. doi: 10.1371/journal.ppat.1002439CrossRefPubMedPubMedCentralGoogle Scholar
  222. Schlee M (2013) Master sensors of pathogenic RNA—RIG-I like receptors. Immunobiology 218:1322–1335. doi: 10.1016/j.imbio.2013.06.007CrossRefPubMedGoogle Scholar
  223. Schmidt B, Ashlock BM, Foster H, Fujimura SH, Levy JA (2005) HIV-infected cells are major inducers of plasmacytoid dendritic cell interferon production, maturation, and migration. Virology 343:256–266. doi: 10.1016/j.virol.2005.09.059CrossRefPubMedGoogle Scholar
  224. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–485. doi: 10.1038/nature09907CrossRefPubMedPubMedCentralGoogle Scholar
  225. Seamon KJ, Sun Z, Shlyakhtenko LS, Lyubchenko YL, Stivers JT (2015) SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res 43:6486–6499. doi: 10.1093/nar/gkv633CrossRefPubMedPubMedCentralGoogle Scholar
  226. Seamon KJ, Bumpus NN, Stivers JT (2016) Single-stranded nucleic acids bind to the tetramer interface of SAMHD1 and prevent formation of the catalytic homotetramer. Biochemistry 55:6087–6099. doi: 10.1021/acs.biochem.6b00986CrossRefGoogle Scholar
  227. Serra M, Forcales S-V, Pereira-Lopes S, Lloberas J, Celada A (2011) Characterization of Trex1 induction by IFN-gamma in murine macrophages. J Immunol (Baltimore, Md.: 1950) 186:2299–2308. doi: 10.4049/jimmunol.1002364CrossRefGoogle Scholar
  228. Sharova N, Wu Y, Zhu X, Stranska R, Kaushik R, Sharkey M, Stevenson M (2008) Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction. PLoS Pathog 4:e1000057. doi: 10.1371/journal.ppat.1000057CrossRefPubMedPubMedCentralGoogle Scholar
  229. Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650. doi: 10.1038/nature00939CrossRefPubMedGoogle Scholar
  230. Shingai M, Welbourn S, Brenchley JM, Acharya P, Miyagi E, Plishka RJ, Buckler-White A, Kwong PD, Nishimura Y, Strebel K, Martin MA (2015) The expression of functional Vpx during pathogenic SIVmac infections of rhesus macaques suppresses SAMHD1 in CD4+ memory T cells. PLoS Pathog 11:e1004928. doi: 10.1371/journal.ppat.1004928CrossRefPubMedPubMedCentralGoogle Scholar
  231. Singh K, Poteryakhina A, Zheltukhin A, Bhatelia K, Prajapati P, Sripada L, Tomar D, Singh R, Singh AK, Chumakov PM, Singh R (2015) NLRX1 acts as tumor suppressor by regulating TNF-alpha induced apoptosis and metabolism in cancer cells. Biochem Biophys Acta 1853:1073–1086. doi: 10.1016/j.bbamcr.2015.01.016CrossRefPubMedGoogle Scholar
  232. Smed-Sorensen A, Lore K, Vasudevan J, Louder MK, Andersson J, Mascola JR, Spetz A-L, Koup RA (2005) Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J Virol 79:8861–8869. doi: 10.1128/JVI.79.14.8861-8869.2005CrossRefPubMedPubMedCentralGoogle Scholar
  233. Smith JL, Izumi T, Borbet TC, Hagedorn AN, Pathak VK (2014) HIV-1 and HIV-2 Vif interact with human APOBEC3 proteins using completely different determinants. J Virol 88:9893–9908. doi: 10.1128/JVI.01318-14CrossRefPubMedPubMedCentralGoogle Scholar
  234. Soares F, Tattoli I, Rahman MA, Robertson SJ, Belcheva A, Liu D, Streutker C, Winer S, Winer DA, Martin A, Philpott DJ, Arnoult D, Girardin SE (2014) The mitochondrial protein NLRX1 controls the balance between extrinsic and intrinsic apoptosis. J Biol Chem 289:19317–19330. doi: 10.1074/jbc.M114.550111CrossRefPubMedPubMedCentralGoogle Scholar
  235. Soares F, Tattoli I, Wortzman ME, Arnoult D, Philpott DJ, Girardin SE (2013) NLRX1 does not inhibit MAVS-dependent antiviral signalling. Innate Immun 19:438–448. doi: 10.1177/1753425912467383CrossRefPubMedGoogle Scholar
  236. Solis M, Nakhaei P, Jalalirad M, Lacoste J, Douville R, Arguello M, Zhao T, Laughrea M, Wainberg MA, Hiscott J (2011) RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I. J Virol 85:1224–1236. doi: 10.1128/JVI.01635-10CrossRefPubMedGoogle Scholar
  237. Sommer AFR, Riviere L, Qu B, Schott K, Riess M, Ni Y, Shepard C, Schnellbacher E, Finkernagel M, Himmelsbach K, Welzel K, Kettern N, Donnerhak C, Munk C, Flory E, Liese J, Kim B, Urban S, Konig R (2016) Restrictive influence of SAMHD1 on hepatitis B virus life cycle. Sci Rep 6:26616. doi: 10.1038/srep26616CrossRefPubMedPubMedCentralGoogle Scholar
  238. Sowd GA, Serrao E, Wang H, Wang W, Fadel HJ, Poeschla EM, Engelman AN (2016) A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc Natl Acad Sci USA 113:E1054–E1063. doi: 10.1073/pnas.1524213113CrossRefPubMedGoogle Scholar
  239. Srivastava S, Swanson SK, Manel N, Florens L, Washburn MP, Skowronski J (2008) Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog 4:e1000059. doi: 10.1371/journal.ppat.1000059CrossRefPubMedPubMedCentralGoogle Scholar
  240. St Gelais C, de Silva S, Amie SM, Coleman CM, Hoy H, Hollenbaugh JA, Kim B, Wu L (2012) SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4+ T-lymphocytes cannot be upregulated by interferons. Retrovirology 9:105. doi: 10.1186/1742-4690-9-105CrossRefPubMedPubMedCentralGoogle Scholar
  241. Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–598. doi: 10.1016/j.cell.2008.06.032CrossRefPubMedPubMedCentralGoogle Scholar
  242. Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93–103. doi: 10.1016/j.immuni.2005.12.003CrossRefPubMedGoogle Scholar
  243. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in old world monkeys. Nature 427:848–853. doi: 10.1038/nature02343CrossRefPubMedGoogle Scholar
  244. Sumpter R, Jr, Loo Y-M, Foy E, Li K, Yoneyama M, Fujita T, Lemon SM, Gale Jr M (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79:2689–2699. doi: 10.1128/JVI.79.5.2689-2699.2005CrossRefGoogle Scholar
  245. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science (New York, N.Y.) 339:786–791. doi: 10.1126/science.1232458CrossRefGoogle Scholar
  246. Swiecki M, Colonna M (2015) The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 15:471–485. doi: 10.1038/nri3865CrossRefPubMedPubMedCentralGoogle Scholar
  247. Tada T, Zhang Y, Koyama T, Tobiume M, Tsunetsugu-Yokota Y, Yamaoka S, Fujita H, Tokunaga K (2015) MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins. Nat Med 21:1502–1507. doi: 10.1038/nm.3956CrossRefPubMedGoogle Scholar
  248. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. doi: 10.1016/j.cell.2010.01.022CrossRefPubMedGoogle Scholar
  249. Tang C, Ji X, Wu L, Xiong Y (2015) Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr-592. J Biol Chem 290:26352–26359. doi: 10.1074/jbc.M115.677435CrossRefPubMedPubMedCentralGoogle Scholar
  250. Tattoli I, Carneiro LA, Jehanno M, Magalhaes JG, Shu Y, Philpott DJ, Arnoult D, Girardin SE (2008) NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production. EMBO Rep 9:293–300. doi: 10.1038/sj.embor.7401161CrossRefPubMedPubMedCentralGoogle Scholar
  251. Tattoli I, Killackey SA, Foerster EG, Molinaro R, Maisonneuve C, Rahman MA, Winer S, Winer DA, Streutker CJ, Philpott DJ, Girardin SE (2016) NLRX1 acts as an epithelial-intrinsic tumor suppressor through the modulation of TNF-mediated proliferation. Cell Rep 14:2576–2586. doi: 10.1016/j.celrep.2016.02.065CrossRefPubMedGoogle Scholar
  252. Tong-Starksen SE, Luciw PA, Peterlin BM (1987) Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. Proc Natl Acad Sci USA 84:6845–6849CrossRefGoogle Scholar
  253. Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD (2003) Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat Med 9:1138–1143. doi: 10.1038/nm910CrossRefPubMedGoogle Scholar
  254. Towers GJ, Noursadeghi M (2014) Interactions between HIV-1 and the cell-autonomous innate immune system. Cell Host Microbe 16:10–18. doi: 10.1016/j.chom.2014.06.009CrossRefPubMedPubMedCentralGoogle Scholar
  255. Trapani JA, Browne KA, Dawson MJ, Ramsay RG, Eddy RL, Show TB, White PC, Dupont B (1992) A novel gene constitutively expressed in human lymphoid cells is inducible with interferon-gamma in myeloid cells. Immunogenetics 36:369–376CrossRefGoogle Scholar
  256. Tristem M, Marshall C, Karpas A, Petrik J, Hill F (1990) Origin of vpx in lentiviruses. Nature 347:341–342. doi: 10.1038/347341b0CrossRefPubMedGoogle Scholar
  257. Tungler V, Staroske W, Kind B, Dobrick M, Kretschmer S, Schmidt F, Krug C, Lorenz M, Chara O, Schwille P, Lee-Kirsch MA (2013) Single-stranded nucleic acids promote SAMHD1 complex formation. J Mol Med (Berlin, Germany) 91:759–770. doi: 10.1007/s00109-013-0995-3CrossRefGoogle Scholar
  258. Unger BL, Ganesan S, Comstock AT, Faris AN, Hershenson MB, Sajjan US (2014) Nod-like receptor X-1 is required for rhinovirus-induced barrier dysfunction in airway epithelial cells. J Virol 88:3705–3718. doi: 10.1128/JVI.03039-13CrossRefPubMedPubMedCentralGoogle Scholar
  259. Usami Y, Wu Y, Gottlinger HG (2015) SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature 526:218–223. doi: 10.1038/nature15400CrossRefPubMedPubMedCentralGoogle Scholar
  260. van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J (2008) The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3:245–252. doi: 10.1016/j.chom.2008.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  261. Vasseur E, Patin E, Laval G, Pajon S, Fornarino S, Crouau-Roy B, Quintana-Murci L (2011) The selective footprints of viral pressures at the human RIG-I-like receptor family. Hum Mol Genet 20:4462–4474. doi: 10.1093/hmg/ddr377CrossRefPubMedGoogle Scholar
  262. Vigneault F, Woods M, Buzon MJ, Li C, Pereyra F, Crosby SD, Rychert J, Church G, Martinez-Picado J, Rosenberg ES, Telenti A, Yu XG, Lichterfeld M (2011) Transcriptional profiling of CD4 T cells identifies distinct subgroups of HIV-1 elite controllers. J Virol 85:3015–3019. doi: 10.1128/JVI.01846-10CrossRefPubMedGoogle Scholar
  263. Wang F-X, Huang J, Zhang H, Ma X, Zhang H (2008) APOBEC3G upregulation by alpha interferon restricts human immunodeficiency virus type 1 infection in human peripheral plasmacytoid dendritic cells. J Gen Virol 89:722–730. doi: 10.1099/vir.0.83530-0CrossRefPubMedGoogle Scholar
  264. Wang X, Han Y, Dang Y, Fu W, Zhou T, Ptak RG, Zheng Y-H (2010) Moloney leukemia virus 10 (MOV10) protein inhibits retrovirus replication. J Biol Chem 285:14346–14355. doi: 10.1074/jbc.M110.109314CrossRefPubMedPubMedCentralGoogle Scholar
  265. Wang Y, Wang X, Li J, Zhou Y, Ho W (2013) RIG-I activation inhibits HIV replication in macrophages. J Leukoc Biol 94:337–341. doi: 10.1189/jlb.0313158CrossRefPubMedPubMedCentralGoogle Scholar
  266. Welbourn S, Dutta SM, Semmes OJ, Strebel K (2013) Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. J Virol 87:11516–11524. doi: 10.1128/JVI.01642-13CrossRefPubMedPubMedCentralGoogle Scholar
  267. Westmoreland SV, Converse AP, Hrecka K, Hurley M, Knight H, Piatak M, Lifson J, Mansfield KG, Skowronski J, Desrosiers RC (2014) SIV vpx is essential for macrophage infection but not for development of AIDS. PLoS ONE 9:e84463. doi: 10.1371/journal.pone.0084463CrossRefPubMedPubMedCentralGoogle Scholar
  268. White TE, Brandariz-Nunez A, Valle-Casuso JC, Amie S, Nguyen LA, Kim B, Tuzova M, Diaz-Griffero F (2013) The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 13:441–451. doi: 10.1016/j.chom.2013.03.005CrossRefPubMedGoogle Scholar
  269. Whitney JB, Hill AL, Sanisetty S, Penaloza-MacMaster P, Liu J, Shetty M, Parenteau L, Cabral C, Shields J, Blackmore S, Smith JY, Brinkman AL, Peter LE, Mathew SI, Smith KM, Borducchi EN, Rosenbloom DIS, Lewis MG, Hattersley J, Li B, Hesselgesser J, Geleziunas R, Robb ML, Kim JH, Michael NL, Barouch DH (2014) Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512:74–77. doi: 10.1038/nature13594CrossRefPubMedPubMedCentralGoogle Scholar
  270. Wiercinska-Drapalo A, Flisiak R, Jaroszewicz J, Prokopowicz D (2004) Increased plasma transforming growth factor-beta1 is associated with disease progression in HIV-1-infected patients. Viral Immunol 17:109–113. doi: 10.1089/088282404322875502CrossRefGoogle Scholar
  271. Wilkins J, Zheng Y-M, Yu J, Liang C, Liu S-L (2016) Nonhuman Primate IFITM Proteins Are Potent Inhibitors of HIV and SIV. PLoS ONE 11:e0156739. doi: 10.1371/journal.pone.0156739CrossRefPubMedPubMedCentralGoogle Scholar
  272. Wong JJY, Pung YF, Sze NS-K, Chin K-C (2006) HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc Natl Acad Sci USA 103:10735–10740. doi: 10.1073/pnas.0600397103CrossRefPubMedGoogle Scholar
  273. Woods MW, Kelly JN, Hattlmann CJ, Tong JGK, Xu LS, Coleman MD, Quest GR, Smiley JR, Barr SD (2011) Human HERC5 restricts an early stage of HIV-1 assembly by a mechanism correlating with the ISGylation of Gag. Retrovirology 8:95. doi: 10.1186/1742-4690-8-95CrossRefPubMedPubMedCentralGoogle Scholar
  274. Woods MW, Tong JG, Tom SK, Szabo PA, Cavanagh PC, Dikeakos JD, Haeryfar SMM, Barr SD (2014) Interferon-induced HERC5 is evolving under positive selection and inhibits HIV-1 particle production by a novel mechanism targeting Rev/RRE-dependent RNA nuclear export. Retrovirology 11:27. doi: 10.1186/1742-4690-11-27CrossRefPubMedPubMedCentralGoogle Scholar
  275. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science (New York, N.Y.) 339:826–830. doi: 10.1126/science.1229963CrossRefGoogle Scholar
  276. Xia X, Cui J, Wang HY, Zhu L, Matsueda S, Wang Q, Yang X, Hong J, Songyang Z, Chen ZJ, Wang R-F (2011) NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK. Immunity 34:843–853. doi: 10.1016/j.immuni.2011.02.022CrossRefPubMedPubMedCentralGoogle Scholar
  277. Xu S, Ducroux A, Ponnurangam A, Vieyres G, Franz S, Musken M, Zillinger T, Malassa A, Ewald E, Hornung V, Barchet W, Haussler S, Pietschmann T, Goffinet C (2016) cGAS-mediated innate immunity spreads intercellularly through HIV-1 Env-induced membrane fusion sites. Cell Host Microbe 20:443–457. doi: 10.1016/j.chom.2016.09.003CrossRefPubMedGoogle Scholar
  278. Yan J, Hao C, DeLucia M, Swanson S, Florens L, Washburn MP, Ahn J, Skowronski J (2015) CyclinA2-Cyclin-dependent kinase regulates SAMHD1 protein phosphohydrolase domain. J Biol Chem 290:13279–13292. doi: 10.1074/jbc.M115.646588CrossRefPubMedPubMedCentralGoogle Scholar
  279. Yan J, Kaur S, DeLucia M, Hao C, Mehrens J, Wang C, Golczak M, Palczewski K, Gronenborn AM, Ahn J, Skowronski J (2013) Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection. J Biol Chem 288:10406–10417. doi: 10.1074/jbc.M112.443796CrossRefPubMedPubMedCentralGoogle Scholar
  280. Yan N, Cherepanov P, Daigle JE, Engelman A, Lieberman J (2009) The SET complex acts as a barrier to autointegration of HIV-1. PLoS Pathog 5:e1000327. doi: 10.1371/journal.ppat.1000327CrossRefPubMedPubMedCentralGoogle Scholar
  281. Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J (2010a) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11:1005–1013. doi: 10.1038/ni.1941CrossRefPubMedPubMedCentralGoogle Scholar
  282. Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J (2010b) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11:1005–1013. doi: 10.1038/ni.1941CrossRefPubMedPubMedCentralGoogle Scholar
  283. Yang H-C, Xing S, Shan L, O’Connell K, Dinoso J, Shen A, Zhou Y, Shrum CK, Han Y, Liu JO, Zhang H, Margolick JB, Siliciano RF (2009) Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Investig 119:3473–3486. doi: 10.1172/JCI39199CrossRefPubMedGoogle Scholar
  284. Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE, Olivieri KC, de Jesus PD, Ruan C, de Castro E, Ruiz PA, Germanaud D, Des Portes V, Garcia-Sastre A, Konig R, Chanda SK (2015) PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 161:1293–1305. doi: 10.1016/j.cell.2015.04.050CrossRefPubMedPubMedCentralGoogle Scholar
  285. Yonezawa A, Morita R, Takaori-Kondo A, Kadowaki N, Kitawaki T, Hori T, Uchiyama T (2003) Natural alpha interferon-producing cells respond to human immunodeficiency virus type 1 with alpha interferon production and maturation into dendritic cells. J Virol 77:3777–3784CrossRefGoogle Scholar
  286. Yu XF, Yu QC, Essex M, Lee TH (1991) The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage. J Virol 65:5088–5091PubMedPubMedCentralGoogle Scholar
  287. Zhang H, Hu J (2016) Shaping the endoplasmic reticulum into a social network. Trends Cell Biol. doi: 10.1016/j.tcb.2016.06.002CrossRefPubMedGoogle Scholar
  288. Zhang R, Mehla R, Chauhan A (2010) Perturbation of host nuclear membrane component RanBP2 impairs the nuclear import of human immunodeficiency virus -1 preintegration complex (DNA). PLoS ONE 5:e15620. doi: 10.1371/journal.pone.0015620CrossRefPubMedPubMedCentralGoogle Scholar
  289. Zhao K, Du J, Han X, Goodier JL, Li P, Zhou X, Wei W, Evans SL, Li L, Zhang W, Cheung LE, Wang G, Kazazian HH Jr, Yu X-F (2013) Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi-Goutieres syndrome-related SAMHD1. Cell Rep 4:1108–1115. doi: 10.1016/j.celrep.2013.08.019CrossRefPubMedPubMedCentralGoogle Scholar
  290. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:495–504. doi: 10.1016/j.chom.2008.10.004CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kerstin Schott
    • 1
  • Maximilian Riess
    • 1
  • Renate König
    • 1
    • 2
    • 3
  1. 1.Host-Pathogen InteractionsPaul-Ehrlich-InstituteLangenGermany
  2. 2.Immunity and Pathogenesis ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaUSA
  3. 3.German Center for Infection Research (DZIF)LangenGermany

Personalised recommendations