Advertisement

Immunopathogenesis of Chlamydial Infections

  • Ashlesh K. Murthy
  • Weidang Li
  • Kyle H. Ramsey
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 412)

Abstract

Chlamydial infections lead to a number of clinically relevant diseases and induce significant morbidity in human populations. It is generally understood that certain components of the host immune response to infection also mediate such disease pathologies. A clear understanding of pathogenic mechanisms will enable us to devise better preventive and/or intervention strategies to mitigate the morbidity caused by these infections. Over the years, numerous studies have been conducted to explore the immunopathogenic mechanisms of Chlamydia-induced diseases of the eye, reproductive tract, respiratory tract, and cardiovascular systems. In this article, we provide an overview of the diseases caused by Chlamydia, animal models used to study disease pathology, and a historical context to the efforts to understand chlamydial pathogenesis. Furthermore, we discuss recent findings regarding pathogenesis, with an emphasis on the role of the adaptive immune response in the development of chlamydial disease sequelae. Finally, we summarize the key insights obtained from studies of chlamydial pathogenesis and avenues that remain to be explored in order to inform the next steps of vaccine development against chlamydial infections.

Notes

Acknowledgements

This work was supported by Midwestern University Faculty Start-up Fund, National Institutes of Health (NIH) Grant 1R15AI101920, and American Heart Association (AHA) Midwest Affiliate Scientist Development Grant 13SDG17310011 to AKM. The content in this manuscript is solely the responsibility of the authors and does not represent the official views of any of the funding agencies. The authors declare no conflict of interest.

The authors declare no conflict of interest.

References

  1. Abbas M, Bobo LD, Hsieh YH, Berka N, Dunston G, Bonney GE, Apprey V, Quinn TC, West SK (2009) Human leukocyte antigen (HLA)-B, DRB1, and DQB1 allotypes associated with disease and protection of trachoma endemic villagers. Invest Ophthalmol Vis Sci 50:1734–1738PubMedCrossRefGoogle Scholar
  2. Adams EJ, Charlett A, Edmunds WJ, Hughes G (2004) Chlamydia trachomatis in the United Kingdom: a systematic review and analysis of prevalence studies. Sex Transm Infect 80:354–362PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andrew DW, Cochrane M, Schripsema JH, Ramsey KH, Dando SJ, O’Meara CP, Timms P, Beagley KW (2013) The duration of Chlamydia muridarum genital tract infection and associated chronic pathological changes are reduced in IL-17 knockout mice but protection is not increased further by immunization. PLoS One 8:e76664PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arkatkar T, Gupta R, Li W, Yu JJ, Wali S, Neal GM, Chambers JP, Christenson LK, Arulanandam BP (2015) Murine MicroRNA-214 regulates intracellular adhesion molecule (ICAM1) gene expression in genital Chlamydia muridarum infection. Immunology 145:534–542PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bai H, Cheng J, Gao X, Joyee AG, Fan Y, Wang S, Jiao L, Yao Z, Yang X (2009) IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function. J Immunol 183:5886–5895PubMedCrossRefGoogle Scholar
  6. Barron AL, White HJ, Rank RG, Soloff BL, Moses EB (1981) A new animal model for the study of Chlamydia trachomatis genital infections: infection of mice with the agent of mouse pneumonitis. J Infect Dis 143:63–66PubMedPubMedCentralCrossRefGoogle Scholar
  7. Batteiger BE, Xu F, Johnson RE, Rekart ML (2010) Protective immunity to Chlamydia trachomatis genital infection: evidence from human studies. J Infect Dis 201(Suppl 2):S178–S189PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bavoil PM (2014) What’s in a word: the use, misuse, and abuse of the word “persistence” in Chlamydia biology. Front Cell Infect Microbiol 4:27PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bavoil P, Stephens RS, Falkow S (1990) A soluble 60 kiloDalton antigen of Chlamydia spp. is a homologue of Escherichia coli GroEL. Mol Microbiol 4:461–469PubMedCrossRefGoogle Scholar
  10. Beatty PR, Stephens RS (1992) Identification of Chlamydia trachomatis antigens by use of murine T-cell lines. Infect Immun 60:4598–4603PubMedPubMedCentralGoogle Scholar
  11. Bebear C, de Barbeyrac B (2009) Genital Chlamydia trachomatis infections. Clin Microbiol Infect 15:4–10PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bell JD, Bergin IL, Schmidt K, Zochowski MK, Aronoff DM, Patton DL (2011) Nonhuman primate models used to study pelvic inflammatory disease caused by Chlamydia trachomatis. Infect Dis Obstet Gynecol 2011:675360PubMedPubMedCentralCrossRefGoogle Scholar
  13. Berger RE (1990) Acute epididymitis. In: Holmes KK, Mardh PA, Sparling PF, Weisner PJ (eds) Sexually transmitted diseases. NY, McGraw-Hill, New York, pp 641–653Google Scholar
  14. Brankovic I, van Ess EF, Noz MP, Wiericx WA, Spaargaren J, Morre SA, Ouburg S (2015) NOD1 in contrast to NOD2 functional polymorphism influence Chlamydia trachomatis infection and the risk of tubal factor infertility. Pathog Dis 73:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brunham RC, Rey-Ladino J (2005) Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 5:149–161PubMedCrossRefGoogle Scholar
  16. Brunham RC, Maclean IW, Binns B, Peeling RW (1985) Chlamydia trachomatis: its role in tubal infertility. J Infect Dis 152:1275–1282PubMedCrossRefGoogle Scholar
  17. Buchholz KR, Stephens RS (2008) The cytosolic pattern recognition receptor NOD1 induces inflammatory interleukin-8 during Chlamydia trachomatis infection. Infect Immun 76:3150–3155PubMedPubMedCentralCrossRefGoogle Scholar
  18. Burton MJ, Rajak SN, Hu VH, Ramadhani A, Habtamu E, Massae P, Tadesse Z, Callahan K, Emerson PM, Khaw PT, Jeffries D, Mabey DC, Bailey RL, Weiss HA, Holland MJ (2015) Pathogenesis of progressive scarring trachoma in Ethiopia and Tanzania and its implications for disease control: two cohort studies. PLoS Negl Trop Dis 9:e0003763PubMedPubMedCentralCrossRefGoogle Scholar
  19. Campbell LA, Kuo C (1999) Mouse models of Chlamydia pneumoniae infection and atherosclerosis. Am Heart J 138:S516–S518PubMedCrossRefGoogle Scholar
  20. Campbell LA, Kuo CC (2002) Chlamydia pneumoniae pathogenesis. J Med Microbiol 51:623–625PubMedCrossRefGoogle Scholar
  21. Campbell LA, Rosenfeld ME (2014) Persistent C. pneumoniae infection in atherosclerotic lesions: rethinking the clinical trials. Front Cell Infect Microbiol 4:34Google Scholar
  22. Campbell LA, Rosenfeld ME (2015) Infection and atherosclerosis development. Arch Med Res 46:339–350PubMedPubMedCentralCrossRefGoogle Scholar
  23. Campbell LA, Perez MM, Hamilton DJ, Kuo CC, Grayston JT (1992) Detection of Chlamydia pneumoniae by polymerase chain reaction. J Clin Microbiol 30:434–439PubMedPubMedCentralGoogle Scholar
  24. Campbell LA, Nosaka T, Rosenfeld ME, Yaraei K, Kuo CC (2005a) Tumor necrosis factor alpha plays a role in the acceleration of atherosclerosis by Chlamydia pneumoniae in mice. Infect Immun 73:3164–3165PubMedPubMedCentralCrossRefGoogle Scholar
  25. Campbell LA, Nosaka T, Rosenfeld ME, Yaraei K, Kuo CC (2005b) Tumor necrosis factor alpha plays a role in the acceleration of atherosclerosis by Chlamydia pneumoniae in mice. Infect Immun 73:3164–3165PubMedPubMedCentralCrossRefGoogle Scholar
  26. Centers for Disease Control and Prevention (2015) Sexually transmitted disease surveillance 2014. Department of Health and Human Services, AtlantaGoogle Scholar
  27. Chen MY, Donovan B (2003) Screening for genital Chlamydia trachomatis infection: are men the forgotten reservoir? Med J Aust 179:124–125PubMedGoogle Scholar
  28. Chen AM, Khanna N, Stohlman SA, Bergmann CC (2005) Virus-specific and bystander CD8 T cells recruited during virus-induced encephalomyelitis. J Virol 79:4700–4708PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen S, Shimada K, Zhang W, Huang G, Crother TR, Arditi M (2010a) IL-17A is proatherogenic in high-fat diet-induced and Chlamydia pneumoniae infection-accelerated atherosclerosis in mice. J Immunol 185:5619–5627PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen L, Lei L, Chang X, Li Z, Lu C, Zhang X, Wu Y, Yeh IT, Zhong G (2010b) Mice deficient in MyD88 develop a Th2-dominant response and severe pathology in the upper genital tract following Chlamydia muridarum infection. J Immunol 184:2602–2610PubMedCrossRefGoogle Scholar
  31. Chen J, Zhang H, Zhou Z, Yang Z, Ding Y, Zhou Z, Zhong E, Arulanandam B, Baseman J, Zhong G (2014) Chlamydial induction of hydrosalpinx in 11 strains of mice reveals multiple host mechanisms for preventing upper genital tract pathology. PLoS One 9:e95076PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cheng W, Shivshankar P, Li Z, Chen L, Yeh IT, Zhong G (2008) Caspase-1 contributes to Chlamydia trachomatis-induced upper urogenital tract inflammatory pathologies without affecting the course of infection. Infect Immun 76:515–522PubMedCrossRefGoogle Scholar
  33. Choroszy-Krol I, Frej-Madrzak M, Hober M, Sarowska J, Jama-Kmiecik A (2014) Infections caused by Chlamydophila pneumoniae. Adv Clin Exp Med 23:123–126PubMedCrossRefGoogle Scholar
  34. Conway DJ, Holland MJ, Campbell AE, Bailey RL, Krausa P, Peeling RW, Whittle HC, Mabey DC (1996) HLA class I and II polymorphisms and trachomatous scarring in a Chlamydia trachomatis-endemic population. J Infect Dis 174:643–646PubMedCrossRefGoogle Scholar
  35. Darville T, Hiltke TJ (2010) Pathogenesis of genital tract disease due to Chlamydia trachomatis. J Infect Dis 201(Suppl 2):S114–S125PubMedPubMedCentralCrossRefGoogle Scholar
  36. Darville T, O’Neill JM, Andrews CW Jr, Nagarajan UM, Stahl L, Ojcius DM (2003) Toll-like receptor-2, but not toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J Immunol 171:6187–6197CrossRefPubMedGoogle Scholar
  37. De CE, Kalmar I, Vanrompay D (2013) Animal models for studying female genital tract infection with Chlamydia trachomatis. Infect Immun 81:3060–3067CrossRefGoogle Scholar
  38. Deniset JF, Cheung PK, Dibrov E, Lee K, Steigerwald S, Pierce GN (2010) Chlamydophila pneumoniae infection leads to smooth muscle cell proliferation and thickening in the coronary artery without contributions from a host immune response. Am J Pathol 176:1028–1037PubMedPubMedCentralCrossRefGoogle Scholar
  39. Derrick T, Roberts C, Last AR, Burr SE, Holland MJ (2015) Trachoma and ocular chlamydial infection in the Era of genomics. Mediators Inflamm 2015:791847PubMedPubMedCentralCrossRefGoogle Scholar
  40. Domeika M, Domeika K, Paavonen J, Mardh PA, Witkin SS (1998) Humoral immune response to conserved epitopes of Chlamydia trachomatis and human 60-kDa heat-shock protein in women with pelvic inflammatory disease. J Infect Dis 177:714–719PubMedCrossRefGoogle Scholar
  41. Dong X, Liu Y, Chang X, Lei L, Zhong G (2014) Signaling via tumor necrosis factor receptor 1 but not Toll-like receptor 2 contributes significantly to hydrosalpinx development following Chlamydia muridarum infection. Infect Immun 82:1833–1839PubMedPubMedCentralCrossRefGoogle Scholar
  42. Erkkila L, Laitinen K, Laurila A, Saikku P, Leinonen M (2002) Experimental Chlamydia pneumoniae infection in NIH/S mice: effect of reinoculation with chlamydial or cell preparation on culture, PCR and histological findings of lung tissue. Vaccine 20:2318–2324PubMedCrossRefGoogle Scholar
  43. Faal N, Bailey RL, Jeffries D, Joof H, Sarr I, Laye M, Mabey DC, Holland MJ (2006) Conjunctival FOXP3 expression in trachoma: do regulatory T cells have a role in human ocular Chlamydia trachomatis infection? PLoS Med 3:e266PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fankhauser SC, Starnbach MN (2014) PD-L1 limits the mucosal CD8+ T cell response to Chlamydia trachomatis. J Immunol 192:1079–1090PubMedCrossRefGoogle Scholar
  45. Farris CM, Morrison SG, Morrison RP (2010) CD4+ T cells and antibody are required for optimal major outer membrane protein vaccine-induced immunity to Chlamydia muridarum genital infection. Infect Immun 78:4374–4383PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fling SP, Sutherland RA, Steele LN, Hess B, D’Orazio SE, Maisonneuve J, Lampe MF, Probst P, Starnbach MN (2001) CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis. Proc Natl Acad Sci USA 98:1160–1165PubMedPubMedCentralCrossRefGoogle Scholar
  47. Frazer LC, O’Connell CM, Andrews CW Jr, Zurenski MA, Darville T (2011) Enhanced neutrophil longevity and recruitment contribute to the severity of oviduct pathology during Chlamydia muridarum infection. Infect Immun 79:4029–4041PubMedPubMedCentralCrossRefGoogle Scholar
  48. Frazer LC, Scurlock AM, Zurenski MA, Riley MM, Mintus M, Pociask DA, Sullivan JE, Andrews CW Jr, Darville T (2013) IL-23 induces IL-22 and IL-17 production in response to Chlamydia muridarum genital tract infection, but the absence of these cytokines does not influence disease pathogenesis. Am J Reprod Immunol 70:472–484PubMedCrossRefGoogle Scholar
  49. Geisler WM (2010) Duration of untreated, uncomplicated Chlamydia trachomatis genital infection and factors associated with Chlamydia resolution: a review of human studies. J Infect Dis 201(Suppl 2):S104–S113PubMedCrossRefGoogle Scholar
  50. Grayston JT, Wang SP, Yeh LJ, Kuo CC (1985) Importance of reinfection in the pathogenesis of trachoma. Rev Infect Dis 7:717–725PubMedCrossRefGoogle Scholar
  51. Grayston JT, Kuo CC, Wang SP, Altman J (1986) A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med 315:161–168PubMedCrossRefGoogle Scholar
  52. Grayston JT, Aldous MB, Easton A, Wang SP, Kuo CC, Campbell LA, Altman J (1993) Evidence that Chlamydia pneumoniae causes pneumonia and bronchitis. J Infect Dis 168:1231–1235CrossRefPubMedGoogle Scholar
  53. Grayston JT, Belland RJ, Byrne GI, Kuo CC, Schachter J, Stamm WE, Zhong G (2015) Infection with Chlamydia pneumoniae as a cause of coronary heart disease: the hypothesis is still untested. Pathog Dis 73:1–9PubMedCrossRefGoogle Scholar
  54. Hahn DL, Dodge RW, Golubjatnikov R (1991) Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA 266:225–230PubMedCrossRefGoogle Scholar
  55. Hansbro PM, Beagley KW, Horvat JC, Gibson PG (2004) Role of atypical bacterial infection of the lung in predisposition/protection of asthma. Pharmacol Ther 101:193–210PubMedCrossRefGoogle Scholar
  56. Harkinezhad T, Schautteet K, Vanrompay D (2009) Protection of budgerigars (Melopsittacus undulatus) against Chlamydophila psittaci challenge by DNA vaccination. Vet Res 40:61PubMedCrossRefGoogle Scholar
  57. Honarmand H (2013) Atherosclerosis induced by Chlamydophila pneumoniae: a controversial theory. Interdiscip Perspect Infect Dis 2013:941392PubMedPubMedCentralCrossRefGoogle Scholar
  58. Howard LV, O’Leary MP, Nichols RL (1976) Animal model studies of genital chlamydial infections. Immunity to re-infection with guinea-pig inclusion conjunctivitis agent in the urethra and eye of male guinea-pigs. Br J Vener Dis 52:261–265PubMedPubMedCentralGoogle Scholar
  59. Ibana JA, Schust DJ, Sugimoto J, Nagamatsu T, Greene SJ, Quayle AJ (2011) Chlamydia trachomatis immune evasion via downregulation of MHC class I surface expression involves direct and indirect mechanisms. Infect Dis Obstet Gynecol 2011:420905PubMedPubMedCentralCrossRefGoogle Scholar
  60. Igietseme JU, Magee DM, Williams DM, Rank RG (1994) Role for CD8 + T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Infect Immun 62:5195–5197PubMedPubMedCentralGoogle Scholar
  61. Igietseme JU, He Q, Joseph K, Eko FO, Lyn D, Ananaba G, Campbell A, Bandea C, Black CM (2009) Role of T lymphocytes in the pathogenesis of Chlamydia disease. J Infect Dis 200:926–934PubMedPubMedCentralCrossRefGoogle Scholar
  62. Igietseme JU, Omosun Y, Partin J, Goldstein J, He Q, Joseph K, Ellerson D, Ansari U, Eko FO, Bandea C, Zhong G, Black CM (2013) Prevention of Chlamydia-induced infertility by inhibition of local caspase activity. J Infect Dis 207:1095–1104PubMedPubMedCentralCrossRefGoogle Scholar
  63. Igietseme JU, Omosun Y, Stuchlik O, Reed MS, Partin J, He Q, Joseph K, Ellerson D, Bollweg B, George Z, Eko FO, Bandea C, Liu H, Yang G, Shieh WJ, Pohl J, Karem K, Black CM (2015a) Role of epithelial-mesenchyme transition in Chlamydia pathogenesis. PLoS One 10:e0145198PubMedPubMedCentralCrossRefGoogle Scholar
  64. Igietseme JU, Omosun Y, Stuchlik O, Reed MS, Partin J, He Q, Joseph K, Ellerson D, Bollweg B, George Z, Eko FO, Bandea C, Liu H, Yang G, Shieh WJ, Pohl J, Karem K, Black CM (2015) Role of epithelial-mesenchyme transition in Chlamydia Pathogenesis. PLoS One 10:e0145198PubMedPubMedCentralCrossRefGoogle Scholar
  65. Imtiaz MT, Distelhorst JT, Schripsema JH, Sigar IM, Kasimos JN, Lacy SR, Ramsey KH (2007) A role for matrix metalloproteinase-9 in pathogenesis of urogenital Chlamydia muridarum infection in mice. Microbes Infect 9:1561–1566PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jiang J, Champion CI, Wei B, Liu G, Kelly KA (2013) CD8(+)CXCR5(+) T cells regulate pathology in the genital tract. Infect Dis Obstet Gynecol 2013:813238PubMedPubMedCentralCrossRefGoogle Scholar
  67. Johnson RM, Brunham RC (2016) Tissue-resident T cells as the central paradigm of Chlamydia immunity. Infect Immun 84:868–873PubMedPubMedCentralCrossRefGoogle Scholar
  68. Johnson RM, Yu H, Kerr MS, Slaven JE, Karunakaran KP, Brunham RC (2012) PmpG303-311, a protective vaccine epitope that elicits persistent cellular immune responses in Chlamydia muridarum-immune mice. Infect Immun 80:2204–2211PubMedPubMedCentralCrossRefGoogle Scholar
  69. Johnson RM, Kerr MS, Slaven JE (2014) An atypical CD8 T-cell response to Chlamydia muridarum genital tract infections includes T cells that produce interleukin-13. Immunology 142:248–257PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kavathas PB, Boeras CM, Mulla MJ, Abrahams VM (2013) Nod1, but not the ASC inflammasome, contributes to induction of IL-1beta secretion in human trophoblasts after sensing of Chlamydia trachomatis. Mucosal Immunol 6:235–243PubMedCrossRefGoogle Scholar
  71. Khader SA, Gaffen SL, Kolls JK (2009) Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol 2:403–411PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kimani J, Maclean IW, Bwayo JJ, MacDonald K, Oyugi J, Maitha GM, Peeling RW, Cheang M, Nagelkerke NJ, Plummer FA, Brunham RC (1996) Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J Infect Dis 173:1437–1444PubMedCrossRefGoogle Scholar
  73. Kinnunen A, Molander P, Morrison R, Lehtinen M, Karttunen R, Tiitinen A, Paavonen J, Surcel HM (2002) Chlamydial heat shock protein 60–specific T cells in inflamed salpingeal tissue. Fertil Steril 77:162–166PubMedCrossRefGoogle Scholar
  74. Lee HY, Schripsema JH, Sigar IM, Lacy SR, Kasimos JN, Murray CM, Ramsey KH (2010a) A role for CXC chemokine receptor-2 in the pathogenesis of urogenital Chlamydia muridarum infection in mice. FEMS Immunol Med Microbiol 60:49–56PubMedCrossRefGoogle Scholar
  75. Lee HY, Schripsema JH, Sigar IM, Murray CM, Lacy SR, Ramsey KH (2010b) A link between neutrophils and chronic disease manifestations of Chlamydia muridarum urogenital infection of mice. FEMS Immunol Med Microbiol 59:108–116PubMedCrossRefGoogle Scholar
  76. Leslie M (2016) Immunity goes local. Science 352:21–23PubMedCrossRefGoogle Scholar
  77. Li LX, McSorley SJ (2013) B cells enhance antigen-specific CD4 T cell priming and prevent bacteria dissemination following Chlamydia muridarum genital tract infection. PLoS Pathog 9:e1003707PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lu C, Holland MJ, Gong S, Peng B, Bailey RL, Mabey DW, Wu Y, Zhong G (2012a) Genome-wide identification of Chlamydia trachomatis antigens associated with trachomatous trichiasis. Invest Ophthalmol Vis Sci 53:2551–2559PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lu C, Zeng H, Li Z, Lei L, Yeh IT, Wu Y, Zhong G (2012b) Protective immunity against mouse upper genital tract pathology correlates with high IFNgamma but low IL-17 T cell and anti-secretion protein antibody responses induced by replicating chlamydial organisms in the airway. Vaccine 30:475–485PubMedCrossRefGoogle Scholar
  80. Luense LJ, Carletti MZ, Christenson LK (2009) Role of dicer in female fertility. Trends Endocrinol Metab 20:265–272PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mabey DC, Hu V, Bailey RL, Burton MJ, Holland MJ (2014) Towards a safe and effective chlamydial vaccine: lessons from the eye. Vaccine 32:1572–1578PubMedPubMedCentralCrossRefGoogle Scholar
  82. Manam S, Nicholson BJ, Murthy AK (2013) OT-1 mice display minimal upper genital tract pathology following primary intravaginal Chlamydia muridarum infection. Pathog Dis 67:221–224PubMedPubMedCentralCrossRefGoogle Scholar
  83. Manam S, Thomas JD, Li W, Maladore A, Schripsema JH, Ramsey KH, Murthy AK (2015) Tumor Necrosis Factor (TNF) receptor superfamily member 1b on CD8+ T cells and TNF receptor superfamily member 1a on Non-CD8+ T cells contribute significantly to upper genital tract pathology following chlamydial infection. J Infect Dis 211:2014–2022PubMedCrossRefGoogle Scholar
  84. Marks E, Verolin M, Stensson A, Lycke N (2007) Differential CD28 and inducible costimulatory molecule signaling requirements for protective CD4+ T-cell-mediated immunity against genital tract Chlamydia trachomatis infection. Infect Immun 75:4638–4647PubMedPubMedCentralCrossRefGoogle Scholar
  85. Marks E, Tam MA, Lycke NY (2010) The female lower genital tract is a privileged compartment with IL-10 producing dendritic cells and poor Th1 immunity following Chlamydia trachomatis infection. PLoS Pathog 6:e1001179PubMedPubMedCentralCrossRefGoogle Scholar
  86. Masson L, Salkinder AL, Olivier AJ, McKinnon LR, Gamieldien H, Mlisana K, Scriba TJ, Lewis DA, Little F, Jaspan HB, Ronacher K, Denny L, Abdool Karim SS, Passmore JA (2015) Relationship between female genital tract infections, mucosal interleukin-17 production and local T helper type 17 cells. Immunology 146:557–567PubMedPubMedCentralCrossRefGoogle Scholar
  87. Menon S, Timms P, Allan JA, Alexander K, Rombauts L, Horner P, Keltz M, Hocking J, Huston WM (2015) Human and pathogen factors associated with Chlamydia trachomatis-related infertility in women. Clin Microbiol Rev 28:969–985PubMedPubMedCentralCrossRefGoogle Scholar
  88. Moniz RJ, Chan AM, Gordon LK, Braun J, Arditi M, Kelly KA (2010) Plasmacytoid dendritic cells modulate nonprotective T-cell responses to genital infection by Chlamydia muridarum. FEMS Immunol Med Microbiol 58:397–404PubMedPubMedCentralCrossRefGoogle Scholar
  89. Moore DE, Cates W (1990) Sexually transmitted diseases and infertility. In: Holmes KK, Mardh PA, Sparling PF, Weisner PJ (eds) Sexually transmitted diseases. NY, McGraw-Hill, New York, pp 763–771Google Scholar
  90. Moore T, Ananaba GA, Bolier J, Bowers S, Belay T, Eko FO, Igietseme JU (2002) Fc receptor regulation of protective immunity against Chlamydia trachomatis. Immunology 105:213–221PubMedPubMedCentralCrossRefGoogle Scholar
  91. Moore-Connors JM, Fraser R, Halperin SA, Wang J (2013) CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 responses and genital tract inflammation upon intracellular Chlamydia muridarum infection. J Immunol 191:3430–3439PubMedCrossRefGoogle Scholar
  92. Morrison RP, Caldwell HD (2002) Immunity to murine chlamydial genital infection. Infect Immun 70:2741–2751PubMedPubMedCentralCrossRefGoogle Scholar
  93. Morrison RP, Lyng K, Caldwell HD (1989a) Chlamydial disease pathogenesis. Ocular hypersensitivity elicited by a genus-specific 57-kD protein. J Exp Med 169:663–675PubMedCrossRefGoogle Scholar
  94. Morrison RP, Belland RJ, Lyng K, Caldwell HD (1989b) Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. J Exp Med 170:1271–1283PubMedCrossRefGoogle Scholar
  95. Mueller SN, Mackay LK (2016) Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol 16:79–89PubMedCrossRefGoogle Scholar
  96. Muhlestein JB (2000) Chlamydia pneumoniae-induced atherosclerosis in a rabbit model. J Infect Dis 181(Suppl 3):S505–S507PubMedCrossRefGoogle Scholar
  97. Murthy AK, Chambers JP, Meier PA, Zhong G, Arulanandam BP (2007) Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Infect Immun 75:666–676PubMedCrossRefGoogle Scholar
  98. Murthy AK, Chaganty BK, Li W, Guentzel MN, Chambers JP, Seshu J, Zhong G, Arulanandam BP (2009) A limited role for antibody in protective immunity induced by rCPAF and CpG vaccination against primary genital Chlamydia muridarum challenge. FEMS Immunol Med Microbiol 55:271–279PubMedPubMedCentralCrossRefGoogle Scholar
  99. Murthy AK, Li W, Guentzel MN, Zhong G, Arulanandam BP (2011a) Vaccination with the defined chlamydial secreted protein CPAF induces robust protection against female infertility following repeated genital chlamydial challenge. Vaccine 29:2519–2522PubMedPubMedCentralCrossRefGoogle Scholar
  100. Murthy AK, Li W, Chaganty BK, Kamalakaran S, Guentzel MN, Seshu J, Forsthuber TG, Zhong G, Arulanandam BP (2011b) Tumor necrosis factor alpha production from CD8 + T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection. Infect Immun 79:2928–2935PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nagarajan UM, Ojcius DM, Stahl L, Rank RG, Darville T (2005) Chlamydia trachomatis induces expression of IFN-gamma-inducible protein 10 and IFN-beta independent of TLR2 and TLR4, but largely dependent on MyD88. J Immunol 175:450–460PubMedCrossRefGoogle Scholar
  102. Nagarajan UM, Prantner D, Sikes JD, Andrews CW Jr, Goodwin AM, Nagarajan S, Darville T (2008) Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect Immun 76:4642–4648PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nagarajan UM, Sikes JD, Yeruva L, Prantner D (2012) Significant role of IL-1 signaling, but limited role of inflammasome activation, in oviduct pathology during Chlamydia muridarum genital infection. J Immunol 188:2866–2875PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nelson DE, Virok DP, Wood H, Roshick C, Johnson RM, Whitmire WM, Crane DD, Steele-Mortimer O, Kari L, McClarty G, Caldwell HD (2005) Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc Natl Acad Sci USA 102:10658–10663PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ness RB, Soper DE, Richter HE, Randall H, Peipert JF, Nelson DB, Schubeck D, McNeeley SG, Trout W, Bass DC, Hutchison K, Kip K, Brunham RC (2008) Chlamydia antibodies, chlamydia heat shock protein, and adverse sequelae after pelvic inflammatory disease: the PID Evaluation and Clinical Health (PEACH) study. Sex Transm Dis 35:129–135PubMedCrossRefGoogle Scholar
  106. O’Meara CP, Armitage CW, Harvie MC, Andrew DW, Timms P, Lycke NY, Beagley KW (2014a) Immunity against a Chlamydia infection and disease may be determined by a balance of IL-17 signaling. Immunol Cell Biol 92:287–297PubMedCrossRefGoogle Scholar
  107. O’Meara CP, Andrew DW, Beagley KW (2014b) The mouse model of Chlamydia genital tract infection: a review of infection, disease, immunity and vaccine development. Curr Mol Med 14:396–421PubMedCrossRefGoogle Scholar
  108. Oakeshott P, Kerry S, Aghaizu A, Atherton H, Hay S, Taylor-Robinson D, Simms I, Hay P (2010) Randomised controlled trial of screening for Chlamydia trachomatis to prevent pelvic inflammatory disease: the POPI (prevention of pelvic infection) trial. BMJ 340:c1642PubMedPubMedCentralCrossRefGoogle Scholar
  109. Olivares-Zavaleta N, Whitmire WM, Kari L, Sturdevant GL, Caldwell HD (2014) CD8+ T cells define an unexpected role in live-attenuated vaccine protective immunity against Chlamydia trachomatis infection in macaques. J Immunol 192:4648–4654PubMedPubMedCentralCrossRefGoogle Scholar
  110. Paavonen J, Westrom L, Eschenbach D (2008) Pelvic inflammatory disease. In: Holmes KK, Sparling PF, Stamm WE, Piot P, Wasserheit JN, Corey L, Cohen MS, Watts DH (eds) Sexually transmitted diseases, 4th edn. NY, McGraw Hill, New York, pp 1017–1050Google Scholar
  111. Penttila T, Haveri A, Tammiruusu A, Vuola JM, Lahesmaa R, Puolakkainen M (2008) Chlamydia pneumoniae infection in IL-10 knock out mice: accelerated clearance but severe pulmonary inflammatory response. Microb Pathog 45:25–29PubMedCrossRefGoogle Scholar
  112. Player MS, Mainous AG III, Everett CJ, Diaz VA, Knoll ME, Wright RU (2014) Chlamydia pneumoniae and progression of subclinical atherosclerosis. Eur J Prev Cardiol 21:559–565PubMedCrossRefGoogle Scholar
  113. Porcella SF, Carlson JH, Sturdevant DE, Sturdevant GL, Kanakabandi K, Virtaneva K, Wilder H, Whitmire WM, Song L, Caldwell HD (2015) Transcriptional profiling of human epithelial cells infected with plasmid-bearing and plasmid-deficient Chlamydia trachomatis. Infect Immun 83:534–543PubMedPubMedCentralCrossRefGoogle Scholar
  114. Prantner D, Darville T, Sikes JD, Andrews CW Jr, Brade H, Rank RG, Nagarajan UM (2009) Critical role for interleukin-1beta (IL-1beta) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1beta in mouse macrophages. Infect Immun 77:5334–5346PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ramsey KH, Sigar IM, Rana SV, Gupta J, Holland SM, Byrne GI (2001) Role for inducible nitric oxide synthase in protection from chronic Chlamydia trachomatis urogenital disease in mice and its regulation by oxygen free radicals. Infect Immun 69:7374–7379PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ramsey KH, Sigar IM, Schripsema JH, Townsend KE, Barry RJ, Peters J, Platt KB (2016) Detection of Chlamydia infection in Peromyscus species rodents from sylvatic and laboratory sources. Pathog Dis 74Google Scholar
  117. Rank RG (1994) Animal models for urogenital infections. Methods Enzymol 235:83–93PubMedCrossRefGoogle Scholar
  118. Rank RG, Barron AL (1987) Specific effect of estradiol on the genital mucosal antibody response in chlamydial ocular and genital infections. Infect Immun 55:2317–2319PubMedPubMedCentralGoogle Scholar
  119. Rank RG, Whittum-Hudson JA (1994) Animal models for ocular infections. Methods Enzymol 235:69–83PubMedCrossRefGoogle Scholar
  120. Rank RG, White HJ, Hough AJ Jr, Pasley JN, Barron AL (1982) Effect of estradiol on chlamydial genital infection of female guinea pigs. Infect Immun 38:699–705PubMedPubMedCentralGoogle Scholar
  121. Rank RG, Dascher C, Bowlin AK, Bavoil PM (1995) Systemic immunization with Hsp60 alters the development of chlamydial ocular disease. Invest Ophthalmol Vis Sci 36:1344–1351PubMedGoogle Scholar
  122. Rank RG, Bowlin AK, Reed RL, Darville T (2003) Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect Immun 71:6148–6154PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rasmussen SJ, Eckmann L, Quayle AJ, Shen L, Zhang YX, Anderson DJ, Fierer J, Stephens RS, Kagnoff MF (1997) Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J Clin Invest 99:77–87PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ripa KT, Moller BR, Mardh PA, Freundt EA, Melsen F (1979) Experimental acute salpingitis in grivet monkeys provoked by Chlamydia trachomatis. Acta Pathol Microbiol Scand B 87B:65–70PubMedGoogle Scholar
  125. Roberts CH, Molina S, Makalo P, Joof H, Harding-Esch EM, Burr SE, Mabey DC, Bailey RL, Burton MJ, Holland MJ (2014) Conjunctival scarring in trachoma is associated with the HLA-C ligand of KIR and is exacerbated by heterozygosity at KIR2DL2/KIR2DL3. PLoS Negl Trop Dis 8:e2744PubMedPubMedCentralCrossRefGoogle Scholar
  126. Roulis E, Polkinghorne A, Timms P (2013) Chlamydia pneumoniae: modern insights into an ancient pathogen. Trends Microbiol 21:120–128PubMedCrossRefGoogle Scholar
  127. Saikku P, Laitinen K, Leinonen M (1998) Animal models for Chlamydia pneumoniae infection. Atherosclerosis 140(Suppl 1):S17–S19PubMedCrossRefGoogle Scholar
  128. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3 + regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500PubMedCrossRefGoogle Scholar
  129. Sakurai-Komada N, Iso H, Koike KA, Ikeda A, Umesawa M, Ikehara S, Inoue M, Tsugane S (2014) Association between Chlamydophila pneumoniae infection and risk of coronary heart disease for Japanese: the JPHC study. Atherosclerosis 233:338–342PubMedCrossRefGoogle Scholar
  130. Schautteet K, De CE, Jonsson Y, Lagae S, Chiers K, Cox E, Vanrompay D (2012) Protection of pigs against genital Chlamydia trachomatis challenge by parenteral or mucosal DNA immunization. Vaccine 30:2869–2881PubMedCrossRefGoogle Scholar
  131. Scurlock AM, Frazer LC, Andrews CW Jr, O’Connell CM, Foote IP, Bailey SL, Chandra-Kuntal K, Kolls JK, Darville T (2011) Interleukin-17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection. Infect Immun 79:1349–1362PubMedCrossRefGoogle Scholar
  132. Sessa R, Pietro MD, Filardo S, Turriziani O (2014) Infectious burden and atherosclerosis: a clinical issue. World J Clin Cases 2:240–249PubMedPubMedCentralCrossRefGoogle Scholar
  133. Shah AA, Schripsema JH, Imtiaz MT, Sigar IM, Kasimos J, Matos PG, Inouye S, Ramsey KH (2005) Histopathologic changes related to fibrotic oviduct occlusion after genital tract infection of mice with Chlamydia muridarum. Sex Transm Dis 32:49–56PubMedCrossRefGoogle Scholar
  134. Sobottka B, Harrer MD, Ziegler U, Fischer K, Wiendl H, Hunig T, Becher B, Goebels N (2009) Collateral bystander damage by myelin-directed CD8+ T cells causes axonal loss. Am J Pathol 175:1160–1166PubMedPubMedCentralCrossRefGoogle Scholar
  135. Stamm WE, Batteiger BE (2010) Chlamydia trachomatis (trachoma, perinatal infections, lymphogranuloma venereum, and other genital infections). In: Mandell GLBJEDRe (ed) Principles and practice of infectious diseases, 7th edn, vol 2. pp 2443–2461CrossRefGoogle Scholar
  136. Stamm WE, Holmes KK (1990) Chlamydia trachomatis infections of the adult. In: Holmes KK, Sparling PF, Stamm WE, Piot P, Wasserhiet JN, Corey Le (eds) 2nd Ed. New York, NY, McGraw-HillGoogle Scholar
  137. Starnbach MN, Bevan MJ, Lampe MF (1994) Protective cytotoxic T lymphocytes are induced during murine infection with Chlamydia trachomatis. J Immunol 153:5183–5189PubMedGoogle Scholar
  138. Starnbach MN, Loomis WP, Ovendale P, Regan D, Hess B, Alderson MR, Fling SP (2003) An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8+ T cell response. J Immunol 171:4742–4749PubMedCrossRefGoogle Scholar
  139. Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D, Basto PA, Perro M, Vrbanac VD, Tager AM, Shi J, Yethon JA, Farokhzad OC, Langer R, Starnbach MN, von Andrian UH (2015) VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348:aaa8205PubMedPubMedCentralCrossRefGoogle Scholar
  140. Stephens RS (2003) The cellular paradigm of chlamydial pathogenesis. Trends Microbiol 11:44–51PubMedCrossRefGoogle Scholar
  141. Stoner BP, Cohen SE (2015) Lymphogranuloma venereum 2015: clinical presentation, diagnosis, and treatment. Clin Infect Dis 61(Suppl 8):S865–S873PubMedCrossRefGoogle Scholar
  142. Sturdevant GL, Kari L, Gardner DJ, Olivares-Zavaleta N, Randall LB, Whitmire WM, Carlson JH, Goheen MM, Selleck EM, Martens C, Caldwell HD (2010) Frameshift mutations in a single novel virulence factor alter the in vivo pathogenicity of Chlamydia trachomatis for the female murine genital tract. Infect Immun 78:3660–3668PubMedPubMedCentralCrossRefGoogle Scholar
  143. Su H, Feilzer K, Caldwell HD, Morrison RP (1997) Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice. Infect Immun 65:1993–1999PubMedPubMedCentralGoogle Scholar
  144. Taylor HR (1985) Ocular models of chlamydial infection. Rev Infect Dis 7:737–740PubMedCrossRefGoogle Scholar
  145. Taylor HR, Prendergast RA, Dawson CR, Schachter J, Silverstein AM (1981) An animal model for cicatrizing trachoma. Invest Ophthalmol Vis Sci 21:422–433PubMedGoogle Scholar
  146. Taylor HR, Johnson SL, Prendergast RA, Schachter J, Dawson CR, Silverstein AM (1982) An animal model of trachoma II. The importance of repeated reinfection. Invest Ophthalmol Vis Sci 23:507–515PubMedGoogle Scholar
  147. Taylor HR, Kolarczyk RA, Johnson SL, Schachter J, Prendergast RA (1984) Effect of bacterial secondary infection in an animal model of trachoma. Infect Immun 44:614–616PubMedPubMedCentralGoogle Scholar
  148. Taylor HR, Johnson SL, Schachter J, Caldwell HD, Prendergast RA (1987) Pathogenesis of trachoma: the stimulus for inflammation. J Immunol 138:3023–3027PubMedGoogle Scholar
  149. Taylor HR, Burton MJ, Haddad D, West S, Wright H (2014) Trachoma. Lancet 384:2142–2152PubMedCrossRefGoogle Scholar
  150. Tiszlavicz Z, Somogyvari F, Kocsis AK, Szolnoki Z, Sztriha LK, Kis Z, Vecsei L, Mandi Y (2009) Relevance of the genetic polymorphism of NOD1 in Chlamydia pneumoniae seropositive stroke patients. Eur J Neurol 16:1224–1229PubMedCrossRefGoogle Scholar
  151. Tuffrey M, Falder P, Gale J, Taylor-Robinson D (1986) Salpingitis in mice induced by human strains of Chlamydia trachomatis. Br J Exp Pathol 67:605–616PubMedPubMedCentralGoogle Scholar
  152. Van Voorhis WC, Barrett LK, Sweeney YT, Kuo CC, Patton DL (1996) Analysis of lymphocyte phenotype and cytokine activity in the inflammatory infiltrates of the upper genital tract of female macaques infected with Chlamydia trachomatis. J Infect Dis 174:647–650PubMedCrossRefGoogle Scholar
  153. Van Voorhis WC, Barrett LK, Sweeney YT, Kuo CC, Patton DL (1997) Repeated Chlamydia trachomatis infection of Macaca nemestrina fallopian tubes produces a Th1-like cytokine response associated with fibrosis and scarring. Infect Immun 65:2175–2182PubMedPubMedCentralGoogle Scholar
  154. Vasilevsky S, Greub G, Nardelli-Haefliger D, Baud D (2014) Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin Microbiol Rev 27:346–370PubMedPubMedCentralCrossRefGoogle Scholar
  155. Vlcek KR, Li W, Manam S, Zanotti B, Nicholson BJ, Ramsey KH, Murthy AK (2016) The contribution of Chlamydia-specific CD8(+) T cells to upper genital tract pathology. Immunol Cell Biol 94:208–212PubMedCrossRefGoogle Scholar
  156. von Hertzen L, Alakarppa H, Koskinen R, Liippo K, Surcel HM, Leinonen M, Saikku P (1997) Chlamydia pneumoniae infection in patients with chronic obstructive pulmonary disease. Epidemiol Infect 118:155–164CrossRefGoogle Scholar
  157. Watkins NG, Hadlow WJ, Moos AB, Caldwell HD (1986) Ocular delayed hypersensitivity: a pathogenetic mechanism of chlamydial-conjunctivitis in guinea pigs. Proc Natl Acad Sci USA 83:7480–7484PubMedPubMedCentralCrossRefGoogle Scholar
  158. Waugh CA, Timms P, Andrew D, Rawlinson G, Brumm J, Nilsson K, Beagley KW (2015) Comparison of subcutaneous versus intranasal immunization of male koalas (Phascolarctos cinereus) for induction of mucosal and systemic immunity against Chlamydia pecorum. Vaccine 33:855–860PubMedCrossRefGoogle Scholar
  159. Welter-Stahl L, Ojcius DM, Viala J, Girardin S, Liu W, Delarbre C, Philpott D, Kelly KA, Darville T (2006) Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell Microbiol 8:1047–1057PubMedCrossRefGoogle Scholar
  160. Westrom L, Mardh PA (1990) Acute pelvic inflammatory disease. In: Holmes KK, Mardh PA, Sparling PF, Weisner PJ (eds) Sexually transmitted diseases. NY, McGraw-Hill, New York, pp 593–615Google Scholar
  161. WHO (2016) Global strategy for the prevention and control of sexually transmitted infection: 2006–2015Google Scholar
  162. Witkin SS, Jeremias J, Toth M, Ledger WJ (1994) Proliferative response to conserved epitopes of the Chlamydia trachomatis and human 60-kilodalton heat-shock proteins by lymphocytes from women with salpingitis. Am J Obstet Gynecol 171:455–460PubMedCrossRefGoogle Scholar
  163. Wolner-Hanssen P, Kiviat NB, Holmes KK (1990) Atypical pelvic inflammatory disease: subacute, chronic, or subclinical upper genital tract infection in women. In: Holmes KK, Mardh PA, Sparling PF, Weisner PJ (eds) Sexually transmitted diseases. NY, McGraw-Hill, New York, pp 763–771Google Scholar
  164. Yang X, Brunham RC (1998) Gene knockout B cell-deficient mice demonstrate that B cells play an important role in the initiation of T cell responses to Chlamydia trachomatis (mouse pneumonitis) lung infection. J Immunol 161:1439–1446PubMedGoogle Scholar
  165. Yang X, Gartner J, Zhu L, Wang S, Brunham RC (1999) IL-10 gene knockout mice show enhanced Th1-like protective immunity and absent granuloma formation following Chlamydia trachomatis lung infection. J Immunol 162:1010–1017PubMedGoogle Scholar
  166. Yi Y, Zhong G, Brunham RC (1993) Continuous B-cell epitopes in Chlamydia trachomatis heat shock protein 60. Infect Immun 61:1117–1120PubMedPubMedCentralGoogle Scholar
  167. Zafiratos MT, Manam S, Henderson KK, Ramsey KH, Murthy AK (2015) CD8+ T cells mediate Chlamydia pneumoniae-induced atherosclerosis in mice. Pathog Dis 73Google Scholar
  168. Zhang YX, Fox JG, Ho Y, Zhang L, Stills HF Jr, Smith TF (1993) Comparison of the major outer-membrane protein (MOMP) gene of mouse pneumonitis (MoPn) and hamster SFPD strains of Chlamydia trachomatis with other Chlamydia strains. Mol Biol Evol 10:1327–1342PubMedGoogle Scholar
  169. Zhong G, Liu L, Fan T, Fan P, Ji H (2000) Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon gamma-inducible major histocompatibility complex class I expression in Chlamydia-infected cells. J Exp Med 191:1525–1534PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zhou X, Chen Q, Moore J, Kolls JK, Halperin S, Wang J (2009) Critical role of the interleukin-17/interleukin-17 receptor axis in regulating host susceptibility to respiratory infection with Chlamydia species. Infect Immun 77:5059–5070PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ashlesh K. Murthy
    • 1
  • Weidang Li
    • 1
  • Kyle H. Ramsey
    • 2
  1. 1.Department of PathologyMidwestern UniversityDowners GroveUSA
  2. 2.Department of Microbiology and ImmunologyMidwestern UniversityDowners GroveUSA

Personalised recommendations