pp 1-29

Part of the Current Topics in Microbiology and Immunology book series

Multivalent Inhibitors of Channel-Forming Bacterial Toxins

Chapter

Abstract

Rational design of multivalent molecules represents a remarkable modern tool to transform weak non-covalent interactions into strong binding by creating multiple finely-tuned points of contact between multivalent ligands and their supposed multivalent targets. Here, we describe several prominent examples where the multivalent blockers were investigated for their ability to directly obstruct oligomeric channel-forming bacterial exotoxins, such as the pore-forming bacterial toxins and B component of the binary bacterial toxins. We address problems related to the blocker/target symmetry match and nature of the functional groups, as well as chemistry and length of the linkers connecting the functional groups to their multivalent scaffolds. Using the anthrax toxin and AB5 toxin case studies, we briefly review how the oligomeric toxin components can be successfully disabled by the multivalent non-channel-blocking inhibitors, which are based on a variety of multivalent scaffolds.

References

  1. Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA, Leppla SH et al (2013) Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep 13(27):986–996CrossRefGoogle Scholar
  2. Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109(4 Pt 1):1385–1387PubMedCrossRefGoogle Scholar
  3. Aktories K, Barmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322(6077):390–392Google Scholar
  4. Alonzo F 3rd, Torres VJ (2014) The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 78(2):199–230PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alouf JE (2001) Pore-forming bacterial toxins: an overview. In: Van der Goot G (ed) Pore-forming toxins. Springer, Berlin, pp 1–14Google Scholar
  6. Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S et al (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99(19):12252–12256ADSPubMedPubMedCentralCrossRefGoogle Scholar
  7. Bachmeyer C, Benz R, Barth H, Aktories K, Gilbert M, Popoff MR (2001) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes and Vero cells: inhibition of channel function by chloroquine and related compounds in vitro and intoxification in vivo. FASEB J 15(9):1658–1660PubMedGoogle Scholar
  8. Bachmeyer C, Orlik F, Barth H, Aktories K, Benz R (2003) Mechanism of C2-toxin inhibition by fluphenazine and related compounds: investigation of their binding kinetics to the C2II-channel using the current noise analysis. J Mol Biol 333(3):527–540PubMedCrossRefGoogle Scholar
  9. Badjic JD, Nelson A, Cantrill SJ, Turnbull WB, Stoddart JF (2005) Multivalency and cooperativity in supramolecular chemistry. Acc Chem Res 38(9):723–732PubMedCrossRefGoogle Scholar
  10. Baldini L, Casnati A, Sansone F, Ungaro R (2007) Calixarene-based multivalent ligands. Chem Soc Rev 36(2):254–266PubMedCrossRefGoogle Scholar
  11. Barth H, Stiles BG (2008) Binary actin-ADP-ribosylating toxins and their use as molecular Trojan horses for drug delivery into eukaryotic cells. Curr Med Chem 15(5):459–469PubMedCrossRefGoogle Scholar
  12. Barth H, Blocker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R et al (2000) Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275(25):18704–18711PubMedCrossRefGoogle Scholar
  13. Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68(3):373–402PubMedPubMedCentralCrossRefGoogle Scholar
  14. Barth H, Stiles BG, Popoff MR (2015) ADP-ribosylating toxins modifying the actin cytoskeleton. In: Alouf JA, Ladant D, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins, 4th Edn. Elsevier, Amsterdam, pp 397–423. ISBN 9780128001882Google Scholar
  15. Basha S, Rai P, Poon V, Saraph A, Gujraty K, Go MY et al (2006) Polyvalent inhibitors of anthrax toxin that target host receptors. Proc Natl Acad Sci USA 103(36):13509–13513ADSPubMedPubMedCentralCrossRefGoogle Scholar
  16. Beddoe T, Paton AW, Le Nours J, Rossjohn J, Paton JC (2010) Structure, biological functions and applications of the AB5 toxins. Trends Biochem Sci 35(7):411–418PubMedPubMedCentralCrossRefGoogle Scholar
  17. Beitzinger C, Bronnhuber A, Duscha K, Riedl Z, Huber-Lang M, Benz R, et al (2013) Designed azolopyridinium salts block protective antigen pores in vitro and protect cells from anthrax toxin. PLoS One 8(6). doi:10.1371/journal.pone.0066099
  18. Bernheimer AW (1996) Some aspects of the history of membrane-damaging toxins. Med Microbiol Immunol 185(2):59–63PubMedCrossRefGoogle Scholar
  19. Berube BJ, Bubeck Wardenburg J (2013) Staphylococcus aureus alpha-toxin: nearly a century of intrigue. Toxins (Basel) 5(6):1140–1166Google Scholar
  20. Bezrukov SM, Kasianowicz JJ (1993) Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Phys Rev Lett 70(15):2352–2355ADSPubMedCrossRefGoogle Scholar
  21. Bezrukov SM, Liu X, Karginov VA, Wein AN, Leppla SH, Popoff MR et al (2012) Interactions of high-affinity cationic blockers with the translocation pores of B. anthracis, C. botulinum, and C. perfringens binary toxins. Biophys J 103(6):1208–1217PubMedPubMedCentralCrossRefGoogle Scholar
  22. Blaustein RO, Koehler TM, Collier RJ, Finkelstein A (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci USA 86(7):2209–2213ADSPubMedPubMedCentralCrossRefGoogle Scholar
  23. Blocker D, Behlke J, Aktories K, Barth H (2001) Cellular uptake of the clostridium perfringens binary iota-toxin. Infect Immun 69(5):2980–2987PubMedPubMedCentralCrossRefGoogle Scholar
  24. Blocker D, Pohlmann K, Haug G, Bachmeyer C, Benz R, Aktories K et al (2003) Clostridium botulinum C2 toxin: low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells. J Biol Chem 278(39):37360–37367PubMedCrossRefGoogle Scholar
  25. Branson TR, Turnbull WB (2013) Bacterial toxin inhibitors based on multivalent scaffolds. Chem Soc Rev 42(11):4613–4622PubMedCrossRefGoogle Scholar
  26. Branson TR, McAllister TE, Garcia-Hartjes J, Fascione MA, Ross JF, Warriner SL et al (2014) A protein-based pentavalent inhibitor of the cholera toxin B-subunit. Angew Chem Int Ed Engl 53(32):8323–8327PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bronnhuber A, Maier E, Riedl Z, Hajos G, Benz R, Barth H (2014) Inhibitions of the translocation pore of Clostridium botulinum C2 toxin by tailored azolopyridinium salts protects human cells from intoxication. Toxicology 3(316C):25–33CrossRefGoogle Scholar
  28. Brown MJ, Thoren KL, Krantz BA (2015) Role of the alpha clamp in the protein translocation mechanism of anthrax toxin. J Mol Biol 427(20):3340–3349PubMedCrossRefGoogle Scholar
  29. Bustamante JO, Michelette ER, Geibel JP, Hanover JA, McDonnell TJ, Dean DA (2000) Dendrimer-assisted patch-clamp sizing of nuclear pores. Pflugers Arch 439(6):829–837PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cappelli A, Manini M, Paolino M, Gallelli A, Anzini M, Mennuni L et al (2011) Bivalent ligands for the serotonin 5-HT3 receptor. ACS Med Chem Lett 2(8):571–576PubMedPubMedCentralCrossRefGoogle Scholar
  31. Choi S (2004) Synthetic multivalent molecules. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  32. Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114(21):10940–10975PubMedCrossRefGoogle Scholar
  33. Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3(12):1023–1035PubMedCrossRefGoogle Scholar
  34. Doak BC, Over B, Giordanetto F, Kihlberg J (2014) Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol 21(9):1115–1142PubMedCrossRefGoogle Scholar
  35. Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD et al (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280(5364):734–737ADSPubMedCrossRefGoogle Scholar
  36. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360PubMedCrossRefGoogle Scholar
  37. Duncan R (2011) Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 22(4):492–501PubMedCrossRefGoogle Scholar
  38. Duncan R (2014) Polymer therapeutics: top 10 selling pharmaceuticals—what next? J Control Release 190:371–80Google Scholar
  39. Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141PubMedCrossRefGoogle Scholar
  40. Duncan R, Vicent MJ (2013) Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 65(1):60–70PubMedCrossRefGoogle Scholar
  41. Fan E, Merritt EA (2002) Combating infectious diseases through multivalent design. Curr Drug Targets Infect Disord 2(2):161–167PubMedCrossRefGoogle Scholar
  42. Fan E, Zhang Z, Minke WE, Hou Z, Verlinde CLMJ, Hol WGJ (2000) High-affinity pentavalent ligands of escherichia coli heat-labile enterotoxin by modular structure-based design. J Am Chem Soc 122(11):2663–2664Google Scholar
  43. Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B et al (2012) Multivalency as a chemical organization and action principle. Angew Chem Int Ed 51(42):10472–10498CrossRefGoogle Scholar
  44. Feld GK, Thoren KL, Kintzer AF, Sterling HJ, Tang II, Greenberg SG et al (2010) Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nat Struct Mol Biol 17(11):1383–1390PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ficici E, Andricioaei I, Howorka S (2015) Dendrimers in nanoscale confinement: the interplay between conformational change and nanopore entrance. Nano Lett 15(7):4822–4828ADSPubMedCrossRefGoogle Scholar
  46. Forstner P, Bayer F, Kalu N, Felsen S, Fortsch C, Aloufi A et al (2014) Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors. Biomacromolecules 15(7):2461–2474PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fu O, Pukin AV, van Ufford HC, Branson TR, Thies-Weesie DM, Turnbull WB et al (2015) Tetra- versus pentavalent inhibitors of cholera toxin. ChemistryOpen 4(4):471–477PubMedPubMedCentralCrossRefGoogle Scholar
  48. Garcia-Hartjes J, Bernardi S, Weijers CA, Wennekes T, Gilbert M, Sansone F et al (2013) Picomolar inhibition of cholera toxin by a pentavalent ganglioside GM1os-calix[5]arene. Org Biomol Chem 11(26):4340–4349PubMedCrossRefGoogle Scholar
  49. Geny B, Popoff MR (2006) Bacterial protein toxins and lipids: pore formation or toxin entry into cells. Biol Cell 98(11):667–678PubMedCrossRefGoogle Scholar
  50. Gibert M, Marvaud JC, Pereira Y, Hale ML, Stiles BG, Boquet P et al (2007) Differential requirement for the translocation of clostridial binary toxins: iota toxin requires a membrane potential gradient. FEBS Lett 581(7):1287–1296PubMedCrossRefGoogle Scholar
  51. Gu LQ, Braha O, Conlan S, Cheley S, Bayley H (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398(6729):686–690ADSPubMedCrossRefGoogle Scholar
  52. Gujraty K, Sadacharan S, Frost M, Poon V, Kane RS, Mogridge J (2005) Functional characterization of peptide-based anthrax toxin inhibitors. Mol Pharm 2(5):367–372Google Scholar
  53. Gujraty KV, Joshi A, Saraph A, Poon V, Mogridge J, Kane RS (2006) Synthesis of polyvalent inhibitors of controlled molecular weight: structure-activity relationship for inhibitors of anthrax toxin. Biomacromolecules 7(7):2082–2085PubMedCrossRefGoogle Scholar
  54. Gujraty KV, Yanjarappa MJ, Saraph A, Joshi A, Mogridge J, Kane RS (2008) Synthesis of homopolymers and copolymers containing an active ester of acrylic acid by RAFT: scaffolds for controlling polyvalent ligand display. J Polym Sci A Polym Chem 46(21):7246–7257Google Scholar
  55. Helms B, Meijer EW (2006) Chemistry. Dendrimers at work. Science 313(5789):929–930PubMedCrossRefGoogle Scholar
  56. Henry BD, Neill DR, Becker KA, Gore S, Bricio-Moreno L, Ziobro R et al (2015) Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol 33(1):81–88PubMedCrossRefGoogle Scholar
  57. Ignacio-de Leon PA, Zharov I (2011) Size-selective molecular transport through silica colloidal nanopores. Chem Commun (Camb) 47(1):553–555Google Scholar
  58. Ivarsson ME, Leroux JC, Castagner B (2012) Targeting bacterial toxins. Angew Chem Int Ed Engl 22(51):4024CrossRefGoogle Scholar
  59. Jiang J, Pentelute BL, Collier RJ, Zhou ZH (2015) Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521(7553):545–549ADSPubMedPubMedCentralCrossRefGoogle Scholar
  60. Joshi A, Saraph A, Poon V, Mogridge J, Kane RS (2006) Synthesis of potent inhibitors of anthrax toxin based on poly-L-glutamic acid. Bioconjugate Chem 17(5):1265–1269Google Scholar
  61. Joshi A, Vance D, Rai P, Thiyagarajan A, Kane RS (2008) The design of polyvalent therapeutics. Chem Eur J 14(26):7738–7747PubMedCrossRefGoogle Scholar
  62. Joshi A, Kate S, Poon V, Mondal D, Boggara MB, Saraph A et al (2011) Structure-based design of a heptavalent anthrax toxin inhibitor. Biomacromolecules 12(3):791–796PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kane RS (2010) Thermodynamics of multivalent interactions: influence of the linker. Langmuir 26(11):8636–8640PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kaneko J, Kamio Y (2004) Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci Biotechnol Biochem 68(5):981–1003PubMedCrossRefGoogle Scholar
  65. Karginov VA, Nestorovich EM, Moayeri M, Leppla SH, Bezrukov SM (2005) Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proc Natl Acad Sci USA 102(42):15075–15080ADSPubMedPubMedCentralCrossRefGoogle Scholar
  66. Karginov VA, Nestorovich EM, Yohannes A, Robinson TM, Fahmi NE, Schmidtmann F et al (2006a) Search for cyclodextrin-based inhibitors of anthrax toxins: synthesis, structural features, and relative activities. Antimicrob Agents Chemother 50(11):3740–3753PubMedPubMedCentralCrossRefGoogle Scholar
  67. Karginov VA, Yohannes A, Robinson TM, Fahmi NE, Alibek K, Hecht SM (2006b) Beta-cyclodextrin derivatives that inhibit anthrax lethal toxin. Bioorg Med Chem 14(1):33–40PubMedCrossRefGoogle Scholar
  68. Karginov VA, Nestorovich EM, Schmidtmann F, Robinson TM, Yohannes A, Fahmi NE et al (2007) Inhibition of S. aureus alpha-hemolysin and B. anthracis lethal toxin by beta-cyclodextrin derivatives. Bioorg Med Chem 15(16):5424–5431PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kasianowicz JJ, Bezrukov SM (1995) Protonation dynamics of the alpha-toxin ion channel from spectral analysis of pH-dependent current fluctuations. Biophys J 69(1):94–105PubMedPubMedCentralCrossRefGoogle Scholar
  70. Katayama H, Janowiak BE, Brzozowski M, Juryck J, Falke S, Gogol EP et al (2008) GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore. Nat Struct Mol Biol 15(7):754–760PubMedPubMedCentralCrossRefGoogle Scholar
  71. Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98(5):1977–1996PubMedCrossRefGoogle Scholar
  72. Kintzer AF, Thoren KL, Sterling HJ, Dong KC, Feld GK, Tang II et al (2009) The protective antigen component of anthrax toxin forms functional octameric complexes. J Mol Biol 392(3):614–629PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kintzer AF, Sterling HJ, Tang II, Abdul-Gader A, Miles AJ, Wallace BA et al (2010) Role of the protective antigen octamer in the molecular mechanism of anthrax lethal toxin stabilization in plasma. J Mol Biol 399(5):741–758PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kitov PI, Sadowska JM, Mulvey G, Armstrong GD, Ling H, Pannu NS et al (2000) Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403(6770):669–672ADSPubMedCrossRefGoogle Scholar
  75. Kitov PI, Mulvey GL, Griener TP, Lipinski T, Solomon D, Paszkiewicz E et al (2008) In vivo supramolecular templating enhances the activity of multivalent ligands: a potential therapeutic against the Escherichia coli O157 AB5 toxins. Proc Natl Acad Sci USA 105(44):16837–16842ADSPubMedPubMedCentralCrossRefGoogle Scholar
  76. Knapp O, Benz R, Gibert M, Marvaud JC, Popoff MR (2002) Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J Biol Chem 277(8):6143–6152PubMedCrossRefGoogle Scholar
  77. Knapp O, Benz R, Popoff MR (2015a) Pore-forming activity of clostridial binary toxins. Biochim Biophys ActaGoogle Scholar
  78. Knapp O, Maier E, Waltenberger E, Mazuet C, Benz R, Popoff MR (2015b) Residues involved in the pore-forming activity of the Clostridium perfringens iota toxin. Cell Microbiol 17(2):288–302PubMedCrossRefGoogle Scholar
  79. Kong L, Harrington L, Li Q, Cheley S, Davis BG, Bayley H (2013) Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nat Chem 5(8):651–659PubMedCrossRefGoogle Scholar
  80. Krantz BA, Melnyk RA, Zhang S, Juris SJ, Lacy DB, Wu Z et al (2005) A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309(5735):777–781ADSPubMedPubMedCentralCrossRefGoogle Scholar
  81. Krantz BA, Finkelstein A, Collier RJ (2006) Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. J Mol Biol 355(5):968–979PubMedCrossRefGoogle Scholar
  82. Krasilnikov O, Ternovsky V, Tashmukhamedov B (1981) Properties of ion channels induced by alpha-staphylotoxin in bilayer lipid membranes. Biofisica 26:271–275Google Scholar
  83. Krishnamurthy VM, Semetey V, Bracher PJ, Shen N, Whitesides GM (2007) Dependence of effective molarity on linker length for an intramolecular protein-ligand system. J Am Chem Soc 129(5):1312–1320PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lang AE, Neumeyer T, Sun J, Collier RJ, Benz R, Aktories K (2008) Amino acid residues involved in membrane insertion and pore formation of Clostridium botulinum C2 toxin. Biochemistry 47(32):8406–8413PubMedCrossRefGoogle Scholar
  85. Laventie BJ, Potrich C, Atmanene C, Saleh M, Joubert O, Viero G et al (2013) p-Sulfonato-calix[n]arenes inhibit staphylococcal bicomponent leukotoxins by supramolecular interactions. Biochem J 450(3):559–571PubMedCrossRefGoogle Scholar
  86. Lee KI, Jo S, Rui H, Egwolf B, Roux B, Pastor RW et al (2012) Web interface for Brownian dynamics simulation of ion transport and its applications to beta-barrel pores. J Comput Chem 33(3):331–339PubMedCrossRefGoogle Scholar
  87. Leppla SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA 79(10):3162–3166ADSPubMedPubMedCentralCrossRefGoogle Scholar
  88. Leppla SH (1984) Bacillus anthracis calmodulin-dependent adenylate cyclase: chemical and enzymatic properties and interactions with eucaryotic cells. Adv Cyclic Nucleotide Protein Phosphorylation Res 17:189–198PubMedGoogle Scholar
  89. Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S et al (2012) Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8(3):e1002638PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ling H, Boodhoo A, Hazes B, Cummings MD, Armstrong GD, Brunton JL et al (1998) Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37(7):1777–1788PubMedCrossRefGoogle Scholar
  91. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25Google Scholar
  92. Liu J, Zhang Z, Tan X, Hol WG, Verlinde CL, Fan E (2005) Protein heterodimerization through ligand-bridged multivalent pre-organization: enhancing ligand binding toward both protein targets. J Am Chem Soc 127(7):2044–2045PubMedCrossRefGoogle Scholar
  93. Liu S, Moayeri M, Pomerantsev AP, Leppla SH (2015) Bacillus anthracis toxins. In: Alouf JA, Ladant D, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins, 4th edn. Elsevier, Amsterdam, pp 361–396. ISBN 9780128001882Google Scholar
  94. Mahon CS, Fulton DA (2014) Mimicking nature with synthetic macromolecules capable of recognition. Nat Chem 6(8):665–672PubMedCrossRefGoogle Scholar
  95. Mammen M, Choi S, Whitesides GM (1998a) Polyvalent Interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2754–2794CrossRefGoogle Scholar
  96. Mammen M, Shakhnovich EI, Whitesides GM (1998b) Using a convenient, quantitative model for torsional entropy to establish qualitative trends for molecular processes that restrict conformational freedom. JOrg Chem 63(10):3168–3175Google Scholar
  97. Martin H, Kinns H, Mitchell N, Astier Y, Madathil R, Howorka S (2007) Nanoscale protein pores modified with PAMAM dendrimers. J Am Chem Soc 129(31):9640–9649PubMedCrossRefGoogle Scholar
  98. Martos V, Bell SC, Santos E, Isacoff EY, Trauner D, de Mendoza J (2009) Molecular recognition and self-assembly special feature: Calix[4]arene-based conical-shaped ligands for voltage-dependent potassium channels. Proc Natl Acad Sci USA 106(26):10482–10486ADSPubMedPubMedCentralCrossRefGoogle Scholar
  99. Mattarella M, Garcia-Hartjes J, Wennekes T, Zuilhof H, Siegel JS (2013) Nanomolar cholera toxin inhibitors based on symmetrical pentavalent ganglioside GM1os-sym-corannulenes. Org Biomol Chem 11(26):4333–4339PubMedCrossRefGoogle Scholar
  100. Merritt EA, Zhang Z, Pickens JC, Ahn M, Hol WG, Fan E (2002) Characterization and crystal structure of a high-affinity pentavalent receptor-binding inhibitor for cholera toxin and E. coli heat-labile enterotoxin. J Am Chem Soc 124(30):8818–8824PubMedCrossRefGoogle Scholar
  101. Moayeri M, Robinson TM, Leppla SH, Karginov VA (2008) In vivo efficacy of beta-cyclodextrin derivatives against anthrax lethal toxin. Antimicrob Agents Chemother 52(6):2239–2241PubMedPubMedCentralCrossRefGoogle Scholar
  102. Moayeri M, Leppla SH, Vrentas C, Pomerantsev A, Liu S (2015) Anthrax pathogenesis. Annu Rev Microbiol 16(69):185–208CrossRefGoogle Scholar
  103. Mogridge J, Cunningham K, Collier RJ (2002) Stoichiometry of anthrax toxin complexes. Biochemistry 41(3):1079–1082PubMedCrossRefGoogle Scholar
  104. Mourez M, Kane RS, Mogridge J, Metallo S, Deschatelets P, Sellman BR et al (2001) Designing a polyvalent inhibitor of anthrax toxin. Nat Biotechnol 19(10):958–961PubMedCrossRefGoogle Scholar
  105. Mulvey GL, Marcato P, Kitov PI, Sadowska J, Bundle DR, Armstrong GD (2003) Assessment in mice of the therapeutic potential of tailored, multivalent Shiga toxin carbohydrate ligands. J Infect Dis 187(4):640–649PubMedCrossRefGoogle Scholar
  106. Nablo BJ, Panchal RG, Bavari S, Nguyen TL, Gussio R, Ribot W et al (2013) Anthrax toxin-induced rupture of artificial lipid bilayer membranes. J Chem Phys 139(6). doi:10.1063/1.4816467
  107. Nagahama M, Hagiyama T, Kojima T, Aoyanagi K, Takahashi C, Oda M et al (2009) Binding and internalization of Clostridium botulinum C2 toxin. Infect Immun 77(11):5139–5148PubMedPubMedCentralCrossRefGoogle Scholar
  108. Nestorovich EM, Bezrukov SM (2012) Obstructing toxin pathways by targeted pore blockage. Chem Rev 11(112):6388–6430CrossRefGoogle Scholar
  109. Nestorovich EM, Karginov VA, Berezhkovskii AM, Bezrukov SM (2010) Blockage of anthrax PA63 pore by a multicharged high-affinity toxin inhibitor. Biophys J 99(1):134–143PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nestorovich EM, Karginov VA, Popoff MR, Bezrukov SM, Barth H (2011) Tailored ss-cyclodextrin blocks the translocation pores of binary exotoxins from C. botulinum and C. perfringens and protects cells from intoxication. PLoS One 6(8). doi:10.1371/journal.pone.0023927
  111. Neumeyer T, Schiffler B, Maier E, Lang AE, Aktories K, Benz R (2008) Clostridium botulinum C2 toxin. Identification of the binding site for chloroquine and related compounds and influence of the binding site on properties of the C2II channel. J Biol Chem 283(7):3904–3914PubMedCrossRefGoogle Scholar
  112. Ohishi I, Odagiri Y (1984) Histopathological effect of botulinum C2 toxin on mouse intestines. Infect Immun 43(1):54–58PubMedPubMedCentralGoogle Scholar
  113. Pajatsch M, Gerhart M, Peist R, Horlacher R, Boos W, Bock A (1998) The periplasmic cyclodextrin binding protein CymE from Klebsiella oxytoca and its role in maltodextrin and cyclodextrin transport. J Bacteriol 180(10):2630–2635PubMedPubMedCentralGoogle Scholar
  114. Pajatsch M, Andersen C, Mathes A, Bock A, Benz R, Engelhardt H (1999) Properties of a cyclodextrin-specific, unusual porin from Klebsiella oxytoca. J Biol Chem 274(35):25159–25166PubMedCrossRefGoogle Scholar
  115. Paolino M, Mennuni L, Giuliani G, Anzini M, Lanza M, Caselli G, Galimberti C, Menziani MC, Donati A, Cappelli A (2014) Dendrimeric tetravalent ligands for the serotonin-gated ion channel. Chem Commun (Camb) 50(62):8582–8585Google Scholar
  116. Patke S, Boggara M, Maheshwari R, Srivastava SK, Arha M, Douaisi M et al (2014) Design of monodisperse and well-defined polypeptide-based polyvalent inhibitors of anthrax toxin. Angew Chem Int Ed Engl 53(31):8037–8040PubMedPubMedCentralCrossRefGoogle Scholar
  117. Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385(6619):833–838ADSPubMedCrossRefGoogle Scholar
  118. Pickens JC, Merritt EA, Ahn M, Verlinde CL, Hol WG, Fan E (2002) Anchor-based design of improved cholera toxin and E. coli heat-labile enterotoxin receptor binding antagonists that display multiple binding modes. Chem Biol 9(2):215–224PubMedCrossRefGoogle Scholar
  119. Pilpa RM, Bayrhuber M, Marlett JM, Riek R, Young JA (2011) A receptor-based switch that regulates anthrax toxin pore formation. PLoS Pathog. 7(12). doi:10.1371/journal.ppat.1002354
  120. Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56(9):2299–2306PubMedPubMedCentralGoogle Scholar
  121. Pust S, Barth H, Sandvig K (2010) Clostridium botulinum C2 toxin is internalized by clathrin- and Rho-dependent mechanisms. Cell Microbiol 12(12):1809–1820PubMedCrossRefGoogle Scholar
  122. Ragle BE, Karginov VA, Bubeck Wardenburg J (2010) Prevention and treatment of Staphylococcus aureus pneumonia with a beta-cyclodextrin derivative. Antimicrob Agents Chemother 54(1):298–304PubMedCrossRefGoogle Scholar
  123. Rai P, Padala C, Poon V, Saraph A, Basha S, Kate S et al (2006) Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins. Nat Biotechnol 24(5):582–586PubMedCrossRefGoogle Scholar
  124. Rai PR, Saraph A, Ashton R, Poon V, Mogridge J, Kane RS (2007) Raftlike polyvalent inhibitors of the anthrax toxin: modulating inhibitory potency by formation of lipid microdomains. Angew Chem Int Ed 46(13):2207–2209CrossRefGoogle Scholar
  125. Roeder M, Nestorovich EM, Karginov VA, Schwan C, Aktories K, Barth H (2014) Tailored cyclodextrin pore blocker protects mammalian cells from clostridium difficile binary toxin CDT. Toxins (Basel) 6(7):2097–2114CrossRefGoogle Scholar
  126. Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 364(4):705–715PubMedCrossRefGoogle Scholar
  127. Schmid A, Benz R, Just I, Aktories K (1994) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. Formation of cation-selective channels and inhibition of channel function by chloroquine. J Biol Chem 269(24):16706–16711PubMedGoogle Scholar
  128. Shewmake TA, Solis FJ, Gillies RJ, Caplan MR (2008) Effects of linker length and flexibility on multivalent targeting. Biomacromolecules 9(11):3057–3064PubMedCrossRefGoogle Scholar
  129. Simpson LL (1984) Molecular basis for the pharmacological actions of Clostridium botulinum type C2 toxin. J Pharmacol Exp Ther 230(3):665–669PubMedGoogle Scholar
  130. Simpson LL, Stiles BG, Zepeda HH, Wilkins TD (1987) Molecular basis for the pathological actions of Clostridium perfringens iota toxin. Infect Immun 55(1):118–122PubMedPubMedCentralGoogle Scholar
  131. Singh AK, Venglarik CJ, Bridges RJ (1995) Development of chloride channel modulators. Kidney Int 48(4):985–993PubMedCrossRefGoogle Scholar
  132. Sisu C, Baron AJ, Branderhorst HM, Connell SD, Weijers CA, de Vries R et al (2009) The influence of ligand valency on aggregation mechanisms for inhibiting bacterial toxins. ChemBioChem 10(2):329–337PubMedCrossRefGoogle Scholar
  133. Solomon D, Kitov PI, Paszkiewicz E, Grant GA, Sadowska JM, Bundle DR (2005) Heterobifunctional multivalent inhibitor-adaptor mediates specific aggregation between Shiga toxin and a pentraxin. Org Lett 7(20):4369–4372PubMedCrossRefGoogle Scholar
  134. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274(5294):1859–1866ADSPubMedCrossRefGoogle Scholar
  135. Stiles BG, Wilkins TD (1986) Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54(3):683–688PubMedPubMedCentralGoogle Scholar
  136. Stiles BG, Hale ML, Marvaud JC, Popoff MR (2002) Clostridium perfringens iota toxin: characterization of the cell-associated iota b complex. Biochem J 367(Pt 3):801–808PubMedPubMedCentralCrossRefGoogle Scholar
  137. Szejtli J (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76(10):1825–1845Google Scholar
  138. Tang MX, Redemann CT, Szoka FC Jr (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7(6):703–714PubMedCrossRefGoogle Scholar
  139. Tomalia DA, Frechet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci. Part A Polym Chem 40:2719–2728ADSCrossRefGoogle Scholar
  140. U.S. Pharmaceutical Sales. Available at: http://www.drugs.com/stats/top100/sales
  141. van den Berg B, Prathyusha Bhamidimarri S, Dahyabhai Prajapati J, Kleinekathofer U, Winterhalter M (2015) Outer-membrane translocation of bulky small molecules by passive diffusion. Proc Natl Acad Sci USA 112(23):E2991–E2999Google Scholar
  142. Vance D, Martin J, Patke S, Kane RS (2009) The design of polyvalent scaffolds for targeted delivery. Adv Drug Deliv Rev 61(11):931–939PubMedCrossRefGoogle Scholar
  143. Varejao EV, de Fatima A, Fernandes SA (2013) Calix[n]arenes as goldmines for the development of chemical entities of pharmaceutical interest. Curr Pharm Des 19(36):6507–6521PubMedCrossRefGoogle Scholar
  144. Vitale G, Bernardi L, Napolitani G, Mock M, Montecucco C (2000) Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem J 15(352):739–745CrossRefGoogle Scholar
  145. Walters WP (2012) Going further than Lipinski’s rule in drug design. Expert Opin Drug Discov 7(2):99–107MathSciNetPubMedCrossRefGoogle Scholar
  146. Weisman A, Chou B, O’Brien J, Shea KJ (2015) Polymer antidotes for toxin sequestration. Adv Drug Deliv Rev 1(90):81–100CrossRefGoogle Scholar
  147. Wenz G (1994) Cyclodextrins as building blocks for supramolecular structures and functional units. Angew Chem Int Ed Engl 33(8):803–822CrossRefGoogle Scholar
  148. Wijagkanalan W, Kawakami S, Hashida M (2011) Designing dendrimers for drug delivery and imaging: pharmacokinetic considerations. Pharm Res 28(7):1500–1519PubMedCrossRefGoogle Scholar
  149. Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM (2015) Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem 26(7):1198–1211PubMedCrossRefGoogle Scholar
  150. Yannakopoulou K, Jicsinszky L, Aggelidou C, Mourtzis N, Robinson TM, Yohannes A et al (2011) Symmetry requirements for effective blocking of pore-forming toxins: comparative study with alpha-, beta-, and gamma-cyclodextrin derivatives. Antimicrob Agents Chemother 55(7):3594–3597PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zhang MQ, Wilkinson B (2007) Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol 18(6):478–488PubMedCrossRefGoogle Scholar
  152. Zhang S, Finkelstein A, Collier RJ (2004a) Evidence that translocation of anthrax toxin’s lethal factor is initiated by entry of its N terminus into the protective antigen channel. Proc Natl Acad Sci USA 101(48):16756–16761ADSPubMedPubMedCentralCrossRefGoogle Scholar
  153. Zhang S, Udho E, Wu Z, Collier RJ, Finkelstein A (2004b) Protein translocation through anthrax toxin channels formed in planar lipid bilayers. Biophys J 87(6):3842–3849PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhang Z, Liu J, Verlinde CL, Hol WG, Fan E (2004c) Large cyclic peptides as cores of multivalent ligands: application to inhibitors of receptor binding by cholera toxin. J Org Chem 69(22):7737–7740PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of BiologyThe Catholic University of AmericaWashington, D.C.USA

Personalised recommendations