Actinobacteria and Myxobacteria—Two of the Most Important Bacterial Resources for Novel Antibiotics

  • Wiebke Landwehr
  • Corinna Wolf
  • Joachim WinkEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 398)


Bacteria have been by far the most promising resource for antibiotics in the past decades and will in all undoubtedly remain an important resource of innovative bioactive natural products in the future. Actinobacteria have been screened for many years, whereas the Myxobacteria have been underestimated in the past. Even though Actinobacteria belong to the Gram-positive and Myxobacteria to the Gram-negative bacteria both groups have a number of similar characters, as they both have huge genomes with in some cases more than 10kB and a high GC content and they both can differentiate and have often cell cycles including the formation of spores. Actinobacteria have been used for the antibiotic research for many years, hence it is often discussed whether this resource has now been exhaustively exploited but most of the screening programs from pharmaceutical companies were basing on the cultivation mainly of members of the genus Streptomyces or Streptomyces like strains (e.g., some Saccharopolyspora, Amycolatopsis or Actinomadura species) by use of standard methods so that many of the so called “neglected” Actinobacteria were overlooked the whole time. The present review gives an overview on the state of the art regarding new bioactive compounds with a focus on the marine habitats. Furthermore, the evaluation of Myxobacteria in our ongoing search for novel anti-infectives is highlighted.


Fruiting Body Producer Strain Bioactive Substance Isolation Medium Marine Natural Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Mageed WM, Milne BF, Wagner M, Schumacher M, Sandor P, Pathom-Aree W, Goodfellow M, Bull AT, Horikoshi K, Ebel R, Diederich M, Fiedler HP, Jaspars M (2010) Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org Biomol Chem 8:2352–2362PubMedCrossRefGoogle Scholar
  2. Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH, Ahmed S, Hentschel U (2010) Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes. Mar Drugs 8:399–412PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andersson M, Mikkola R, Kroppenstedt R, Rainey F, Peltola J, Helin J et al (1998) The mitochondrial toxin produced by Streptomyces griseus strains isolated from an indoor environment is valinomycin. Appl Environ Microbiol 64:4767–4773PubMedPubMedCentralGoogle Scholar
  4. Arumugam M, Mitra A, Jaisankar P, Dasgupta S, Sen T, Gachhui R et al (2010) Isolation of an unusual metabolite 2-allyloxyphenol from a marine actinobacterium, its biological activities and applications. Appl Microbiol Biotechnol 86:109–117PubMedCrossRefGoogle Scholar
  5. Asolkar RN, Jensen PR, Kauffman CA, Fenical W, Daryamides AC (2006) Weakly cytotoxic polyketides from a marine-derived actinomycete of the genus Streptomyces strain CNQ-085. J Nat Prod 69:1756–1759PubMedCrossRefGoogle Scholar
  6. Baumann S, Herrmann J, Raju R, Steinmetz H, Mohr KI, Hüttel S, Harmrolfs K, Stadler M, Müller R (2014) Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew Chem Int Ed Engl 53:14605–14609PubMedCrossRefGoogle Scholar
  7. Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, Sandouk A, Hesse C, Castro CN, Bähre H, Tschirner SK, Gorinski N, Gohmert M, Mayer CT, Huehn J, Ponimaskin E, Abraham WR, Müller R, Lochner M, Sparwasser T (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20:1327–1333PubMedCrossRefGoogle Scholar
  8. Bewick M, Williams S, Veltkamp C (1976) Growth and ultrastructure of Streptomyces venezuelae during chloramphenicol production. Microbios 16:191–199PubMedGoogle Scholar
  9. Bister B, Bischoff D, Ströbele M, Riedlinger J, Reicke A, Wolter F, Bull AT, Zähner H, Fiedler HP, Süssmuth RD (2004) Abyssomicin C-A—polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed Engl 43:2574–2576PubMedCrossRefGoogle Scholar
  10. Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86PubMedCrossRefGoogle Scholar
  11. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268PubMedCrossRefGoogle Scholar
  12. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:144–222PubMedCrossRefGoogle Scholar
  13. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30:237–323PubMedCrossRefGoogle Scholar
  14. Brockman ER, Boyd WL (1963) Myxobacteria from soils of the Alaskan and Canadian Arctic. J Bacteriol 86:605–606PubMedPubMedCentralGoogle Scholar
  15. Bruntner C, Binder T, Pathom-Aree W, Goodfellow M, Bull AT, Potterat O et al (2005) Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J Antibiot 58:346–349PubMedCrossRefGoogle Scholar
  16. Bull AT, Starch JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends in Microbiol 15:491–499CrossRefGoogle Scholar
  17. Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R et al (1997) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15:361–367CrossRefGoogle Scholar
  18. Burger H, Foekens JA, Look MP, Meijer-van Gelder ME, Klijn JG, Wiemer EA, Stoter G, Nooter K (2003) RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res 9:827–836PubMedGoogle Scholar
  19. Carlson JC, Li S, Burr DA, Sherman DH (2009) Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. J Nat Prod 72:2076–2079PubMedPubMedCentralCrossRefGoogle Scholar
  20. Charan RD, Schlingmann G, Janso J, Bernan V, Feng X, Carter GT (2004) Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J Nat Prod 67:1431–1433PubMedCrossRefGoogle Scholar
  21. Chau R, Kalaitzis JA, Neilan BA (2011) On the origins and biosynthesis of tetrodotoxin. Aqua Toxicol 104:61–72CrossRefGoogle Scholar
  22. Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–419PubMedCrossRefGoogle Scholar
  23. Connor DT, Greenough RC, Strandtmann M (1977) W-7783, a unique antifungal antibiotic. J Org Chem 42:3664–3669PubMedCrossRefGoogle Scholar
  24. Corominas-Faja B, Cuyàs E, Gumuzio J, Bosch-Barrera J, Leis O, Martin ÁG, Menendez JA (2014) Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 5:8306–8316PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dawid W (1978) Fruchtkörperbildene Myxobakterien in Böden Brasiliens. Z Allg Mikrobiol 34:333–335Google Scholar
  26. Dawid W, Gallikowski CA, Hirsch P (1988) 3.8 Psychrophilic myxobacteria from antarctic soils. Polarforschung 58:271–278 (Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, Bremerhaven)Google Scholar
  27. Demain A (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463PubMedCrossRefGoogle Scholar
  28. Do H, Kogure K, Simidu U (1990) Identification of deep-sea-sediment bacteria which produce tetrodotoxin. Appl Environ Microbiol 56:1162PubMedPubMedCentralGoogle Scholar
  29. Do H, Kogure K, Imada C, Noguchi T, Ohwada K, Simidu U (1991) Tetrodotoxin production of actinomycetes isolated from marine sediment. J Appl Microbiol 70:464–468Google Scholar
  30. Egan S, Wiener P, Kallifidas D, Wellington EMH (1998) Transfer of streptomycin biosynthesis gene clusters within streptomycetes isolated from soil. Appl Environ Microbiol 64:5061–5063PubMedPubMedCentralGoogle Scholar
  31. Egerton N (2008) Ixabepilone (ixempra), a therapeutic option for locally advanced or metastatic breast cancer. P T 33:523–531PubMedPubMedCentralGoogle Scholar
  32. El-Gendy MM, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H (2008) Essramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot 61:149–157PubMedCrossRefGoogle Scholar
  33. Engelhardt K, Degnes KF, Kemmler M, Bredholt H, Fjaervik E, Klinkenberg G, Sletta H, Ellingsen TE, Zotchev SB (2010) Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Appl Environ Microbiol 76:4969–4976PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fenical W, Jensen P (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nature Chem Biol 2:666–673CrossRefGoogle Scholar
  35. Fenical W, Baden D, Burg M, de Goyet CV, Grimes JD, Katz M, Marcus NH, Pomponi S, Rhines P, Tester P, Vena J (1999) Marine derived pharmaceuticals and related bioactive compounds. In: Fenical W (ed) From monsoons to microbes: understanding the ocean’s role in human health, National Academies Press, pp 71–86Google Scholar
  36. Fiedler HP, Bruntner C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M, Jones A, Maldonado L, Pathom-Aree W, Beil W, Schneider K, Keller S, Sussmuth RD (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot 61:158–163PubMedCrossRefGoogle Scholar
  37. Frändberg E, Petersson C, Lundgren LN, Schnürer J (2000) Streptomyces halstedii K122 produces the antifungal compounds bafilomycin B1 and C1. Can J Microbiol 46:753–758PubMedCrossRefGoogle Scholar
  38. Fujii I, Ebizuka Y (1997) Anthracycline biosynthesis in Streptomyces galilaeus. Chem Rev 97:2511–2524PubMedCrossRefGoogle Scholar
  39. Gao X, Lu Y, Xing Y, Ma Y, Lu J, Bao W, Wang Y, Xi T (2012) A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol Res 167:616–622PubMedCrossRefGoogle Scholar
  40. Garcia RO, Müller R (2014a) The family haliangiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes deltaproteobacteria and epsilonproteobacteria, Springer, pp 173–181Google Scholar
  41. Garcia RO, Müller R (2014b) The family myxococcaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes deltaproteobacteria and epsilonproteobacteria, Springer, pp 192–212Google Scholar
  42. Garcia RO, Müller R (2014c) The family nannocystaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes deltaproteobacteria and epsilonproteobacteria, Springer, pp 213–229Google Scholar
  43. Garcia RO, Müller R (2014d) The family phaselicastaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes deltaproteobacteria and epsilonproteobacteria, Springer, pp 239–245Google Scholar
  44. Garcia RO, Müller R (2014e) The family polyangiaceae In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes deltaproteobacteria and epsilonproteobacteria, Springer, pp 247–279Google Scholar
  45. Garcia RO, Krug D, Müller R (2009) Discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods. Methods Enzymol 458:59–91Google Scholar
  46. Garcia R, Pistorius D, Stadler M, Müller R (2011) Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. J Bacteriol 139:1930–1942CrossRefGoogle Scholar
  47. Gemperlein K, Zipf G, Bernauer HS, Müller R, Wenzel SC (2016) Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase. Metab 33:98–108CrossRefGoogle Scholar
  48. Gerth K, Irschik H, Reichenbach H, Trowitzsch W (1980) Myxothiazol, an antibiotic from Myxococcus fulvus (myxobacterales). I. Cultivation, isolation, physico-chemical and biological properties. J Antibiot 33:1474–1479 TokyoPubMedCrossRefGoogle Scholar
  49. Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities–past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253PubMedCrossRefGoogle Scholar
  50. Gerth K, Ischik H, Reichenbach H, Trowitzsch WPG (1982) The myxovirescins, a family of antibiotics from Myxococcus virescens (myxobacterales). J Antibiot 35:1454–1459PubMedCrossRefGoogle Scholar
  51. Gerth K, Bedorf N, Irschik H, Höfle G, Reichenbach H (1994) The soraphens: a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen A1 alpha: fermentation, isolation, biological properties. J Antibiot 47:23–31PubMedCrossRefGoogle Scholar
  52. Gerth K, Bedorf N, Irschik H, Höfle G, Reichenbach H (1996) Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria) production, physico-chemical and biological properties. J Antibiot 49:560–563PubMedCrossRefGoogle Scholar
  53. Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Atlac Sci USA 103:15200–15205Google Scholar
  54. Goodfellow M, Haynes JA (1984) Actinomycetes in marine sediments. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical, and biomedical aspects of actinomycetes. Academic Press, New York, pp 453–472CrossRefGoogle Scholar
  55. Gorajana A, Kurada BV, Peela S, Jangam P, Vinjamuri S, Poluri E et al (2005) 1-Hydroxy- 1-norresistomycin, a new cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. J Antibiot 58:526–529PubMedCrossRefGoogle Scholar
  56. Grabley S, Thiericke R (1999) The impact of natural products on drug discovery. Drug discovery from nature, Springer, pp 3–37Google Scholar
  57. Han SK, Nedashkovskaya OI, Mikhailov VV, Kim SB, Bae KS (2003) Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family microbacteriaceae from the marine environment. Int J Syst Evol Microbiol 53:2061–2066PubMedCrossRefGoogle Scholar
  58. Hansen LH, Ferrari B, Sørensen AH, Veal D, Sørensen S (2001) Detection of oxytetracycline production by Streptomyces rimosus in soil microcosmos by combining whole cell biosensors and flow cytometry. Appl Environ Microbiol 67:239–244PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hawas UW, Shaaban M, Shaaban KA, Speitling M, Maier A, Kelter G, Fiebig HH, Meiners M, Helmke E, Laatsch H (2009) Mansouramycins A-D, cytotoxic isoquinolinequinones from a marine streptomycete. J Nat Prod 72:2120–2124PubMedCrossRefGoogle Scholar
  60. Hayakawa Y, Shirasaki S, Shiba S, Kawasaki T, Matsuo Y, Adachi K et al (2007) Piericidins C7 and C8, new cytotoxic antibiotics produced by a marine Streptomyces sp. J Antibiot 60:196–200PubMedCrossRefGoogle Scholar
  61. Helaly SE, Pesic A, Fiedler HP, Süßmuth RD (2011) Elaiomycins B and C: Alkylhydrazide antibiotics from Streptomyces sp. BK 190. Org Lett 13:1052–1055PubMedCrossRefGoogle Scholar
  62. Helmke E, Weyland H (1984) Rhodococcus marinonascens sp. nov., an actinomycete from the sea. Int J Syst Bacteriol 34:127–138CrossRefGoogle Scholar
  63. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into marine sponge microbiome. Nat Rev Microbiol 10:641–654PubMedCrossRefGoogle Scholar
  65. Herr RR, Jahnke HK, Argoudelis AD (1967) Structure of streptozotocin. J Am Chem Soc 89:4808–4809PubMedCrossRefGoogle Scholar
  66. Hill RT (2004) Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery. In: Bull AT (ed) Microbial diversity and bioprospecting, ASM Press, pp. 225–231Google Scholar
  67. Hohmann C, Schneider K, Bruntner C, Brown R, Jones AL, Goodfellow M, Krämer M, Imhoff JF, Nicholson G, Fiedler HP, Süssmuth RD (2009a) Albidopyrone, a new alpha-pyrone-containing metabolite from marine-derived Streptomyces sp. NTK 227. J Antibiot 62:75–79PubMedCrossRefGoogle Scholar
  68. Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT et al (2009b) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot 62:99–104PubMedCrossRefGoogle Scholar
  69. Hook LA (1977) Distribution of myxobacters in aquatic habitats of an alkaline bog. Appl Environ Microbiol 34:333–335PubMedPubMedCentralGoogle Scholar
  70. Huang YF, Tian L, Fu HW, Hua HM, Pei YH (2006) One new anthraquinone from marine Streptomyces sp. FX-58. Nat Prod Res 20:1207–1210PubMedCrossRefGoogle Scholar
  71. Iizuka T, Jojima Y, Fudou R, Yamanaka S (1998) Isolation of myxobacteria from the marine environment. FEMS Microbiol Lett 169:317–322PubMedCrossRefGoogle Scholar
  72. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235PubMedPubMedCentralCrossRefGoogle Scholar
  73. Irschik H, Reichenbach H (1985) The mechanism of action of myxovalargin A, a peptide antibiotic from Myxococcus fulvus. J Antibiot 38:1237–1245 TokyoGoogle Scholar
  74. Irschik H, Gerth K, Kemmer T, Steinmetz H, Reichenbach H (1983) The myxovalargins, new peptide antibiotics from Myxococcus fulvus (Myxobacterales). I. Cultivation, isolation, and some chemical and biological properties. J Antibiot 36:6–12 TokyoPubMedCrossRefGoogle Scholar
  75. Irschik H, Jansen R, Gerth K, Höfle G, Reichenbach H (1987) The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J Antibiot 0:7–13 (Tokyo)Google Scholar
  76. Irschik H, Augustiniak H, Gerth K, Höfle G, Reichenbach H (1995) The ripostatins, novel inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J Antibiot 48:787–792 TokyoPubMedCrossRefGoogle Scholar
  77. Irschik H, Schummer D, Höfle G, Reichenbach H, Steinmetz H, Jansen R (2007) Etnangien, a macrolide-polyene antibiotic from Sorangium cellulosum that inhibits nucleic acid polymerases. J Nat Prod 70:1060–1063PubMedCrossRefGoogle Scholar
  78. Jensen PR, Dwight R, Fenical W (1991) Distribution of actinomycetes in near-shore tropical marine sediments. Appl Environ Microbiol 57:1102–1108PubMedPubMedCentralGoogle Scholar
  79. Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152PubMedCrossRefGoogle Scholar
  80. Jeong SY, Shin HJ, Kim TS, Lee HS, Park S, Kim HM (2006) Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J Antibiot 59:234–240PubMedCrossRefGoogle Scholar
  81. Jiang S, Sun W, Chen M, Dai S, Zhang L, Liu Y, Lee KJ, Li X (2007) Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp. Antonie Van Leeuwenhoek 92:405–416PubMedCrossRefGoogle Scholar
  82. Jørgensen H, Degnes KF, Dikiy A, Fjaervik E, Klinkenberg G, Zotchev SB (2010) Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449. Appl Environ Microbiol 76:283–293PubMedCrossRefGoogle Scholar
  83. Kanoh K, Matsuo Y, Adachi K, Imagawa H, Nishizawa M, Shizuri Y (2005) Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251. J Antibiot 58:289–292PubMedCrossRefGoogle Scholar
  84. Karwehl S, Stadler M (2016) Exploitation of fungal biodiversity for discovery of novel antibiotics. Curr Top Microbiol Immunol, in press (doi:  10.1007/82_2016_496)
  85. Kim SB, Oh HM, Kang H, Park SS, Chun J (2004) Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol Biotechnol 14:205–211Google Scholar
  86. Kock I, Maskey RP, Biabani MAF, Helmke E, Laatsch H (2005) 1-Hydroxy-1-norresistomycin and resistoflavin methyl ether: new antibiotics from marine-derived streptomycetes. J Antibiot 58:530–535PubMedCrossRefGoogle Scholar
  87. Koutsoudakis G, Romero-Brey I, Berger C, Pérez-Vilaró G, Monteiro Perin P, Vondran FW, Kalesse M, Harmrolfs K, Müller R, Martinez JP, Pietschmann T, Bartenschlager R, Brönstrup M, Meyerhans A, Díez J (2015) Soraphen A: a broad-spectrum antiviral natural product with potent anti-hepatitis C virus activity. J Hepatol 63:813–821PubMedCrossRefGoogle Scholar
  88. Kunze B, Kemmer T, Höfle G, Reichenbach H (1984) Stigmatellin, a new antibiotic from Stigmatella aurantiaca (Myxobacterales). I. Production, physico-chemical and biological properties. J Antibiot 37:454–461 TokyoPubMedCrossRefGoogle Scholar
  89. Kunze B, Höfle G, Reichenbach H (1987) The aurachins, new quinoline antibiotics from myxobacteria: production, physico-chemical and biological properties. J Antibiot 40:258–265 TokyoPubMedCrossRefGoogle Scholar
  90. Kunze B, Jansen R, Höfle G, Reichenbach H (1994) Crocacin, a new electron transport inhibitor from Chondromyces crocatus (myxobacteria). Production, isolation, physico-chemical and biological properties. J Antibiot 47:881–886 TokyoPubMedCrossRefGoogle Scholar
  91. Kunze B, Jansen R, Sasse F, Höfle G, Reichenbach H (1995) Chondramides A approximately D, new antifungal and cytostatic depsipeptides from Chondromyces crocatus (myxobacteria). Production, physico-chemical and biological properties. J Antibiot 48:1262–1266 TokyoPubMedCrossRefGoogle Scholar
  92. Kwon HC et al (2006) Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus ‘‘Marinospora’’. J Am Chem Soc 128:1622–1632PubMedCrossRefGoogle Scholar
  93. Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251PubMedCrossRefGoogle Scholar
  94. Li DH, Zhu TJ, Liu HB, Fang YC, Gu QQ, Zhu WM (2006) Four butenolides are novel cytotoxic compounds isolated from the marine-derived bacterium, Streptoverticillium luteoverticillatum 11014. Arch Pharmacal Res 29:624–626Google Scholar
  95. Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A et al (2005) Chinikomycins A and B: isolation structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. J Nat Prod 68:349–353PubMedCrossRefGoogle Scholar
  96. Link HF (1809) Observations in Ordines plantarum naturales. Dissertatio prima, complectens Anandrarum ordines Epiphytas, Mucedines Gastomycos et Fungos. Der Geselllschaft Naturforschender Freunde zu Berlin Magazin für die neuesten Entdeckungen in der gesamten Naturkunde 3:1–42Google Scholar
  97. Lu J, Ma Y, Liang J, Xing Y, Xi T, Lu Y (2012) Aureolic acids from a marine-derived Streptomyces sp. WBF16. Microbiol Res 167:590–595PubMedCrossRefGoogle Scholar
  98. Macherla VR, Liu J, Bellows C, Teisan S, Nicholson B, Lam KS et al (2005) Glaciapyrroles A, B and C, pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. J Nat Prod 68:780–783PubMedCrossRefGoogle Scholar
  99. Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70:7520–7529PubMedPubMedCentralCrossRefGoogle Scholar
  100. Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Bull AT, Ward AC, Goodfellow M (2005a) Salinispora arenicola gen. nov., sp nov and Salinispora tropica sp nov., obligate marine actinomycetes belonging to the family micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766PubMedCrossRefGoogle Scholar
  101. Maldonado LA, Starch JEM, Pathom-Aree W, Ward AC, Bill AT, Goodfellow M (2005b) The diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie Van Leeuwenhoek 87:11–18PubMedCrossRefGoogle Scholar
  102. Manam RR, Teisan S, White DJ, Nishino T, Grodberg J, Neuteboom STC et al (2005) Lajollamycin, a nitro-tetraene spiro-b-lactone-g-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J Nat Prod 68:240–243PubMedCrossRefGoogle Scholar
  103. Mao Y, Varoglu M, Sherman DH (1999) Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 6:251–263PubMedCrossRefGoogle Scholar
  104. Martinez JP, Hinkelmann B, Fleta-Soriano E, Steinmetz H, Jansen R, Diez J, Frank R, Sasse F, Meyerhans A (2013) Identification of myxobacteria-derived HIV inhibitors by a high-throughput two-step infectivity assay. Microb Cell Fact 12:85PubMedPubMedCentralCrossRefGoogle Scholar
  105. Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2013) Marine actinobacterial metabolites: Current status and future perspectives. Microbiol Res 168:311–332PubMedCrossRefGoogle Scholar
  106. Mantalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Antonie Van Leeuwenhoek 87:29–36CrossRefGoogle Scholar
  107. McArthur KA, Mitchell SS, Tsueng G, Rheingold A, White DJ, Grodberg J, Lam KS, Potts BC (2008) Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J Nat Prod 71:1732–1737PubMedCrossRefGoogle Scholar
  108. Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011PubMedPubMedCentralCrossRefGoogle Scholar
  109. Mincer TJ, Fenical W, Jensen PR (2005) Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Appl Environ Microbiol 71:7019–7028PubMedPubMedCentralCrossRefGoogle Scholar
  110. Mitchell SS, Nicholson B, Teisan S, Lam KS, Potts BC (2004) Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus. J Nat Prod 67:1400–1402PubMedCrossRefGoogle Scholar
  111. Mohr KI, Stechling M, Wink J, Wilharm E, Stadler M (2015) Comparison of myxobacterial diversity and evaluation of isolation success in two niches: Kiritimati Island and German compost. Microbiologyopen 5:268–278Google Scholar
  112. Moore BS, Trischman JA, Seng D, Kho D, Jensen PR, Fenical W (1999) Salinamides, antiinflammatory depsipeptides from a marine streptomycete. J Org Chem 64:1145–1150CrossRefGoogle Scholar
  113. Moore BS, Kalaitzis JA, Xiang L (2005) Exploiting marine actinomycete biosynthetic pathways for drug discovery. Antonie Van Leeuwenhoek 87:49–57PubMedCrossRefGoogle Scholar
  114. Müller R, Wink J (2014) Future potential for anti-infectives from bacteria—how to exploit biodiversity and genomic potential. Int J Med Microbiol 304:3–13PubMedCrossRefGoogle Scholar
  115. Oh DC, Gontang EA, Kauffman CA, Jensen PR, Fenical W (2008) Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete salinispora pacifica. J Nat Prod 71:570–575PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ojika M, Suzuki Y, Tsukamoto A, Sakagami Y, Fudou R, Yoshimura T, Yamanaka S (1998) Cystothiazoles A and B, new bithiazole-type antibiotics from the myxobacterium Cystobacter fuscus. J Antibiot 51:275–281 TokyoPubMedCrossRefGoogle Scholar
  117. Okami Y, Okazaki T (1972) Studies on marine microorganisms. J Antibiot 25:456–460PubMedCrossRefGoogle Scholar
  118. Omura S, Nakagawa A, Fujimoto T, Saito K, Otoguro K, Walsh JC et al (1987) Hygromycin A, an antitreponemal substance. I. Screening method and therapeutic effect for Treponema hyodysenteriae-caused infection in CF-1 mice. J Antibiot 40:1619PubMedCrossRefGoogle Scholar
  119. Oxford AE (1947) Observations concerning the growth and metabolic activities of myxococci in a simple protein-free liquid medium. J Bacteriol 53:129–138PubMedPubMedCentralGoogle Scholar
  120. Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832PubMedPubMedCentralCrossRefGoogle Scholar
  121. Pathom-Aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from challenger deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189PubMedCrossRefGoogle Scholar
  122. Perez Baz J, Cañedo LM, Fernández Puentes JL, Silva Elipe MV (1997) Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. II. Physico-chemical properties and structure determination. J Antibiot 50:738–741Google Scholar
  123. Peschke U, Schmidt H, Zhang HZ, Piepersberg W (2006) Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78–11. Mol Microbiol 16:1137–1156CrossRefGoogle Scholar
  124. Piel J, Hertweck C, Shipley PR, Hunt DM, Newman MS, Moore BS (2000) Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate ‘Streptomyces maritimus’: evidence for the derailment of an aromatic polyketide synthase. Chem Biol 7:943–955PubMedCrossRefGoogle Scholar
  125. Pivot X, Dufresne A, Villanueva C (2007) Efficacy and safety of ixabepilone, a novel epothilone analogue. Clin Breast Canc 7:543–549CrossRefGoogle Scholar
  126. Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Jensen P et al (2008) Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS ONE 3:2335CrossRefGoogle Scholar
  127. Rachid S, Huo L, Herrmann J, Stadler M, Köpcke B, Bitzer J, Müller R (2011) Mining the cinnabaramide biosynthetic pathway to generate novel proteasome inhibitors. ChemBioChem 12:922–931PubMedCrossRefGoogle Scholar
  128. Reichenbach H (1983) A simple method for the purification of myxobacteria. J Microbiol Methods 1:77–79CrossRefGoogle Scholar
  129. Reichenbach H, Höfle G (1993) Biologically active secondary metabolites from myxobacteria. Biotech Adv 11:219–277CrossRefGoogle Scholar
  130. Reichenbach H, Gerth K, Irschik H, Kunze B, Höfle G (1988) Myxobacteria: a source of new antibiotics. Trends Biotechnol 6:115–121CrossRefGoogle Scholar
  131. Reichenbach H, Lang E, Schumann P, Spröer C (2006a) Byssovorax cruenta gen. nov., sp. nov., nom. rev., an cellulose-degrading myxobacterium: rediscovery of ‘Myxococcus cruentus’ Thaxter 1897. Int J Syst Evol Microbiol 56:2357–2363PubMedCrossRefGoogle Scholar
  132. Reichenbach H, Dworkin M, Shimkets LJ (2006) The myxobacteria In: Dworkin M, Falkow S, Rosenberg E, Schleifer K.-H. Stackebrandt E (eds) The prokaryotes,Springer, Berlin, vol 7, pp. 31–115Google Scholar
  133. Reichenbach H, Höfle G (2008) Discovery and development of the epothilones: a novel class of antineoplastic drugs. Drugs R D 9:1–10PubMedCrossRefGoogle Scholar
  134. Ringel SM, Greenough RC, Roemer S (1977) Ambruticin (W7783), a new antifungal antibiotic. J Antibiot 30:371–375PubMedCrossRefGoogle Scholar
  135. Saleh EA, Mahmoud SAZ, El-Haddad ME, Abdel-Fatah MK (1985) Purification and identification of Streptomyces aureofaciens ID13 antibiotic. Zentralblatt für Mikrobiologie 140:325–332Google Scholar
  136. Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900PubMedPubMedCentralCrossRefGoogle Scholar
  137. Sasse F, Steinmetz H, Höfle G, Reichenbach H (1993) Rhizopodin, a new compound from Myxococcus stipitatus (myxobacteria) causes formation of rhizopodia-like structures in animal cell cultures. Production, isolation, physico-chemical and biological properties. J Antibiot 46:741–748PubMedCrossRefGoogle Scholar
  138. Sasse F, Böhlendorf B, Herrmann M, Kunze B, Forche E, Steinmetz H, Höfle G, Reichenbach H (1999) Melithiazols, new beta-methoxyacrylate inhibitors of the respiratory chain isolated from myxobacteria. Production, isolation, physico-chemical and biological properties. J Antibiot 52:721–729PubMedCrossRefGoogle Scholar
  139. Selvin J, Joseph S, Asha KRT, Manjusha WA, Sangeetha VS, Jayaseema DM, Antony MC, Denslin Vinitha AJ (2004) Antibacterial potential of antagonistic Streptomyces sp. isolated from marine sponge Dendrilla nigra. FEMS Microbiol Ecol 50:117–122PubMedCrossRefGoogle Scholar
  140. Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Rückert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorhölter FJ, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blöcker H, Pühler A, Müller R (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289PubMedCrossRefGoogle Scholar
  141. Schreurs M, Van Dijk TH, Gerding A, Havinga R, Reijngoud DJ, Kuipers F (2009) Soraphen, an inhibitor of the acetyl-CoA carboxylase system, improves peripheral insulin sensitivity in mice fed a high-fat diet. Diabetes Obes Metab 11:987–991PubMedCrossRefGoogle Scholar
  142. Schultz AW, Oh DC, Carney JR, Williamson RT, Udwary DW, Jensen PR, Gould SJ, Fenical W, Moore BS (2008) Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J Am Chem Soc 130:4507–4516PubMedCrossRefGoogle Scholar
  143. Shimkets LJ, Dworkin M, Reichbach H (2004) The myxobacteria, 3rd edn. Springer, New YorkGoogle Scholar
  144. Sivakumar K, Sahu MK, Thangaradjou T, Kannan L (2007) Research on marine actinobacteria in India. Ind J Microbiol 47:186–196CrossRefGoogle Scholar
  145. Socha AM, LaPlante KL, Rowley DC (2006) New bisanthraquinone antibiotics and semisynthetic derivatives with potent activity against clinical Staphylococcus aureus and Enterococcus faecium isolates. Bioorganic Med Chem 14:8446–8454CrossRefGoogle Scholar
  146. Soria-Mercado IE, Prieto-Davo A, Jensen PR, Fenical W (2005) Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J Nat Prod 68:904–910PubMedCrossRefGoogle Scholar
  147. Stach JEM, Bull AT (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie Van Leeuwenhoek 87:3–9PubMedCrossRefGoogle Scholar
  148. Stach JEM, Maldonado LA, Masson DG, Ward AC, Goodfellow M, Bull AT (2003) Statistical approaches to estimating bacterial diversity in marine sediments. Appl Environ Microbiol 69:6189–6200PubMedPubMedCentralCrossRefGoogle Scholar
  149. Stadler M, Bitzer J, Mayer-Bartschmid A, Müller H, Benet-Buchholz J, Gantner F, Tichy HV, Reinemer P, Bacon KB (2007) Cinnabaramides A-G: analogues of lactacystin and salinosporamide from a terrestrial streptomycete. J Nat Prod 70:246–252PubMedCrossRefGoogle Scholar
  150. Steinert G, Whitfield S, Taylor MW, Thoms C, Schupp PJ (2014) Application of diffusion growth chambers for the cultivation of marine sponge-associated bacteria. Mar Biotechnol 16:594–603 SpringerPubMedCrossRefGoogle Scholar
  151. Surup F, Viehrig K, Mohr KI, Herrmann J, Jansen R, Müller R (2014) Disciformycins A and B: 12-membered macrolide glycoside antibiotics from the myxobacterium Pyxidicoccus fallax active against multiresistant staphylococci. Angew Chem Int Ed 53:13588–13591CrossRefGoogle Scholar
  152. Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285PubMedCrossRefGoogle Scholar
  153. Takizawa M, Colwell RR, Hill RT (1993) Isolation and diversity of actinomycetes in the Chesapeake Bay. Appl Environm Micobiol 59:997–1002Google Scholar
  154. Taylor and Francis Group (2016) Dictionary of natural products (online)Google Scholar
  155. Thaxter R (1892) On the myxobacteriaceae, a new order of schizomycetes. Bot Gaz 17:389–406CrossRefGoogle Scholar
  156. Uyeda M, Mizukami M, Yokomizo K, Suzuki K, Pentalenolactone I (2001) Hygromycin A. immunosuppressants produced by Streptomyces filipinensis and Streptomyces hygroscopicus. Biosci Biotechnol Biochem 65:1252–1254PubMedCrossRefGoogle Scholar
  157. Vetcher L, Menzella HG, Kudo T, Motoyama T, Katz L (2013) The antifungal polyketide ambruticin targets the HOG pathway. Antimicrob Agents Chemother 51:3734–3736CrossRefGoogle Scholar
  158. Vezina C, Kudelski A, Sehgal S (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28:721–726PubMedCrossRefGoogle Scholar
  159. Ward AC, Bora N (2006) Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol 9:279–286PubMedCrossRefGoogle Scholar
  160. Webster NS, Hill RT (2001) The culturable microbial community of the great barrier reef sponge Rhopaloeides odorabile. Appl Environ Microbiol 138:843–851Google Scholar
  161. Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346PubMedCrossRefGoogle Scholar
  162. Weissmann KJ, Müller R (2009) A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem 17:2121–2136CrossRefGoogle Scholar
  163. Wenzel SC, Müller R (2009) The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat Prod Rep 26:1385–1407PubMedCrossRefGoogle Scholar
  164. Werner G, Hagenmaier H, Drautz H, Baumgartner A, Zähner H (1984) Metabolic products of microorganisms. bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity. J Antibiot 37:110–117PubMedCrossRefGoogle Scholar
  165. Williams PG, Buchanan GO, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) New cytotoxic Salinosporamides from the marine actinomycete Salinispora tropica. J Org Chem 70:6196–6203Google Scholar
  166. Wu SJ, Fotso S, Li F, Qin S, Kelter T, Fiebig HH et al (2006) 39-N-carboxamidostaurosporine and selina-4(14),7(11)-diene-8,9-diol, new metabolites from a marine Streptomyces sp. J Antibiot 59:331–337PubMedCrossRefGoogle Scholar
  167. Wu Z, Xie L, Xia G, Zhang J, Nie Y, Hu J, Wang S, Zhang R (2005) A new tetrodotoxin-producing actinomycete, Nocardiopsis dassonvillei, isolated from the ovaries of pufferfish Fugu rubripes. Taxoicon 45:851–859CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Helmholtz Centre for Infection Research, Microbial Strain CollectionBraunschweigGermany

Personalised recommendations