Spatial Organization of Cell Wall-Anchored Proteins at the Surface of Gram-Positive Bacteria

  • Shaynoor DramsiEmail author
  • Hélène Bierne
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 404)


Bacterial surface proteins constitute an amazing repertoire of molecules with important functions such as adherence, invasion, signalling and interaction with the host immune system or environment. In Gram-positive bacteria, many surface proteins of the “LPxTG” family are anchored to the peptidoglycan (PG) by an enzyme named sortase. While this anchoring mechanism has been clearly deciphered, less is known about the spatial organization of cell wall-anchored proteins in the bacterial envelope. Here, we review the question of the precise spatial and temporal positioning of LPxTG proteins in subcellular domains in spherical and ellipsoid bacteria (Staphylococcus aureus, Streptococcus pyogenes, Streptococcus agalactiae and Enterococcus faecalis) and in the rod-shaped bacterium Listeria monocytogenes. Deposition at specific sites of the cell wall is a dynamic process tightly connected to cell division, secretion, cell morphogenesis and levels of gene expression. Studying spatial occupancy of these cell wall-anchored proteins not only provides information on PG dynamics in responses to environmental changes, but also suggests that pathogenic bacteria control the distribution of virulence factors at specific sites of the surface, including pole, septa or lateral sites, during the infectious process.


Bacterial Surface Teichoic Acid Streptococcus Agalactiae Division Site FtsZ Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Nienke Buddelmeijer for critical reading of the manuscript. H. Bierne acknowledges supports from the French National Research Agency (ANR 11-BSV3-0003 EPILIS) and the iXcore Foundation for Research.


  1. Amir A, van Teeffelen S (2014) Getting into shape: How do rod-like bacteria control their geometry? Syst Synth Biol 8(3):227–235. doi: 10.1007/s11693-014-9143-9 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andre G, Kulakauskas S, Chapot-Chartier MP, Navet B, Deghorain M, Bernard E, Hols P, Dufrene YF (2010) Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells. Nat Commun 1:27. doi: 10.1038/ncomms1027 ADSPubMedCrossRefGoogle Scholar
  3. Bae T, Schneewind O (2003) The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing. J Bacteriol 185(9):2910–2919PubMedPubMedCentralCrossRefGoogle Scholar
  4. Beeby M, Gumbart JC, Roux B, Jensen GJ (2013) Architecture and assembly of the Gram-positive cell wall. Mol Microbiol 88(4):664–672. doi: 10.1111/mmi.12203 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354(6349):161–164. doi: 10.1038/354161a0 ADSPubMedCrossRefGoogle Scholar
  6. Bierne H, Cossart P (2002) InlB, a surface protein of Listeria monocytogenes that behaves as an invasin and a growth factor. J Cell Sci 115(Pt 17):3357–3367PubMedGoogle Scholar
  7. Bierne H, Cossart P (2007) Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 71(2):377–397PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bierne H, Dramsi S (2012) Spatial positioning of cell wall-anchored virulence factors in Gram-positive bacteria. Curr Opin Microbiol 15(6):715–723. doi: 10.1016/j.mib.2012.10.010 PubMedCrossRefGoogle Scholar
  9. Bierne H, Garandeau C, Pucciarelli MG, Sabet C, Newton S, Garcia-del Portillo F, Cossart P, Charbit A (2004) Sortase B, a new class of sortase in Listeria monocytogenes. J Bacteriol 186(7):1972–1982PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bierne H, Mazmanian SK, Trost M, Pucciarelli MG, Liu G, Dehoux P, Jansch L, Garcia-del Portillo F, Schneewind O, Cossart P, European Listeria Genome C (2002) Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol Microbiol 43(4):869–881PubMedCrossRefGoogle Scholar
  11. Bierne H, Sabet C, Personnic N, Cossart P (2007) Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes and infection/Institut Pasteur 9(10):1156–1166. doi: 10.1016/j.micinf.2007.05.003 PubMedCrossRefGoogle Scholar
  12. Blaylock B, Sorg JA, Schneewind O (2008) Yersinia enterocolitica type III secretion of YopR requires a structure in its mRNA. Mol Microbiol 70(5):1210–1222. doi: 10.1111/j.1365-2958.2008.06474.x (MMI6474 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bonazzi M, Lecuit M, Cossart P (2009) Listeria monocytogenes internalin and E-cadherin: from structure to pathogenesis. Cell Microbiol 11(5):693–702. doi: 10.1111/j.1462-5822.2009.01293.x PubMedCrossRefGoogle Scholar
  14. Bradshaw WJ, Davies AH, Chambers CJ, Roberts AK, Shone CC, Acharya KR (2015) Molecular features of the sortase enzyme family. FEBS J 282(11):2097–2114. doi: 10.1111/febs.13288 PubMedCrossRefGoogle Scholar
  15. Braun L, Dramsi S, Dehoux P, Bierne H, Lindahl G, Cossart P (1997) InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol 25(2):285–294PubMedCrossRefGoogle Scholar
  16. Brega S, Caliot E, Trieu-Cuot P, Dramsi S (2013) SecA localization and SecA-dependent secretion occurs at new division septa in group B Streptococcus. PLoS ONE 8(6):e65832. doi: 10.1371/journal.pone.0065832 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  17. Brinster S, Furlan S, Serror P (2007) C-terminal WxL domain mediates cell wall binding in Enterococcus faecalis and other gram-positive bacteria. J Bacteriol 189:1244–1253. doi: 10.1128/jb.00773-06
  18. Bruck S, Personnic N, Prevost MC, Cossart P, Bierne H (2011) Regulated shift from helical to polar localization of Listeria monocytogenes cell wall-anchored proteins. J Bacteriol 193(17):4425–4437. doi: 10.1128/JB.01154-10 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cabanes D, Sousa S, Cebria A, Lecuit M, Garcia-del Portillo F, Cossart P (2005) Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J 24(15):2827–2838. doi: 10.1038/sj.emboj.7600750 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Calvo E, Pucciarelli MG, Bierne H, Cossart P, Albar JP, Garcia-Del Portillo F (2005) Analysis of the Listeria cell wall proteome by two-dimensional nanoliquid chromatography coupled to mass spectrometry. Proteomics 5(2):433–443. doi: 10.1002/pmic.200400936 PubMedCrossRefGoogle Scholar
  21. Camejo A, Buchrieser C, Couve E, Carvalho F, Reis O, Ferreira P, Sousa S, Cossart P, Cabanes D (2009) In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog 5(5):e1000449PubMedPubMedCentralCrossRefGoogle Scholar
  22. Campo N, Tjalsma H, Buist G, Stepniak D, Meijer M, Veenhuis M, Westermann M, Muller JP, Bron S, Kok J, Kuipers OP, Jongbloed JD (2004) Subcellular sites for bacterial protein export. Mol Microbiol 53(6):1583–1599PubMedCrossRefGoogle Scholar
  23. Carlsson F, Stalhammar-Carlemalm M, Flardh K, Sandin C, Carlemalm E, Lindahl G (2006) Signal sequence directs localized secretion of bacterial surface proteins. Nature 442(7105):943–946ADSPubMedCrossRefGoogle Scholar
  24. Chiu SW, Leake MC (2011) Functioning nanomachines seen in real-time in living bacteria using single-molecule and super-resolution fluorescence imaging. Int J Mol Sci 12(4):2518–2542. doi: 10.3390/ijms12042518 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Comfort D, Clubb RT (2004) A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. Infect Immun 72(5):2710–2722PubMedPubMedCentralCrossRefGoogle Scholar
  26. Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113(6):767–776PubMedCrossRefGoogle Scholar
  27. Danne C, Dramsi S (2012) Pili of gram-positive bacteria: roles in host colonization. Res Microbiol 163(9–10):645–658. doi: 10.1016/j.resmic.2012.10.012 PubMedCrossRefGoogle Scholar
  28. DeDent A, Bae T, Missiakas DM, Schneewind O (2008) Signal peptides direct surface proteins to two distinct envelope locations of Staphylococcus aureus. EMBO J 27(20):2656–2668PubMedPubMedCentralCrossRefGoogle Scholar
  29. den Blaauwen T, de Pedro MA, Nguyen-Disteche M, Ayala JA (2008) Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 32(2):321–344CrossRefGoogle Scholar
  30. Disson O, Lecuit M (2013) In vitro and in vivo models to study human listeriosis: mind the gap. Microbes and Infection 15(14–15):971–980. doi: 10.1016/j.micinf.2013.09.012 PubMedCrossRefGoogle Scholar
  31. Dominguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Soldner R, Carballido-Lopez R (2011) Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333(6039):225–228. doi: 10.1126/science.1203466 ADSPubMedCrossRefGoogle Scholar
  32. Dortet L, Mostowy S, Cossart P (2012) Listeria and autophagy escape: involvement of InlK, an internalin-like protein. Autophagy 8(1):132–134. doi: 10.4161/auto.8.1.18218 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dramsi S, Trieu-Cuot P, Bierne H (2005) Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Res Microbiol 156(3):289–297PubMedCrossRefGoogle Scholar
  34. Farrand AJ, Haley KP, Lareau NM, Heilbronner S, McLean JA, Foster T, Skaar EP (2015) An iron-regulated autolysin remodels the cell wall to facilitate heme acquisition in Staphylococcus lugdunensis. Infect Immun 83(9):3578–3589. doi: 10.1128/IAI.00397-15 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C, Lavergne JP, Franz-Wachtel M, Macek B, Combet C, Kuru E, VanNieuwenhze MS, Brun YV, Sherratt D, Grangeasse C (2014) MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516(7530):259–262. doi: 10.1038/nature13966 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  36. Frankel MB, Schneewind O (2012) Determinants of murein hydrolase targeting to cross-wall of Staphylococcus aureus peptidoglycan. J Biol Chem 287(13):10460–10471. doi: 10.1074/jbc.M111.336404 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Frankel MB, Wojcik BM, DeDent AC, Missiakas DM, Schneewind O (2010) ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus. Mol Microbiol 78(1):238–252. doi: 10.1111/j.1365-2958.2010.07334.x PubMedPubMedCentralGoogle Scholar
  38. Gahlmann A, Moerner WE (2014) Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat Rev Microbiol 12(1):9–22. doi: 10.1038/nrmicro3154 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gaillard JL, Berche P, Frehel C, Gouin E, Cossart P (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65(7):1127–1141Google Scholar
  40. Garcia-del Portillo F, Calvo E, D’Orazio V, Pucciarelli MG (2011) Association of ActA to peptidoglycan revealed by cell wall proteomics of intracellular Listeria monocytogenes. J Biol Chem 286(40):34675–34689. doi: 10.1074/jbc.M111.230441 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333(6039):222–225. doi: 10.1126/science.1203285
  42. Gautam S, Kim T, Spiegel DA (2015) Chemical probes reveal an extraseptal mode of cross-linking in Staphylococcus aureus. J Am Chem Soc 137(23):7441–7447. doi: 10.1021/jacs.5b02972 PubMedCrossRefGoogle Scholar
  43. Govindarajan S, Nevo-Dinur K, Amster-Choder O (2012) Compartmentalization and spatiotemporal organization of macromolecules in bacteria. FEMS Microbiol Rev 36(5):1005–1022. doi: 10.1111/j.1574-6976.2012.00348.x PubMedCrossRefGoogle Scholar
  44. Halbedel S, Hahn B, Daniel RA, Flieger A (2012) DivIVA affects secretion of virulence-related autolysins in Listeria monocytogenes. Mol Microbiol 83(4):821–839. doi: 10.1111/j.1365-2958.2012.07969.x PubMedCrossRefGoogle Scholar
  45. Hayhurst EJ, Kailas L, Hobbs JK, Foster SJ (2008) Cell wall peptidoglycan architecture in Bacillus subtilis. Proc Natl Acad Sci USA 105(38):14603–14608ADSPubMedPubMedCentralCrossRefGoogle Scholar
  46. Hendrickx AP, Willems RJ, Bonten MJ, van Schaik W (2009) LPxTG surface proteins of enterococci. Trends Microbiol 17(9):423–430. doi: 10.1016/j.tim.2009.06.004 PubMedCrossRefGoogle Scholar
  47. Higgins ML, Shockman GD (1970) Model for cell wall growth of Streptococcus faecalis. J Bacteriol 101(2):643–648PubMedPubMedCentralGoogle Scholar
  48. Hu P, Bian Z, Fan M, Huang M, Zhang P (2008) Sec translocase and sortase A are colocalised in a locus in the cytoplasmic membrane of Streptococcus mutans. Arch Oral Biol 53(2):150–154. doi: 10.1016/j.archoralbio.2007.08.008 PubMedCrossRefGoogle Scholar
  49. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803. doi: 10.3748/wjg.v21.i29.8787 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jiang C, Caccamo PD, Brun YV (2015) Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights. BioEssays 37(4):413–425. doi: 10.1002/bies.201400098 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jones LJ, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104(6):913–922PubMedCrossRefGoogle Scholar
  52. Jonquieres R, Bierne H, Fiedler F, Gounon P, Cossart P (1999) Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol Microbiol 34(5):902–914PubMedCrossRefGoogle Scholar
  53. Jonquieres R, Bierne H, Mengaud J, Cossart P (1998) The inlA gene of Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of internalin. Infect Immun 66(7):3420–3422PubMedPubMedCentralGoogle Scholar
  54. Kandaswamy K, Liew TH, Wang CY, Huston-Warren E, Meyer-Hoffert U, Hultenby K, Schroder JM, Caparon MG, Normark S, Henriques-Normark B, Hultgren SJ, Kline KA (2013) Focal targeting by human beta-defensin 2 disrupts localized virulence factor assembly sites in Enterococcus faecalis. Proc Natl Acad Sci USA 110(50):20230–20235. doi: 10.1073/pnas.1319066110 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  55. Kang HJ, Baker EN (2012) Structure and assembly of Gram-positive bacterial pili: unique covalent polymers. Curr Opin Struct Biol 22(2):200–207. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  56. Klebba PE, Charbit A, Xiao Q, Jiang X, Newton SM (2012) Mechanisms of iron and haem transport by Listeria monocytogenes. Mol Membr Biol 29(3–4):69–86. doi: 10.3109/09687688.2012.694485 PubMedCrossRefGoogle Scholar
  57. Kline KA, Kau AL, Chen SL, Lim A, Pinkner JS, Rosch J, Nallapareddy SR, Murray BE, Henriques-Normark B, Beatty W, Caparon MG, Hultgren SJ (2009) Mechanism for sortase localization and the role of sortase localization in efficient pilus assembly in Enterococcus faecalis. J Bacteriol 191(10):3237–3247PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kuru E, Tekkam S, Hall E, Brun YV, Van Nieuwenhze MS (2015) Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nat Protoc 10(1):33–52. doi: 10.1038/nprot.2014.197 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lebrun M, Mengaud J, Ohayon H, Nato F, Cossart P (1996) Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells. Mol Microbiol 21(3):579–592PubMedCrossRefGoogle Scholar
  60. Liew PX, Wang CL, Wong SL (2012) Functional characterization and localization of a Bacillus subtilis sortase and its substrate and use of this sortase system to covalently anchor a heterologous protein to the B. subtilis cell wall for surface display. J Bacteriol 194(1):161–175. doi: 10.1128/JB.05711-11 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lindahl G, Stalhammar-Carlemalm M, Areschoug T (2005) Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev 18(1):102–127. doi: 10.1128/CMR.18.1.102-127.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lowe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391(6663):203–206. doi: 10.1038/34472 ADSPubMedCrossRefGoogle Scholar
  63. Margolin W (2009) Sculpting the bacterial cell. Curr Biol 19(17):R812–R822PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mariscotti JF, Quereda JJ, Garcia-Del Portillo F, Pucciarelli MG (2014) The Listeria monocytogenes LPXTG surface protein Lmo1413 is an invasin with capacity to bind mucin. Int J Med Microbiol 304(3–4):393–404. doi: 10.1016/j.ijmm.2014.01.003 PubMedCrossRefGoogle Scholar
  65. Marraffini LA, Dedent AC, Schneewind O (2006) Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev 70(1):192–221PubMedPubMedCentralCrossRefGoogle Scholar
  66. Marraffini LA, Schneewind O (2005) Anchor structure of staphylococcal surface proteins. V. Anchor structure of the sortase B substrate IsdC. J Biol Chem 280(16):16263–16271PubMedCrossRefGoogle Scholar
  67. Massidda O, Novakova L, Vollmer W (2013) From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 15(12):3133–3157. doi: 10.1111/1462-2920.12189 PubMedCrossRefGoogle Scholar
  68. Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Schneewind O (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299(5608):906–909. doi: 10.1126/science.1081147 ADSPubMedCrossRefGoogle Scholar
  69. Mengaud J, Ohayon H, Gounon P, Mege RM, Cossart P (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84(6):923–932PubMedCrossRefGoogle Scholar
  70. Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J Sep 1;19(17):4473–4484Google Scholar
  71. Michaelis AM, Gitai Z (2010) Dynamic polar sequestration of excess MurG may regulate enzymatic function. J Bacteriol 192(18):4597–4605. doi: 10.1128/JB.00676-10 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mirouze N, Ferret C, Yao Z, Chastanet A, Carballido-Lopez R (2015) MreB-Dependent Inhibition of Cell Elongation during the Escape from Competence in Bacillus subtilis. PLoS Genet 11(6):e1005299. doi: 10.1371/journal.pgen.1005299 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mobley HL, Koch AL, Doyle RJ, Streips UN (1984) Insertion and fate of the cell wall in Bacillus subtilis. J Bacteriol 158(1):169–179PubMedPubMedCentralGoogle Scholar
  74. Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, Ferreira MT, Pereira PM, Veiga H, Kuru E, VanNieuwenhze MS, Brun YV, Filipe SR, Pinho MG (2015) Cell shape dynamics during the staphylococcal cell cycle. Nat Commun 6:8055. doi: 10.1038/ncomms9055 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  75. Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev: MMBR 63(1):174–229PubMedPubMedCentralGoogle Scholar
  76. Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O (2011) Translation-independent localization of mRNA in E. coli. Science 331 (6020):1081–1084. doi: 10.1126/science.1195691
  77. Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol Mol Biol Rev: MMBR 73(3):407–450. doi: 10.1128/MMBR.00014-09
  78. Olshausen PV, Defeu Soufo HJ, Wicker K, Heintzmann R, Graumann PL, Rohrbach A (2013) Superresolution imaging of dynamic MreB filaments in B. subtilis–a multiple-motor-driven transport? Biophys J 105(5):1171–1181. doi: 10.1016/j.bpj.2013.07.038
  79. Perez-Nunez D, Briandet R, David B, Gautier C, Renault P, Hallet B, Hols P, Carballido-Lopez R, Guedon E (2011) A new morphogenesis pathway in bacteria: unbalanced activity of cell wall synthesis machineries leads to coccus-to-rod transition and filamentation in ovococci. Mol Microbiol 79(3):759–771. doi: 10.1111/j.1365-2958.2010.07483.x PubMedCrossRefGoogle Scholar
  80. Perry AM, Ton-That H, Mazmanian SK, Schneewind O (2002) Anchoring of surface proteins to the cell wall of Staphylococcus aureus. III. Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring. J Biol Chem 277(18):16241–16248PubMedCrossRefGoogle Scholar
  81. Personnic N, Bruck S, Nahori MA, Toledo-Arana A, Nikitas G, Lecuit M, Dussurget O, Cossart P, Bierne H (2010) The stress-induced virulence protein InlH controls interleukin-6 production during murine listeriosis. Infect Immun 78(5):1979–1989. doi: 10.1128/IAI.01096-09 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Philippe J, Vernet T, Zapun A (2014) The elongation of ovococci. Microb Drug Resist 20(3):215–221. doi: 10.1089/mdr.2014.0032 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Phillips GJ (2001) Green fluorescent protein–a bright idea for the study of bacterial protein localization. FEMS Microbiol Lett 204(1):9–18PubMedGoogle Scholar
  84. Pishchany G, Dickey SE, Skaar EP (2009) Subcellular localization of the Staphylococcus aureus heme iron transport components IsdA and IsdB. Infect Immun 77(7):2624–2634. doi: 10.1128/IAI.01531-08 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pucciarelli MG, Calvo E, Sabet C, Bierne H, Cossart P, Garcia-del Portillo F (2005) Identification of substrates of the Listeria monocytogenes sortases A and B by a non-gel proteomic analysis. Proteomics 5(18):4808–4817PubMedCrossRefGoogle Scholar
  86. Rafelski SM, Theriot JA (2006) Mechanism of polarization of Listeria monocytogenes surface protein ActA. Mol Microbiol 59(4):1262–1279PubMedPubMedCentralCrossRefGoogle Scholar
  87. Raz A, Fischetti VA (2008) Sortase A localizes to distinct foci on the Streptococcus pyogenes membrane. Proc Natl Acad Sci USA 105(47):18549–18554. doi: 10.1073/pnas.0808301105 (0808301105 [pii])ADSPubMedPubMedCentralCrossRefGoogle Scholar
  88. Raz A, Talay SR, Fischetti VA (2012) Cellular aspects of the distinct M protein and SfbI anchoring pathways in Streptococcus pyogenes. Mol Microbiol 84(4):631–647. doi: 10.1111/j.1365-2958.2012.08047.x PubMedPubMedCentralCrossRefGoogle Scholar
  89. Reimold C, Defeu Soufo HJ, Dempwolff F, Graumann PL (2013) Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol Biol Cell 24(15):2340–2349. doi: 10.1091/mbc.E12-10-0728 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Reis O, Sousa S, Camejo A, Villiers V, Gouin E, Cossart P, Cabanes D (2010) LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. J Infect Dis 202(4):551–562. doi: 10.1086/654880 PubMedCrossRefGoogle Scholar
  91. Rosch J, Caparon M (2004) A microdomain for protein secretion in Gram-positive bacteria. Science 304(5676):1513–1515. doi: 10.1126/science.1097404 ADSPubMedCrossRefGoogle Scholar
  92. Sabet C, Toledo-Arana A, Personnic N, Lecuit M, Dubrac S, Poupel O, Gouin E, Nahori MA, Cossart P, Bierne H (2008) The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin. Infect Immun 76(4):1368–1378. doi: 10.1128/IAI.01519-07 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Schneewind O, Missiakas DM (2012) Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 367(1592):1123–1139. doi: 10.1098/rstb.2011.0210 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Shiomi D, Yoshimoto M, Homma M, Kawagishi I (2006) Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol Microbiol 60(4):894–906PubMedPubMedCentralCrossRefGoogle Scholar
  95. Smith GA, Portnoy DA, Theriot JA (1995) Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actin-based motility. Mol Microbiol 17(5):945–951PubMedCrossRefGoogle Scholar
  96. Speziale P, Pietrocola G, Rindi S, Provenzano M, Provenza G, Di Poto A, Visai L, Arciola CR (2009) Structural and functional role of Staphylococcus aureus surface components recognizing adhesive matrix molecules of the host. Future microbiology 4(10):1337–1352. doi: 10.2217/fmb.09.102 PubMedCrossRefGoogle Scholar
  97. Spirig T, Weiner EM, Clubb RT (2011) Sortase enzymes in Gram-positive bacteria. Mol Microbiol 82(5):1044–1059. doi: 10.1111/j.1365-2958.2011.07887.x PubMedPubMedCentralCrossRefGoogle Scholar
  98. Stachowiak R, Jagielski T, Roeske K, Osinska O, Gunerka P, Wisniewski J, Bielecki J (2015) Lmo0171, a novel internalin-like protein, determines cell morphology of Listeria monocytogenes and its ability to invade human cell lines. Curr Microbiol 70(2):267–274. doi: 10.1007/s00284-014-0715-4 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Telford JL, Barocchi MA, Margarit I, Rappuoli R, Grandi G (2006) Pili in gram-positive pathogens. Nat Rev Microbiol 4(7):509–519. doi: 10.1038/nrmicro1443 PubMedCrossRefGoogle Scholar
  100. Tiyanont K, Doan T, Lazarus MB, Fang X, Rudner DZ, Walker S (2006) Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. Proc Natl Acad Sci USA 103(29):11033–11038. doi: 10.1073/pnas.0600829103 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  101. Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Regnault B, Coppee JY, Lecuit M, Johansson J, Cossart P (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459(7249):950–956ADSPubMedCrossRefGoogle Scholar
  102. Tomasz A, Jamieson JD, Ottolenghi E (1964) The fine structure of Diplococcus pneumoniae. J Cell Biol 22:453–467PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tsui HC, Keen SK, Sham LT, Wayne KJ, Winkler ME (2011) Dynamic distribution of the SecA and SecY translocase subunits and septal localization of the HtrA surface chaperone/protease during Streptococcus pneumoniae D39 cell division. mBio 2(5):e00202-11. doi: 10.1128/mBio.00202-11
  104. Typas A, Banzhaf M, Gross CA, Vollmer W (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10(2):123–136. doi: 10.1038/nrmicro2677 Google Scholar
  105. van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci USA 108(38):15822–15827. doi: 10.1073/pnas.1108999108 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  106. Vega LA, Port GC, Caparon MG (2013) An association between peptidoglycan synthesis and organization of the Streptococcus pyogenes ExPortal. mBio 4(5):e00485–00413. doi: 10.1128/mBio.00485-13
  107. Wang S, Furchtgott L, Huang KC, Shaevitz JW (2012) Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. Proc Natl Acad Sci USA 109(10):E595–E604. doi: 10.1073/pnas.1117132109 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  108. Wheeler R, Mesnage S, Boneca IG, Hobbs JK, Foster SJ (2011) Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria. Mol Microbiol 82(5):1096–1109. doi: 10.1111/j.1365-2958.2011.07871.x PubMedCrossRefGoogle Scholar
  109. Willems RJ, Hanage WP, Bessen DE, Feil EJ (2011) Population biology of Gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance. FEMS Microbiol Rev 35(5):872–900. doi: 10.1111/j.1574-6976.2011.00284.x PubMedPubMedCentralCrossRefGoogle Scholar
  110. Yao Z, Carballido-Lopez R (2014) Fluorescence imaging for bacterial cell biology: from localization to dynamics, from ensembles to single molecules. Annu Rev Microbiol 68:459–476. doi: 10.1146/annurev-micro-091213-113034 PubMedCrossRefGoogle Scholar
  111. Yu W, Gotz F (2012) Cell wall antibiotics provoke accumulation of anchored mCherry in the cross wall of Staphylococcus aureus. PLoS ONE 7(1):e30076. doi: 10.1371/journal.pone.0030076 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  112. Zalucki YM, Beacham IR, Jennings MP (2009) Biased codon usage in signal peptides: a role in protein export. Trends Microbiol 17(4):146–150. doi: 10.1016/j.tim.2009.01.005 PubMedCrossRefGoogle Scholar
  113. Zapun A, Vernet T, Pinho MG (2008) The different shapes of cocci. FEMS Microbiol Rev 32(2):345–360. doi: 10.1111/j.1574-6976.2007.00098.x PubMedCrossRefGoogle Scholar
  114. Zhou X, Halladin DK, Rojas ER, Koslover EF, Lee TK, Huang KC, Theriot JA (2015) Bacterial division. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. Science 348(6234):574–578. doi: 10.1126/science.aaa1511

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Unité de Biologie des Bactéries Pathogènes à Gram-positifInstitut PasteurParisFrance
  2. 2.CNRS ERL 3526ParisFrance
  3. 3.Micalis InstituteINRA, AgroParis Tech Université Paris-SaclayJouy-en-JosasFrance

Personalised recommendations