Skip to main content

Multivalent Inhibitors of Channel-Forming Bacterial Toxins

  • Chapter
  • First Online:
Uptake and Trafficking of Protein Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 406))

Abstract

Rational design of multivalent molecules represents a remarkable modern tool to transform weak non-covalent interactions into strong binding by creating multiple finely-tuned points of contact between multivalent ligands and their supposed multivalent targets. Here, we describe several prominent examples where the multivalent blockers were investigated for their ability to directly obstruct oligomeric channel-forming bacterial exotoxins, such as the pore-forming bacterial toxins and B component of the binary bacterial toxins. We address problems related to the blocker/target symmetry match and nature of the functional groups, as well as chemistry and length of the linkers connecting the functional groups to their multivalent scaffolds. Using the anthrax toxin and AB5 toxin case studies, we briefly review how the oligomeric toxin components can be successfully disabled by the multivalent non-channel-blocking inhibitors, which are based on a variety of multivalent scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA, Leppla SH et al (2013) Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep 13(27):986–996

    Article  CAS  Google Scholar 

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109(4 Pt 1):1385–1387

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Barmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322(6077):390–392

    Google Scholar 

  • Alonzo F 3rd, Torres VJ (2014) The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 78(2):199–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alouf JE (2001) Pore-forming bacterial toxins: an overview. In: Van der Goot G (ed) Pore-forming toxins. Springer, Berlin, pp 1–14

    Google Scholar 

  • Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S et al (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99(19):12252–12256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmeyer C, Benz R, Barth H, Aktories K, Gilbert M, Popoff MR (2001) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes and Vero cells: inhibition of channel function by chloroquine and related compounds in vitro and intoxification in vivo. FASEB J 15(9):1658–1660

    CAS  PubMed  Google Scholar 

  • Bachmeyer C, Orlik F, Barth H, Aktories K, Benz R (2003) Mechanism of C2-toxin inhibition by fluphenazine and related compounds: investigation of their binding kinetics to the C2II-channel using the current noise analysis. J Mol Biol 333(3):527–540

    Article  CAS  PubMed  Google Scholar 

  • Badjic JD, Nelson A, Cantrill SJ, Turnbull WB, Stoddart JF (2005) Multivalency and cooperativity in supramolecular chemistry. Acc Chem Res 38(9):723–732

    Article  CAS  PubMed  Google Scholar 

  • Baldini L, Casnati A, Sansone F, Ungaro R (2007) Calixarene-based multivalent ligands. Chem Soc Rev 36(2):254–266

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Stiles BG (2008) Binary actin-ADP-ribosylating toxins and their use as molecular Trojan horses for drug delivery into eukaryotic cells. Curr Med Chem 15(5):459–469

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Blocker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R et al (2000) Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275(25):18704–18711

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68(3):373–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth H, Stiles BG, Popoff MR (2015) ADP-ribosylating toxins modifying the actin cytoskeleton. In: Alouf JA, Ladant D, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins, 4th Edn. Elsevier, Amsterdam, pp 397–423. ISBN 9780128001882

    Google Scholar 

  • Basha S, Rai P, Poon V, Saraph A, Gujraty K, Go MY et al (2006) Polyvalent inhibitors of anthrax toxin that target host receptors. Proc Natl Acad Sci USA 103(36):13509–13513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beddoe T, Paton AW, Le Nours J, Rossjohn J, Paton JC (2010) Structure, biological functions and applications of the AB5 toxins. Trends Biochem Sci 35(7):411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beitzinger C, Bronnhuber A, Duscha K, Riedl Z, Huber-Lang M, Benz R, et al (2013) Designed azolopyridinium salts block protective antigen pores in vitro and protect cells from anthrax toxin. PLoS One 8(6). doi:10.1371/journal.pone.0066099

    Google Scholar 

  • Bernheimer AW (1996) Some aspects of the history of membrane-damaging toxins. Med Microbiol Immunol 185(2):59–63

    Article  CAS  PubMed  Google Scholar 

  • Berube BJ, Bubeck Wardenburg J (2013) Staphylococcus aureus alpha-toxin: nearly a century of intrigue. Toxins (Basel) 5(6):1140–1166

    Google Scholar 

  • Bezrukov SM, Kasianowicz JJ (1993) Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Phys Rev Lett 70(15):2352–2355

    Article  CAS  PubMed  Google Scholar 

  • Bezrukov SM, Liu X, Karginov VA, Wein AN, Leppla SH, Popoff MR et al (2012) Interactions of high-affinity cationic blockers with the translocation pores of B. anthracis, C. botulinum, and C. perfringens binary toxins. Biophys J 103(6):1208–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaustein RO, Koehler TM, Collier RJ, Finkelstein A (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci USA 86(7):2209–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blocker D, Behlke J, Aktories K, Barth H (2001) Cellular uptake of the clostridium perfringens binary iota-toxin. Infect Immun 69(5):2980–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blocker D, Pohlmann K, Haug G, Bachmeyer C, Benz R, Aktories K et al (2003) Clostridium botulinum C2 toxin: low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells. J Biol Chem 278(39):37360–37367

    Article  PubMed  CAS  Google Scholar 

  • Branson TR, Turnbull WB (2013) Bacterial toxin inhibitors based on multivalent scaffolds. Chem Soc Rev 42(11):4613–4622

    Article  CAS  PubMed  Google Scholar 

  • Branson TR, McAllister TE, Garcia-Hartjes J, Fascione MA, Ross JF, Warriner SL et al (2014) A protein-based pentavalent inhibitor of the cholera toxin B-subunit. Angew Chem Int Ed Engl 53(32):8323–8327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronnhuber A, Maier E, Riedl Z, Hajos G, Benz R, Barth H (2014) Inhibitions of the translocation pore of Clostridium botulinum C2 toxin by tailored azolopyridinium salts protects human cells from intoxication. Toxicology 3(316C):25–33

    Article  CAS  Google Scholar 

  • Brown MJ, Thoren KL, Krantz BA (2015) Role of the alpha clamp in the protein translocation mechanism of anthrax toxin. J Mol Biol 427(20):3340–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustamante JO, Michelette ER, Geibel JP, Hanover JA, McDonnell TJ, Dean DA (2000) Dendrimer-assisted patch-clamp sizing of nuclear pores. Pflugers Arch 439(6):829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappelli A, Manini M, Paolino M, Gallelli A, Anzini M, Mennuni L et al (2011) Bivalent ligands for the serotonin 5-HT3 receptor. ACS Med Chem Lett 2(8):571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S (2004) Synthetic multivalent molecules. Wiley-Interscience, New York

    Book  Google Scholar 

  • Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114(21):10940–10975

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3(12):1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Doak BC, Over B, Giordanetto F, Kihlberg J (2014) Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol 21(9):1115–1142

    Article  CAS  PubMed  Google Scholar 

  • Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD et al (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280(5364):734–737

    Article  CAS  PubMed  Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360

    Article  CAS  PubMed  Google Scholar 

  • Duncan R (2011) Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 22(4):492–501

    Article  CAS  PubMed  Google Scholar 

  • Duncan R (2014) Polymer therapeutics: top 10 selling pharmaceuticals—what next? J Control Release 190:371–80

    Google Scholar 

  • Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141

    Article  CAS  PubMed  Google Scholar 

  • Duncan R, Vicent MJ (2013) Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 65(1):60–70

    Article  CAS  PubMed  Google Scholar 

  • Fan E, Merritt EA (2002) Combating infectious diseases through multivalent design. Curr Drug Targets Infect Disord 2(2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Fan E, Zhang Z, Minke WE, Hou Z, Verlinde CLMJ, Hol WGJ (2000) High-affinity pentavalent ligands of escherichia coli heat-labile enterotoxin by modular structure-based design. J Am Chem Soc 122(11):2663–2664

    Google Scholar 

  • Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B et al (2012) Multivalency as a chemical organization and action principle. Angew Chem Int Ed 51(42):10472–10498

    Article  CAS  Google Scholar 

  • Feld GK, Thoren KL, Kintzer AF, Sterling HJ, Tang II, Greenberg SG et al (2010) Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nat Struct Mol Biol 17(11):1383–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ficici E, Andricioaei I, Howorka S (2015) Dendrimers in nanoscale confinement: the interplay between conformational change and nanopore entrance. Nano Lett 15(7):4822–4828

    Article  CAS  PubMed  Google Scholar 

  • Forstner P, Bayer F, Kalu N, Felsen S, Fortsch C, Aloufi A et al (2014) Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors. Biomacromolecules 15(7):2461–2474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu O, Pukin AV, van Ufford HC, Branson TR, Thies-Weesie DM, Turnbull WB et al (2015) Tetra- versus pentavalent inhibitors of cholera toxin. ChemistryOpen 4(4):471–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Hartjes J, Bernardi S, Weijers CA, Wennekes T, Gilbert M, Sansone F et al (2013) Picomolar inhibition of cholera toxin by a pentavalent ganglioside GM1os-calix[5]arene. Org Biomol Chem 11(26):4340–4349

    Article  CAS  PubMed  Google Scholar 

  • Geny B, Popoff MR (2006) Bacterial protein toxins and lipids: pore formation or toxin entry into cells. Biol Cell 98(11):667–678

    Article  CAS  PubMed  Google Scholar 

  • Gibert M, Marvaud JC, Pereira Y, Hale ML, Stiles BG, Boquet P et al (2007) Differential requirement for the translocation of clostridial binary toxins: iota toxin requires a membrane potential gradient. FEBS Lett 581(7):1287–1296

    Article  CAS  PubMed  Google Scholar 

  • Gu LQ, Braha O, Conlan S, Cheley S, Bayley H (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398(6729):686–690

    Article  CAS  PubMed  Google Scholar 

  • Gujraty K, Sadacharan S, Frost M, Poon V, Kane RS, Mogridge J (2005) Functional characterization of peptide-based anthrax toxin inhibitors. Mol Pharm 2(5):367–372

    Google Scholar 

  • Gujraty KV, Joshi A, Saraph A, Poon V, Mogridge J, Kane RS (2006) Synthesis of polyvalent inhibitors of controlled molecular weight: structure-activity relationship for inhibitors of anthrax toxin. Biomacromolecules 7(7):2082–2085

    Article  CAS  PubMed  Google Scholar 

  • Gujraty KV, Yanjarappa MJ, Saraph A, Joshi A, Mogridge J, Kane RS (2008) Synthesis of homopolymers and copolymers containing an active ester of acrylic acid by RAFT: scaffolds for controlling polyvalent ligand display. J Polym Sci A Polym Chem 46(21):7246–7257

    Google Scholar 

  • Helms B, Meijer EW (2006) Chemistry. Dendrimers at work. Science 313(5789):929–930

    Article  CAS  PubMed  Google Scholar 

  • Henry BD, Neill DR, Becker KA, Gore S, Bricio-Moreno L, Ziobro R et al (2015) Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol 33(1):81–88

    Article  CAS  PubMed  Google Scholar 

  • Ignacio-de Leon PA, Zharov I (2011) Size-selective molecular transport through silica colloidal nanopores. Chem Commun (Camb) 47(1):553–555

    Google Scholar 

  • Ivarsson ME, Leroux JC, Castagner B (2012) Targeting bacterial toxins. Angew Chem Int Ed Engl 22(51):4024

    Article  CAS  Google Scholar 

  • Jiang J, Pentelute BL, Collier RJ, Zhou ZH (2015) Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521(7553):545–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi A, Saraph A, Poon V, Mogridge J, Kane RS (2006) Synthesis of potent inhibitors of anthrax toxin based on poly-L-glutamic acid. Bioconjugate Chem 17(5):1265–1269

    Google Scholar 

  • Joshi A, Vance D, Rai P, Thiyagarajan A, Kane RS (2008) The design of polyvalent therapeutics. Chem Eur J 14(26):7738–7747

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Kate S, Poon V, Mondal D, Boggara MB, Saraph A et al (2011) Structure-based design of a heptavalent anthrax toxin inhibitor. Biomacromolecules 12(3):791–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kane RS (2010) Thermodynamics of multivalent interactions: influence of the linker. Langmuir 26(11):8636–8640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko J, Kamio Y (2004) Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci Biotechnol Biochem 68(5):981–1003

    Article  CAS  PubMed  Google Scholar 

  • Karginov VA, Nestorovich EM, Moayeri M, Leppla SH, Bezrukov SM (2005) Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proc Natl Acad Sci USA 102(42):15075–15080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karginov VA, Nestorovich EM, Yohannes A, Robinson TM, Fahmi NE, Schmidtmann F et al (2006a) Search for cyclodextrin-based inhibitors of anthrax toxins: synthesis, structural features, and relative activities. Antimicrob Agents Chemother 50(11):3740–3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karginov VA, Yohannes A, Robinson TM, Fahmi NE, Alibek K, Hecht SM (2006b) Beta-cyclodextrin derivatives that inhibit anthrax lethal toxin. Bioorg Med Chem 14(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Karginov VA, Nestorovich EM, Schmidtmann F, Robinson TM, Yohannes A, Fahmi NE et al (2007) Inhibition of S. aureus alpha-hemolysin and B. anthracis lethal toxin by beta-cyclodextrin derivatives. Bioorg Med Chem 15(16):5424–5431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasianowicz JJ, Bezrukov SM (1995) Protonation dynamics of the alpha-toxin ion channel from spectral analysis of pH-dependent current fluctuations. Biophys J 69(1):94–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama H, Janowiak BE, Brzozowski M, Juryck J, Falke S, Gogol EP et al (2008) GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore. Nat Struct Mol Biol 15(7):754–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98(5):1977–1996

    Article  CAS  PubMed  Google Scholar 

  • Kintzer AF, Thoren KL, Sterling HJ, Dong KC, Feld GK, Tang II et al (2009) The protective antigen component of anthrax toxin forms functional octameric complexes. J Mol Biol 392(3):614–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kintzer AF, Sterling HJ, Tang II, Abdul-Gader A, Miles AJ, Wallace BA et al (2010) Role of the protective antigen octamer in the molecular mechanism of anthrax lethal toxin stabilization in plasma. J Mol Biol 399(5):741–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitov PI, Sadowska JM, Mulvey G, Armstrong GD, Ling H, Pannu NS et al (2000) Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403(6770):669–672

    Article  CAS  PubMed  Google Scholar 

  • Kitov PI, Mulvey GL, Griener TP, Lipinski T, Solomon D, Paszkiewicz E et al (2008) In vivo supramolecular templating enhances the activity of multivalent ligands: a potential therapeutic against the Escherichia coli O157 AB5 toxins. Proc Natl Acad Sci USA 105(44):16837–16842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp O, Benz R, Gibert M, Marvaud JC, Popoff MR (2002) Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J Biol Chem 277(8):6143–6152

    Article  CAS  PubMed  Google Scholar 

  • Knapp O, Benz R, Popoff MR (2015a) Pore-forming activity of clostridial binary toxins. Biochim Biophys Acta

    Google Scholar 

  • Knapp O, Maier E, Waltenberger E, Mazuet C, Benz R, Popoff MR (2015b) Residues involved in the pore-forming activity of the Clostridium perfringens iota toxin. Cell Microbiol 17(2):288–302

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Harrington L, Li Q, Cheley S, Davis BG, Bayley H (2013) Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nat Chem 5(8):651–659

    Article  CAS  PubMed  Google Scholar 

  • Krantz BA, Melnyk RA, Zhang S, Juris SJ, Lacy DB, Wu Z et al (2005) A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309(5735):777–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krantz BA, Finkelstein A, Collier RJ (2006) Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. J Mol Biol 355(5):968–979

    Article  CAS  PubMed  Google Scholar 

  • Krasilnikov O, Ternovsky V, Tashmukhamedov B (1981) Properties of ion channels induced by alpha-staphylotoxin in bilayer lipid membranes. Biofisica 26:271–275

    CAS  Google Scholar 

  • Krishnamurthy VM, Semetey V, Bracher PJ, Shen N, Whitesides GM (2007) Dependence of effective molarity on linker length for an intramolecular protein-ligand system. J Am Chem Soc 129(5):1312–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang AE, Neumeyer T, Sun J, Collier RJ, Benz R, Aktories K (2008) Amino acid residues involved in membrane insertion and pore formation of Clostridium botulinum C2 toxin. Biochemistry 47(32):8406–8413

    Article  CAS  PubMed  Google Scholar 

  • Laventie BJ, Potrich C, Atmanene C, Saleh M, Joubert O, Viero G et al (2013) p-Sulfonato-calix[n]arenes inhibit staphylococcal bicomponent leukotoxins by supramolecular interactions. Biochem J 450(3):559–571

    Article  CAS  PubMed  Google Scholar 

  • Lee KI, Jo S, Rui H, Egwolf B, Roux B, Pastor RW et al (2012) Web interface for Brownian dynamics simulation of ion transport and its applications to beta-barrel pores. J Comput Chem 33(3):331–339

    Article  CAS  PubMed  Google Scholar 

  • Leppla SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA 79(10):3162–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leppla SH (1984) Bacillus anthracis calmodulin-dependent adenylate cyclase: chemical and enzymatic properties and interactions with eucaryotic cells. Adv Cyclic Nucleotide Protein Phosphorylation Res 17:189–198

    CAS  PubMed  Google Scholar 

  • Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S et al (2012) Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8(3):e1002638

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling H, Boodhoo A, Hazes B, Cummings MD, Armstrong GD, Brunton JL et al (1998) Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37(7):1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    Google Scholar 

  • Liu J, Zhang Z, Tan X, Hol WG, Verlinde CL, Fan E (2005) Protein heterodimerization through ligand-bridged multivalent pre-organization: enhancing ligand binding toward both protein targets. J Am Chem Soc 127(7):2044–2045

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Moayeri M, Pomerantsev AP, Leppla SH (2015) Bacillus anthracis toxins. In: Alouf JA, Ladant D, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins, 4th edn. Elsevier, Amsterdam, pp 361–396. ISBN 9780128001882

    Google Scholar 

  • Mahon CS, Fulton DA (2014) Mimicking nature with synthetic macromolecules capable of recognition. Nat Chem 6(8):665–672

    Article  CAS  PubMed  Google Scholar 

  • Mammen M, Choi S, Whitesides GM (1998a) Polyvalent Interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2754–2794

    Article  Google Scholar 

  • Mammen M, Shakhnovich EI, Whitesides GM (1998b) Using a convenient, quantitative model for torsional entropy to establish qualitative trends for molecular processes that restrict conformational freedom. JOrg Chem 63(10):3168–3175

    Google Scholar 

  • Martin H, Kinns H, Mitchell N, Astier Y, Madathil R, Howorka S (2007) Nanoscale protein pores modified with PAMAM dendrimers. J Am Chem Soc 129(31):9640–9649

    Article  CAS  PubMed  Google Scholar 

  • Martos V, Bell SC, Santos E, Isacoff EY, Trauner D, de Mendoza J (2009) Molecular recognition and self-assembly special feature: Calix[4]arene-based conical-shaped ligands for voltage-dependent potassium channels. Proc Natl Acad Sci USA 106(26):10482–10486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattarella M, Garcia-Hartjes J, Wennekes T, Zuilhof H, Siegel JS (2013) Nanomolar cholera toxin inhibitors based on symmetrical pentavalent ganglioside GM1os-sym-corannulenes. Org Biomol Chem 11(26):4333–4339

    Article  CAS  PubMed  Google Scholar 

  • Merritt EA, Zhang Z, Pickens JC, Ahn M, Hol WG, Fan E (2002) Characterization and crystal structure of a high-affinity pentavalent receptor-binding inhibitor for cholera toxin and E. coli heat-labile enterotoxin. J Am Chem Soc 124(30):8818–8824

    Article  CAS  PubMed  Google Scholar 

  • Moayeri M, Robinson TM, Leppla SH, Karginov VA (2008) In vivo efficacy of beta-cyclodextrin derivatives against anthrax lethal toxin. Antimicrob Agents Chemother 52(6):2239–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moayeri M, Leppla SH, Vrentas C, Pomerantsev A, Liu S (2015) Anthrax pathogenesis. Annu Rev Microbiol 16(69):185–208

    Article  CAS  Google Scholar 

  • Mogridge J, Cunningham K, Collier RJ (2002) Stoichiometry of anthrax toxin complexes. Biochemistry 41(3):1079–1082

    Article  CAS  PubMed  Google Scholar 

  • Mourez M, Kane RS, Mogridge J, Metallo S, Deschatelets P, Sellman BR et al (2001) Designing a polyvalent inhibitor of anthrax toxin. Nat Biotechnol 19(10):958–961

    Article  CAS  PubMed  Google Scholar 

  • Mulvey GL, Marcato P, Kitov PI, Sadowska J, Bundle DR, Armstrong GD (2003) Assessment in mice of the therapeutic potential of tailored, multivalent Shiga toxin carbohydrate ligands. J Infect Dis 187(4):640–649

    Article  CAS  PubMed  Google Scholar 

  • Nablo BJ, Panchal RG, Bavari S, Nguyen TL, Gussio R, Ribot W et al (2013) Anthrax toxin-induced rupture of artificial lipid bilayer membranes. J Chem Phys 139(6). doi:10.1063/1.4816467

    Google Scholar 

  • Nagahama M, Hagiyama T, Kojima T, Aoyanagi K, Takahashi C, Oda M et al (2009) Binding and internalization of Clostridium botulinum C2 toxin. Infect Immun 77(11):5139–5148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestorovich EM, Bezrukov SM (2012) Obstructing toxin pathways by targeted pore blockage. Chem Rev 11(112):6388–6430

    Article  CAS  Google Scholar 

  • Nestorovich EM, Karginov VA, Berezhkovskii AM, Bezrukov SM (2010) Blockage of anthrax PA63 pore by a multicharged high-affinity toxin inhibitor. Biophys J 99(1):134–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestorovich EM, Karginov VA, Popoff MR, Bezrukov SM, Barth H (2011) Tailored ss-cyclodextrin blocks the translocation pores of binary exotoxins from C. botulinum and C. perfringens and protects cells from intoxication. PLoS One 6(8). doi:10.1371/journal.pone.0023927

    Google Scholar 

  • Neumeyer T, Schiffler B, Maier E, Lang AE, Aktories K, Benz R (2008) Clostridium botulinum C2 toxin. Identification of the binding site for chloroquine and related compounds and influence of the binding site on properties of the C2II channel. J Biol Chem 283(7):3904–3914

    Article  CAS  PubMed  Google Scholar 

  • Ohishi I, Odagiri Y (1984) Histopathological effect of botulinum C2 toxin on mouse intestines. Infect Immun 43(1):54–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pajatsch M, Gerhart M, Peist R, Horlacher R, Boos W, Bock A (1998) The periplasmic cyclodextrin binding protein CymE from Klebsiella oxytoca and its role in maltodextrin and cyclodextrin transport. J Bacteriol 180(10):2630–2635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pajatsch M, Andersen C, Mathes A, Bock A, Benz R, Engelhardt H (1999) Properties of a cyclodextrin-specific, unusual porin from Klebsiella oxytoca. J Biol Chem 274(35):25159–25166

    Article  CAS  PubMed  Google Scholar 

  • Paolino M, Mennuni L, Giuliani G, Anzini M, Lanza M, Caselli G, Galimberti C, Menziani MC, Donati A, Cappelli A (2014) Dendrimeric tetravalent ligands for the serotonin-gated ion channel. Chem Commun (Camb) 50(62):8582–8585

    Google Scholar 

  • Patke S, Boggara M, Maheshwari R, Srivastava SK, Arha M, Douaisi M et al (2014) Design of monodisperse and well-defined polypeptide-based polyvalent inhibitors of anthrax toxin. Angew Chem Int Ed Engl 53(31):8037–8040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385(6619):833–838

    Article  CAS  PubMed  Google Scholar 

  • Pickens JC, Merritt EA, Ahn M, Verlinde CL, Hol WG, Fan E (2002) Anchor-based design of improved cholera toxin and E. coli heat-labile enterotoxin receptor binding antagonists that display multiple binding modes. Chem Biol 9(2):215–224

    Article  CAS  PubMed  Google Scholar 

  • Pilpa RM, Bayrhuber M, Marlett JM, Riek R, Young JA (2011) A receptor-based switch that regulates anthrax toxin pore formation. PLoS Pathog. 7(12). doi:10.1371/journal.ppat.1002354

    Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56(9):2299–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pust S, Barth H, Sandvig K (2010) Clostridium botulinum C2 toxin is internalized by clathrin- and Rho-dependent mechanisms. Cell Microbiol 12(12):1809–1820

    Article  CAS  PubMed  Google Scholar 

  • Ragle BE, Karginov VA, Bubeck Wardenburg J (2010) Prevention and treatment of Staphylococcus aureus pneumonia with a beta-cyclodextrin derivative. Antimicrob Agents Chemother 54(1):298–304

    Article  CAS  PubMed  Google Scholar 

  • Rai P, Padala C, Poon V, Saraph A, Basha S, Kate S et al (2006) Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins. Nat Biotechnol 24(5):582–586

    Article  CAS  PubMed  Google Scholar 

  • Rai PR, Saraph A, Ashton R, Poon V, Mogridge J, Kane RS (2007) Raftlike polyvalent inhibitors of the anthrax toxin: modulating inhibitory potency by formation of lipid microdomains. Angew Chem Int Ed 46(13):2207–2209

    Article  CAS  Google Scholar 

  • Roeder M, Nestorovich EM, Karginov VA, Schwan C, Aktories K, Barth H (2014) Tailored cyclodextrin pore blocker protects mammalian cells from clostridium difficile binary toxin CDT. Toxins (Basel) 6(7):2097–2114

    Article  CAS  Google Scholar 

  • Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 364(4):705–715

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Benz R, Just I, Aktories K (1994) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. Formation of cation-selective channels and inhibition of channel function by chloroquine. J Biol Chem 269(24):16706–16711

    CAS  PubMed  Google Scholar 

  • Shewmake TA, Solis FJ, Gillies RJ, Caplan MR (2008) Effects of linker length and flexibility on multivalent targeting. Biomacromolecules 9(11):3057–3064

    Article  CAS  PubMed  Google Scholar 

  • Simpson LL (1984) Molecular basis for the pharmacological actions of Clostridium botulinum type C2 toxin. J Pharmacol Exp Ther 230(3):665–669

    CAS  PubMed  Google Scholar 

  • Simpson LL, Stiles BG, Zepeda HH, Wilkins TD (1987) Molecular basis for the pathological actions of Clostridium perfringens iota toxin. Infect Immun 55(1):118–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Venglarik CJ, Bridges RJ (1995) Development of chloride channel modulators. Kidney Int 48(4):985–993

    Article  CAS  PubMed  Google Scholar 

  • Sisu C, Baron AJ, Branderhorst HM, Connell SD, Weijers CA, de Vries R et al (2009) The influence of ligand valency on aggregation mechanisms for inhibiting bacterial toxins. ChemBioChem 10(2):329–337

    Article  CAS  PubMed  Google Scholar 

  • Solomon D, Kitov PI, Paszkiewicz E, Grant GA, Sadowska JM, Bundle DR (2005) Heterobifunctional multivalent inhibitor-adaptor mediates specific aggregation between Shiga toxin and a pentraxin. Org Lett 7(20):4369–4372

    Article  CAS  PubMed  Google Scholar 

  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274(5294):1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Stiles BG, Wilkins TD (1986) Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54(3):683–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Hale ML, Marvaud JC, Popoff MR (2002) Clostridium perfringens iota toxin: characterization of the cell-associated iota b complex. Biochem J 367(Pt 3):801–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szejtli J (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76(10):1825–1845

    Google Scholar 

  • Tang MX, Redemann CT, Szoka FC Jr (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7(6):703–714

    Article  CAS  PubMed  Google Scholar 

  • Tomalia DA, Frechet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci. Part A Polym Chem 40:2719–2728

    Article  CAS  Google Scholar 

  • U.S. Pharmaceutical Sales. Available at: http://www.drugs.com/stats/top100/sales

  • van den Berg B, Prathyusha Bhamidimarri S, Dahyabhai Prajapati J, Kleinekathofer U, Winterhalter M (2015) Outer-membrane translocation of bulky small molecules by passive diffusion. Proc Natl Acad Sci USA 112(23):E2991–E2999

    Google Scholar 

  • Vance D, Martin J, Patke S, Kane RS (2009) The design of polyvalent scaffolds for targeted delivery. Adv Drug Deliv Rev 61(11):931–939

    Article  CAS  PubMed  Google Scholar 

  • Varejao EV, de Fatima A, Fernandes SA (2013) Calix[n]arenes as goldmines for the development of chemical entities of pharmaceutical interest. Curr Pharm Des 19(36):6507–6521

    Article  CAS  PubMed  Google Scholar 

  • Vitale G, Bernardi L, Napolitani G, Mock M, Montecucco C (2000) Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem J 15(352):739–745

    Article  Google Scholar 

  • Walters WP (2012) Going further than Lipinski’s rule in drug design. Expert Opin Drug Discov 7(2):99–107

    Article  CAS  PubMed  Google Scholar 

  • Weisman A, Chou B, O’Brien J, Shea KJ (2015) Polymer antidotes for toxin sequestration. Adv Drug Deliv Rev 1(90):81–100

    Article  CAS  Google Scholar 

  • Wenz G (1994) Cyclodextrins as building blocks for supramolecular structures and functional units. Angew Chem Int Ed Engl 33(8):803–822

    Article  Google Scholar 

  • Wijagkanalan W, Kawakami S, Hashida M (2011) Designing dendrimers for drug delivery and imaging: pharmacokinetic considerations. Pharm Res 28(7):1500–1519

    Article  CAS  PubMed  Google Scholar 

  • Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM (2015) Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem 26(7):1198–1211

    Article  CAS  PubMed  Google Scholar 

  • Yannakopoulou K, Jicsinszky L, Aggelidou C, Mourtzis N, Robinson TM, Yohannes A et al (2011) Symmetry requirements for effective blocking of pore-forming toxins: comparative study with alpha-, beta-, and gamma-cyclodextrin derivatives. Antimicrob Agents Chemother 55(7):3594–3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MQ, Wilkinson B (2007) Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol 18(6):478–488

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Finkelstein A, Collier RJ (2004a) Evidence that translocation of anthrax toxin’s lethal factor is initiated by entry of its N terminus into the protective antigen channel. Proc Natl Acad Sci USA 101(48):16756–16761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Udho E, Wu Z, Collier RJ, Finkelstein A (2004b) Protein translocation through anthrax toxin channels formed in planar lipid bilayers. Biophys J 87(6):3842–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Liu J, Verlinde CL, Hol WG, Fan E (2004c) Large cyclic peptides as cores of multivalent ligands: application to inhibitors of receptor binding by cholera toxin. J Org Chem 69(22):7737–7740

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our laboratory research is supported by the startup funds from The Catholic University of America and by NIAID of the NIH under award number 1R15AI099897-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina M. Nestorovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yamini, G., Nestorovich, E.M. (2016). Multivalent Inhibitors of Channel-Forming Bacterial Toxins. In: Barth, H. (eds) Uptake and Trafficking of Protein Toxins. Current Topics in Microbiology and Immunology, vol 406. Springer, Cham. https://doi.org/10.1007/82_2016_20

Download citation

Publish with us

Policies and ethics