Advertisement

NK Cells and Cancer Immunoediting

  • Camille Guillerey
  • Mark J. SmythEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 395)

Abstract

Natural killer (NK) cells are innate lymphoid cells (ILC) known for their ability to recognize and rapidly eliminate infected or transformed cells. Consequently, NK cells are fundamental for host protection against virus infections and malignancies. Even though the critical role of NK cells in cancer immunosurveillance was suspected years ago, the underlying mechanisms took time to be unraveled. Today, it is clear that anti-tumor functions of NK cells are tightly regulated and expand far beyond the simple killing of malignant cells. In spite of tremendous steps made in understanding the NK cell biology, further work is warranted to fully exploit the anticancer potential of these cells. Indeed, tumor-mediated immune suppression hampers NK cell activity, thus complicating their stimulation for therapeutic purposes. Herein, we review the current knowledge of NK cell functions in anti-tumor immunity . We discuss NK cell activity in the cancer immunoediting process with particular emphasis on the elimination and escape phases.

Keywords

Natural Killer Natural Killer Cell Natural Killer Cell Activity Natural Killer Cell Function Natural Killer Cell Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

M.J.S. is supported by a NH&MRC Australia Fellowship (628623) and Program Grant (1013667).

References

  1. Adib-Conquy M, Scott-Algara D, Cavaillon JM, Souza-Fonseca-Guimaraes F (2014) TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol 92(3):256–262. doi: 10.1038/icb.2013.99 PubMedCrossRefGoogle Scholar
  2. Afshar-Sterle S, Zotos D, Bernard NJ, Scherger AK, Rodling L, Alsop AE, Walker J, Masson F, Belz GT, Corcoran LM, O’Reilly LA, Strasser A, Smyth MJ, Johnstone R, Tarlinton DM, Nutt SL, Kallies A (2014) Fas ligand-mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas. Nat Med 20(3):283–290. doi: 10.1038/nm.3442 PubMedCrossRefGoogle Scholar
  3. Akazawa T, Ebihara T, Okuno M, Okuda Y, Shingai M, Tsujimura K, Takahashi T, Ikawa M, Okabe M, Inoue N, Okamoto-Tanaka M, Ishizaki H, Miyoshi J, Matsumoto M, Seya T (2007) Antitumor NK activation induced by the toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proc Natl Acad Sci USA 104(1):252–257. doi: 10.1073/pnas.0605978104 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059. doi: 10.1038/nm1622 PubMedCrossRefGoogle Scholar
  5. Arase H, Arase N, Saito T (1995) Fas-mediated cytotoxicity by freshly isolated natural killer cells. J Exp Med 181(3):1235–1238PubMedCrossRefGoogle Scholar
  6. Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, Varesio L, Moretta L, Bosco MC, Vitale M (2013) Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol 43(10):2756–2764. doi: 10.1002/eji.201343448 PubMedCrossRefGoogle Scholar
  7. Baragano Raneros A, Suarez-Alvarez B, Lopez-Larrea C (2014) Secretory pathways generating immunosuppressive NKG2D ligands: new targets for therapeutic intervention. Oncoimmunology 3:e28497. doi: 10.4161/onci.28497 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Beavis PA, Divisekera U, Paget C, Chow MT, John LB, Devaud C, Dwyer K, Stagg J, Smyth MJ, Darcy PK (2013) Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci USA 110(36):14711–14716. doi: 10.1073/pnas.1308209110 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Benson DM Jr, Hofmeister CC, Padmanabhan S, Suvannasankha A, Jagannath S, Abonour R, Bakan C, Andre P, Efebera Y, Tiollier J, Caligiuri MA, Farag SS (2012) A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood 120(22):4324–4333. doi: 10.1182/blood-2012-06-438028 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Biassoni R, Cantoni C, Pende D, Sivori S, Parolini S, Vitale M, Bottino C, Moretta A (2001) Human natural killer cell receptors and co-receptors. Immunol Rev 181:203–214PubMedCrossRefGoogle Scholar
  11. Bihl F, Pecheur J, Breart B, Poupon G, Cazareth J, Julia V, Glaichenhaus N, Braud VM (2010) Primed antigen-specific CD4+ T cells are required for NK cell activation in vivo upon Leishmania major infection. J Immunol 185(4):2174–2181. doi: 10.4049/jimmunol.1001486 PubMedCrossRefGoogle Scholar
  12. Brady J, Hayakawa Y, Smyth MJ, Nutt SL (2004) IL-21 induces the functional maturation of murine NK cells. J Immunol 172(4):2048–2058PubMedCrossRefGoogle Scholar
  13. Bruno A, Ferlazzo G, Albini A, Noonan DM (2014) A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. J Nat Cancer Inst 106(8): dju200. doi: 10.1093/jnci/dju200
  14. Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107(1):159–166. doi: 10.1182/blood-2005-04-1351 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Caligiuri MA (2008) Human natural killer cells. Blood 112(3):461–469. doi: 10.1182/blood-2007-09-077438 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Carlsten M, Norell H, Bryceson YT, Poschke I, Schedvins K, Ljunggren HG, Kiessling R, Malmberg KJ (2009) Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J Immunol 183(8):4921–4930. doi: 10.4049/jimmunol.0901226 PubMedCrossRefGoogle Scholar
  17. Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A (1999) Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163(9):4647–4650PubMedGoogle Scholar
  18. Carrega P, Morandi B, Costa R, Frumento G, Forte G, Altavilla G, Ratto GB, Mingari MC, Moretta L, Ferlazzo G (2008) Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(-) cells and display an impaired capability to kill tumor cells. Cancer 112(4):863–875. doi: 10.1002/cncr.23239 PubMedCrossRefGoogle Scholar
  19. Cerwenka A, Baron JL, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98(20):11521–11526. doi: 10.1073/pnas.201238598 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Chan CJ, Andrews DM, Smyth MJ (2008) Can NK cells be a therapeutic target in human cancer? Eur J Immunol 38(11):2964–2968. doi: 10.1002/eji.200838764 PubMedCrossRefGoogle Scholar
  21. Chan CJ, Andrews DM, McLaughlin NM, Yagita H, Gilfillan S, Colonna M, Smyth MJ (2010) DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J Immunol 184(2):902–911. doi: 10.4049/jimmunol.0903225 PubMedCrossRefGoogle Scholar
  22. Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT, Town L, Ritchie DS, Colonna M, Andrews DM, Smyth MJ (2014) The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol 15(5):431–438. doi: 10.1038/ni.2850 PubMedCrossRefGoogle Scholar
  23. Chiba S, Ikushima H, Ueki H, Yanai H, Kimura Y, Hangai S, Nishio J, Negishi H, Tamura T, Saijo S, Iwakura Y, Taniguchi T (2014) Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses eLife 3:e04177. doi: 10.7554/eLife.04177
  24. Chin AI, Miyahira AK, Covarrubias A, Teague J, Guo B, Dempsey PW, Cheng G (2010) Toll-like receptor 3-mediated suppression of TRAMP prostate cancer shows the critical role of type I interferons in tumor immune surveillance. Cancer Res 70(7):2595–2603. doi: 10.1158/0008-5472.CAN-09-1162 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Chow MT, Sceneay J, Paget C, Wong CS, Duret H, Tschopp J, Moller A, Smyth MJ (2012) NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res 72(22):5721–5732. doi: 10.1158/0008-5472.CAN-12-0509 PubMedCrossRefGoogle Scholar
  26. Chretien AS, Le Roy A, Vey N, Prebet T, Blaise D, Fauriat C, Olive D (2014) Cancer-induced alterations of NK-mediated target recognition: current and investigational pharmacological strategies aiming at restoring NK-mediated anti-tumor activity. Front Immunol 5:122. doi: 10.3389/fimmu.2014.00122 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Cooper MA, Fehniger TA, Caligiuri MA (2001a) The biology of human natural killer-cell subsets. Trends Immunol 22(11):633–640PubMedCrossRefGoogle Scholar
  28. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA (2001b) Human natural killer cells: a unique innate immunoregulatory role for the CD56 (bright) subset. Blood 97(10):3146–3151PubMedCrossRefGoogle Scholar
  29. Cretney E, Degli-Esposti MA, Densley EH, Farrell HE, Davis-Poynter NJ, Smyth MJ (1999) m144, a murine cytomegalovirus (MCMV)-encoded major histocompatibility complex class I homologue, confers tumor resistance to natural killer cell-mediated rejection. J Exp Med 190(3):435–444PubMedCentralPubMedCrossRefGoogle Scholar
  30. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168(3):1356–1361PubMedCrossRefGoogle Scholar
  31. Croxford JL, Tang ML, Pan MF, Huang CW, Kamran N, Phua CM, Chng WJ, Ng SB, Raulet DH, Gasser S (2013) ATM-dependent spontaneous regression of early Emu-myc-induced murine B-cell leukemia depends on natural killer and T cells. Blood 121(13):2512–2521. doi: 10.1182/blood-2012-08-449025 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA, Marvel J, Yoh K, Takahashi S, Prinz I, de Bernard S, Buffat L, Walzer T (2014) T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 211(3):563–577. doi: 10.1084/jem.20131560 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Davis JE, Smyth MJ, Trapani JA (2001) Granzyme A and B-deficient killer lymphocytes are defective in eliciting DNA fragmentation but retain potent in vivo anti-tumor capacity. Eur J Immunol 31(1):39–47. doi: 10.1002/1521-4141(200101)31:1<39:AID-IMMU39>3.0.CO;2-1 PubMedCrossRefGoogle Scholar
  34. de Andrade LF, Smyth MJ, Martinet L (2014) DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol Cell Biol 92(3):237–244. doi: 10.1038/icb.2013.95 PubMedCrossRefGoogle Scholar
  35. Deauvieau F, Ollion V, Doffin AC, Achard C, Fonteneau JF, Verronese E, Durand I, Ghittoni R, Marvel J, Dezutter-Dambuyant C, Walzer T, Vie H, Perrot I, Goutagny N, Caux C, Valladeau-Guilemond J (2015) Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells. Int J Cancer 136(5):1085–1094. doi: 10.1002/ijc.29087 PubMedCrossRefGoogle Scholar
  36. Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5(2):112–124. doi: 10.1038/nri1549 PubMedCrossRefGoogle Scholar
  37. Delahaye NF, Rusakiewicz S, Martins I, Menard C, Roux S, Lyonnet L, Paul P, Sarabi M, Chaput N, Semeraro M, Minard-Colin V, Poirier-Colame V, Chaba K, Flament C, Baud V, Authier H, Kerdine-Romer S, Pallardy M, Cremer I, Peaudecerf L, Rocha B, Valteau-Couanet D, Gutierrez JC, Nunes JA, Commo F, Bonvalot S, Ibrahim N, Terrier P, Opolon P, Bottino C, Moretta A, Tavernier J, Rihet P, Coindre JM, Blay JY, Isambert N, Emile JF, Vivier E, Lecesne A, Kroemer G, Zitvogel L (2011) Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med 17(6):700–707. doi: 10.1038/nm.2366 PubMedCrossRefGoogle Scholar
  38. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, Lee H, Arthur CD, White JM, Kalinke U, Murphy KM, Schreiber RD (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208(10):1989–2003. doi: 10.1084/jem.20101158 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413(6852):165–171. doi: 10.1038/35093109 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360. doi: 10.1146/annurev.immunol.22.012703.104803 PubMedCrossRefGoogle Scholar
  41. Eberl G, MacDonald HR (2000) Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30(4):985–992. doi: 10.1002/(SICI)1521-4141(200004)30:4<985:AID-IMMU985>3.0.CO;2-E PubMedCrossRefGoogle Scholar
  42. Eguizabal C, Zenarruzabeitia O, Monge J, Santos S, Vesga MA, Maruri N, Arrieta A, Rinon M, Tamayo-Orbegozo E, Amo L, Larrucea S, Borrego F (2014) Natural killer cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective. Front Immunol 5:439. doi: 10.3389/fimmu.2014.00439 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Elboim M, Gazit R, Gur C, Ghadially H, Betser-Cohen G, Mandelboim O (2010) Tumor immunoediting by NKp46. J Immunol 184(10):5637–5644. doi: 10.4049/jimmunol.0901644 PubMedCrossRefGoogle Scholar
  44. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5(4):405–411. doi: 10.1038/7403 PubMedCrossRefGoogle Scholar
  45. Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS, Andrews DM, Smyth MJ, Colonna M (2008) DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J Exp Med 205(13):2965–2973. doi: 10.1084/jem.20081752 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Glas R, Franksson L, Une C, Eloranta ML, Ohlen C, Orn A, Karre K (2000) Recruitment and activation of natural killer (NK) cells in vivo determined by the target cell phenotype. An adaptive component of NK cell-mediated responses. J Exp Med 191(1):129–138PubMedCentralPubMedCrossRefGoogle Scholar
  47. Glasner A, Ghadially H, Gur C, Stanietsky N, Tsukerman P, Enk J, Mandelboim O (2012) Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1. J Immunol 188(6):2509–2515. doi: 10.4049/jimmunol.1102461 PubMedCrossRefGoogle Scholar
  48. Glimcher L, Shen FW, Cantor H (1977) Identification of a cell-surface antigen selectively expressed on the natural killer cell. J Exp Med 145(1):1–9PubMedCrossRefGoogle Scholar
  49. Greenberg AH, Playfair JH (1974) Spontaneously arising cytotoxicity to the P-815-Y mastocytoma in NZB mice. Clin Exp Immunol 16(1):99–109PubMedCentralPubMedGoogle Scholar
  50. Gregoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E, Walzer T (2007) The trafficking of natural killer cells. Immunol Rev 220:169–182. doi: 10.1111/j.1600-065X.2007.00563.x PubMedCrossRefGoogle Scholar
  51. Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, Cado D, Greenberg NM, Raulet DH (2008) NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28(4):571–580. doi: 10.1016/j.immuni.2008.02.016 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Guo Z, Tilburgs T, Wong B, Strominger JL (2014) Dysfunction of dendritic cells in aged C57BL/6 mice leads to failure of natural killer cell activation and of tumor eradication. Proc Natl Acad Sci USA 111(39):14199–14204. doi: 10.1073/pnas.1414780111 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Halama N, Braun M, Kahlert C, Spille A, Quack C, Rahbari N, Koch M, Weitz J, Kloor M, Zoernig I, Schirmacher P, Brand K, Grabe N, Falk CS (2011) Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines. Clinical Cancer Res An Official J Am Assoc Cancer Res 17(4):678–689. doi: 10.1158/1078-0432.CCR-10-2173 CrossRefGoogle Scholar
  54. Halfteck GG, Elboim M, Gur C, Achdout H, Ghadially H, Mandelboim O (2009) Enhanced in vivo growth of lymphoma tumors in the absence of the NK-activating receptor NKp46/NCR1. J Immunol 182(4):2221–2230. doi: 10.4049/jimmunol.0801878 PubMedCrossRefGoogle Scholar
  55. Hayakawa Y, Huntington ND, Nutt SL, Smyth MJ (2006) Functional subsets of mouse natural killer cells. Immunol Rev 214:47–55. doi: 10.1111/j.1600-065X.2006.00454.x PubMedCrossRefGoogle Scholar
  56. Herberman RB, Nunn ME, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 16 (2):216–229Google Scholar
  57. Herberman RB, Bartram S, Haskill JS, Nunn M, Holden HT, West WH (1977) Fc receptors on mouse effector cells mediating natural cytotoxicity against tumor cells. J Immunol 119(1):322–326PubMedGoogle Scholar
  58. Holmberg LA, Springer TA, Ault KA (1981) Natural killer activity in the peritoneal exudates of mice infected with Listeria monocytogenes: characterization of the natural killer cells by using a monoclonal rat anti-murine macrophage antibody (M1/70). J Immunol 127(5):1792–1799PubMedGoogle Scholar
  59. Holmes TD, Wilson EB, Black EV, Benest AV, Vaz C, Tan B, Tanavde VM, Cook GP (2014) Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT. Proc Natl Acad Sci USA 111(52):E5688–E5696. doi: 10.1073/pnas.1411072112 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda S, Yasui T, Kikutani H, Shibuya K, Shibuya A (2008) Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med 205(13):2959–2964. doi: 10.1084/jem.20081611 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Ikeda H, Old LJ, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13(2):95–109PubMedCrossRefGoogle Scholar
  62. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356(9244):1795–1799. doi: 10.1016/S0140-6736(00)03231-1 PubMedCrossRefGoogle Scholar
  63. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216. doi: 10.1146/annurev.immunol.20.083001.084359 PubMedCrossRefGoogle Scholar
  64. Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369(6475):31–37. doi: 10.1038/369031a0 PubMedCrossRefGoogle Scholar
  65. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95(13):7556–7561PubMedCentralPubMedCrossRefGoogle Scholar
  66. Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319(6055):675–678. doi: 10.1038/319675a0 PubMedCrossRefGoogle Scholar
  67. Kasamatsu J, Azuma M, Oshiumi H, Morioka Y, Okabe M, Ebihara T, Matsumoto M, Seya T (2014) INAM plays a critical role in IFN-gamma production by NK cells interacting with polyinosinic-polycytidylic acid-stimulated accessory cells. J Immunol 193(10):5199–5207. doi: 10.4049/jimmunol.1400924 PubMedCrossRefGoogle Scholar
  68. Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H (1999) Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 163(4):1906–1913PubMedGoogle Scholar
  69. Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H, Smyth MJ (2002a) Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 3(1):83–90. doi: 10.1038/ni746 PubMedCrossRefGoogle Scholar
  70. Kelly JM, Takeda K, Darcy PK, Yagita H, Smyth MJ (2002b) A role for IFN-gamma in primary and secondary immunity generated by NK cell-sensitive tumor-expressing CD80 in vivo. J Immunol 168(9):4472–4479PubMedCrossRefGoogle Scholar
  71. Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5(2):112–117. doi: 10.1002/eji.1830050208 PubMedCrossRefGoogle Scholar
  72. Kiessling R, Petranyi G, Klein G, Wigzell H (1976) Non-T-cell resistance against a mouse Moloney lymphoma. Int J Cancer 17(2):275–281PubMedCrossRefGoogle Scholar
  73. Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM (2000) In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci USA 97(6):2731–2736. doi: 10.1073/pnas.050588297 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Klingemann H (2014) Are natural killer cells superior CAR drivers? Oncoimmunology 3:e28147. doi: 10.4161/onci.28147 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ, Schreiber RD (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450(7171):903–907. doi: 10.1038/nature06309 PubMedCrossRefGoogle Scholar
  76. Kohrt HE, Colevas AD, Houot R, Weiskopf K, Goldstein MJ, Lund P, Mueller A, Sagiv-Barfi I, Marabelle A, Lira R, Troutner E, Richards L, Rajapaska A, Hebb J, Chester C, Waller E, Ostashko A, Weng WK, Chen L, Czerwinski D, Fu YX, Sunwoo J, Levy R (2014) Targeting CD137 enhances the efficacy of cetuximab. J Clin Investig 124(6):2668–2682. doi: 10.1172/JCI73014 PubMedCentralPubMedCrossRefGoogle Scholar
  77. Koka R, Burkett P, Chien M, Chai S, Boone DL, Ma A (2004) Cutting edge: murine dendritic cells require IL-15R alpha to prime NK cells. J Immunol 173(6):3594–3598PubMedCrossRefGoogle Scholar
  78. Krockenberger M, Dombrowski Y, Weidler C, Ossadnik M, Honig A, Hausler S, Voigt H, Becker JC, Leng L, Steinle A, Weller M, Bucala R, Dietl J, Wischhusen J (2008) Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. J Immunol 180(11):7338–7348PubMedCentralPubMedCrossRefGoogle Scholar
  79. Kumar V, McNerney ME (2005) A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat Rev Immunol 5(5):363–374. doi: 10.1038/nri1603 PubMedCrossRefGoogle Scholar
  80. Lee KM, McNerney ME, Stepp SE, Mathew PA, Schatzle JD, Bennett M, Kumar V (2004) 2B4 acts as a non-major histocompatibility complex binding inhibitory receptor on mouse natural killer cells. J Exp Med 199(9):1245–1254. doi: 10.1084/jem.20031989 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Lee SC, Srivastava RM, Lopez-Albaitero A, Ferrone S, Ferris RL (2011) Natural killer (NK): dendritic cell (DC) cross talk induced by therapeutic monoclonal antibody triggers tumor antigen-specific T cell immunity. Immunol Res 50(2–3):248–254. doi: 10.1007/s12026-011-8231-0 PubMedCentralPubMedCrossRefGoogle Scholar
  82. Ljunggren HG, Karre K (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162(6):1745–1759PubMedCrossRefGoogle Scholar
  83. Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11(7):237–244PubMedCrossRefGoogle Scholar
  84. Long EO (2007) Ready for prime time: NK cell priming by dendritic cells. Immunity 26(4):385–387. doi: 10.1016/j.immuni.2007.04.001 PubMedCrossRefGoogle Scholar
  85. Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26(4):503–517. doi: 10.1016/j.immuni.2007.03.006 PubMedCentralPubMedCrossRefGoogle Scholar
  86. Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, Goncalves A, Andre P, Romagne F, Thibault G, Viens P, Birnbaum D, Bertucci F, Moretta A, Olive D (2011) Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Investig 121(9):3609–3622. doi: 10.1172/JCI45816 PubMedCentralPubMedCrossRefGoogle Scholar
  87. Martinet L, Smyth MJ (2015) Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 15(4):243–254. doi: 10.1038/nri3799 PubMedCrossRefGoogle Scholar
  88. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5(12):1260–1265. doi: 10.1038/ni1138 PubMedCrossRefGoogle Scholar
  89. McGilvray RW, Eagle RA, Watson NF, Al-Attar A, Ball G, Jafferji I, Trowsdale J, Durrant LG (2009) NKG2D ligand expression in human colorectal cancer reveals associations with prognosis and evidence for immunoediting. Clinical Cancer Res Official J Am Assoc Cancer Res 15(22):6993–7002. doi: 10.1158/1078-0432.CCR-09-0991 CrossRefGoogle Scholar
  90. McIntyre KW, Welsh RM (1986) Accumulation of natural killer and cytotoxic T large granular lymphocytes in the liver during virus infection. J Exp Med 164(5):1667–1681PubMedCrossRefGoogle Scholar
  91. Mittal D, Young A, Stannard K, Yong M, Teng MW, Allard B, Stagg J, Smyth MJ (2014) Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res 74(14):3652–3658. doi: 10.1158/0008-5472.CAN-14-0957 PubMedCrossRefGoogle Scholar
  92. Mizutani T, Neugebauer N, Putz EM, Moritz N, Simma O, Zebedin-Brandl E, Gotthardt D, Warsch W, Eckelhart E, Kantner HP, Kalinke U, Lienenklaus S, Weiss S, Strobl B, Muller M, Sexl V, Stoiber D (2012) Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance. Oncoimmunology 1(7):1027–1037. doi: 10.4161/onci.21284 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Mocikat R, Braumuller H, Gumy A, Egeter O, Ziegler H, Reusch U, Bubeck A, Louis J, Mailhammer R, Riethmuller G, Koszinowski U, Rocken M (2003) Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19(4):561–569PubMedCrossRefGoogle Scholar
  94. Morandi B, Mortara L, Chiossone L, Accolla RS, Mingari MC, Moretta L, Moretta A, Ferlazzo G (2012) Dendritic cell editing by activated natural killer cells results in a more protective cancer-specific immune response. PLoS ONE 7(6):e39170. doi: 10.1371/journal.pone.0039170 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Moretta A, Marcenaro E, Sivori S, Della Chiesa M, Vitale M, Moretta L (2005) Early liaisons between cells of the innate immune system in inflamed peripheral tissues. Trends Immunol 26(12):668–675. doi: 10.1016/j.it.2005.09.008 PubMedCrossRefGoogle Scholar
  96. Newman KC, Riley EM (2007) Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nat Rev Immunol 7(4):279–291. doi: 10.1038/nri2057 PubMedCrossRefGoogle Scholar
  97. Orange JS (2013) Natural killer cell deficiency. J Allergy Clinical Immunol 132(3):515–525; quiz 526. doi: 10.1016/j.jaci.2013.07.020
  98. Oshimi Y, Oda S, Honda Y, Nagata S, Miyazaki S (1996) Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells. J Immunol 157(7):2909–2915PubMedGoogle Scholar
  99. O’Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM, Uppaluri R, Andrews DM, Ngiow SF, Teng MW, Smyth MJ, Schreiber RD, Bui JD (2012) Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med 209(10):1869–1882. doi: 10.1084/jem.20112738 PubMedCentralPubMedCrossRefGoogle Scholar
  100. Pachynski RK, Zabel BA, Kohrt HE, Tejeda NM, Monnier J, Swanson CD, Holzer AK, Gentles AJ, Sperinde GV, Edalati A, Hadeiba HA, Alizadeh AA, Butcher EC (2012) The chemoattractant chemerin suppresses melanoma by recruiting natural killer cell antitumor defenses. J Exp Med 209(8):1427–1435. doi: 10.1084/jem.20112124 PubMedCentralPubMedCrossRefGoogle Scholar
  101. Pahl JH, Ruslan SE, Buddingh EP, Santos SJ, Szuhai K, Serra M, Gelderblom H, Hogendoorn PC, Egeler RM, Schilham MW, Lankester AC (2012) Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clinical Cancer Res Official J Am Assoc Cancer Res 18(2):432–441. doi: 10.1158/1078-0432.CCR-11-2277 CrossRefGoogle Scholar
  102. Pan PY, Gu P, Li Q, Xu D, Weber K, Chen SH (2004) Regulation of dendritic cell function by NK cells: mechanisms underlying the synergism in the combination therapy of IL-12 and 4-1BB activation. J Immunol 172(8):4779–4789PubMedCrossRefGoogle Scholar
  103. Pardo J, Balkow S, Anel A, Simon MM (2002) Granzymes are essential for natural killer cell-mediated and perf-facilitated tumor control. Eur J Immunol 32(10):2881–2887. doi: 10.1002/1521-4141(2002010)32:10<2881:AID-IMMU2881>3.0.CO;2-K PubMedCrossRefGoogle Scholar
  104. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. doi: 10.1038/nrc3239 PubMedCrossRefGoogle Scholar
  105. Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5(3):201–214. doi: 10.1038/nri1570 PubMedCrossRefGoogle Scholar
  106. Parolini S, Santoro A, Marcenaro E, Luini W, Massardi L, Facchetti F, Communi D, Parmentier M, Majorana A, Sironi M, Tabellini G, Moretta A, Sozzani S (2007) The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109(9):3625–3632. doi: 10.1182/blood-2006-08-038844 PubMedCrossRefGoogle Scholar
  107. Pende D, Cantoni C, Rivera P, Vitale M, Castriconi R, Marcenaro S, Nanni M, Biassoni R, Bottino C, Moretta A, Moretta L (2001) Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol 31(4):1076–1086. doi: 10.1002/1521-4141(200104)31:4<1076:AID-IMMU1076>3.0.CO;2-Y PubMedCrossRefGoogle Scholar
  108. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, Bacigalupo A, Mingari MC, Moretta A, Moretta L (2005) Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105(5):2066–2073. doi: 10.1182/blood-2004-09-3548 PubMedCrossRefGoogle Scholar
  109. Platonova S, Cherfils-Vicini J, Damotte D, Crozet L, Vieillard V, Validire P, Andre P, Dieu-Nosjean MC, Alifano M, Regnard JF, Fridman WH, Sautes-Fridman C, Cremer I (2011) Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 71(16):5412–5422. doi: 10.1158/0008-5472.CAN-10-4179 PubMedCrossRefGoogle Scholar
  110. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3(10):781–790. doi: 10.1038/nri1199 PubMedCrossRefGoogle Scholar
  111. Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6(7):520–531. doi: 10.1038/nri1863 PubMedCrossRefGoogle Scholar
  112. Remark R, Alifano M, Cremer I, Lupo A, Dieu-Nosjean MC, Riquet M, Crozet L, Ouakrim H, Goc J, Cazes A, Flejou JF, Gibault L, Verkarre V, Regnard JF, Pages ON, Oudard S, Mlecnik B, Sautes-Fridman C, Fridman WH, Damotte D (2013) Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clinical Cancer Res Official J Am Assoc Cancer Res 19(15):4079–4091. doi: 10.1158/1078-0432.CCR-12-3847 CrossRefGoogle Scholar
  113. Romagnani C, Babic M (2014) NK/DC crosstalk in immunosurveillance: a broken relationship caused by WASP-deficiency. Eur J Immunol 44(4):958–961. doi: 10.1002/eji.201444514 PubMedCrossRefGoogle Scholar
  114. Santoni A, Herberman RB, Holden HT (1979) Correlation between natural and antibody-dependent cell-mediated cytotoxicity against tumor targets in the mouse. II. Characterization of the effector cells. J Natl Cancer Inst 63(4):995–1003PubMedGoogle Scholar
  115. Sarkar S, Germeraad WT, Rouschop KM, Steeghs EM, van Gelder M, Bos GM, Wieten L (2013) Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells. PLoS ONE 8(5):e64835. doi: 10.1371/journal.pone.0064835 PubMedCentralPubMedCrossRefGoogle Scholar
  116. Sathe P, Delconte RB, Souza-Fonseca-Guimaraes F, Seillet C, Chopin M, Vandenberg CJ, Rankin LC, Mielke LA, Vikstrom I, Kolesnik TB, Nicholson SE, Vivier E, Smyth MJ, Nutt SL, Glaser SP, Strasser A, Belz GT, Carotta S, Huntington ND (2014) Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nature Commun 5:4539. doi: 10.1038/ncomms5539 CrossRefGoogle Scholar
  117. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di Santo JP (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29(6):958–970. doi: 10.1016/j.immuni.2008.11.001 PubMedCrossRefGoogle Scholar
  118. Sceneay J, Chow MT, Chen A, Halse HM, Wong CS, Andrews DM, Sloan EK, Parker BS, Bowtell DD, Smyth MJ, Moller A (2012) Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 72(16):3906–3911. doi: 10.1158/0008-5472.CAN-11-3873 PubMedCrossRefGoogle Scholar
  119. Sconocchia G, Arriga R, Tornillo L, Terracciano L, Ferrone S, Spagnoli GC (2012) Melanoma cells inhibit NK cell functions. Cancer Res 72 (20):5428–5429; author reply 5430. doi: 10.1158/0008-5472.CAN-12-1181
  120. Screpanti V, Wallin RP, Ljunggren HG, Grandien A (2001) A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J Immunol 167(4):2068–2073PubMedCrossRefGoogle Scholar
  121. Seaman WE, Sleisenger M, Eriksson E, Koo GC (1987) Depletion of natural killer cells in mice by monoclonal antibody to NK-1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity. J Immunol 138(12):4539–4544PubMedGoogle Scholar
  122. Seillet C, Huntington ND, Gangatirkar P, Axelsson E, Minnich M, Brady HJ, Busslinger M, Smyth MJ, Belz GT, Carotta S (2014) Differential requirement for Nfil3 during NK cell development. J Immunol 192(6):2667–2676. doi: 10.4049/jimmunol.1302605 PubMedCrossRefGoogle Scholar
  123. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111. doi: 10.1038/35074122 PubMedCrossRefGoogle Scholar
  124. Shimizu K, Asakura M, Fujii S (2011) Prolonged antitumor NK cell reactivity elicited by CXCL10-expressing dendritic cells licensed by CD40L+ CD4+ memory T cells. J Immunol 186(10):5927–5937. doi: 10.4049/jimmunol.1003351 PubMedCrossRefGoogle Scholar
  125. Shresta S, MacIvor DM, Heusel JW, Russell JH, Ley TJ (1995) Natural killer and lymphokine-activated killer cells require granzyme B for the rapid induction of apoptosis in susceptible target cells. Proc Natl Acad Sci USA 92(12):5679–5683PubMedCentralPubMedCrossRefGoogle Scholar
  126. Sivori S, Pende D, Bottino C, Marcenaro E, Pessino A, Biassoni R, Moretta L, Moretta A (1999) NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur J Immunol 29(5):1656–1666. doi: 10.1002/(SICI)1521-4141(199905)29:05<1656:AID-IMMU1656>3.0.CO;2-1 PubMedCrossRefGoogle Scholar
  127. Sivori S, Parolini S, Falco M, Marcenaro E, Biassoni R, Bottino C, Moretta L, Moretta A (2000) 2B4 functions as a co-receptor in human NK cell activation. Eur J Immunol 30(3):787–793. doi: 10.1002/1521-4141(200003)30:3<787:AID-IMMU787>3.0.CO;2-I PubMedCrossRefGoogle Scholar
  128. Sivori S, Falco M, Marcenaro E, Parolini S, Biassoni R, Bottino C, Moretta L, Moretta A (2002) Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc Natl Acad Sci USA 99(7):4526–4531. doi: 10.1073/pnas.072065999 PubMedCentralPubMedCrossRefGoogle Scholar
  129. Sivori S, Falco M, Della Chiesa M, Carlomagno S, Vitale M, Moretta L, Moretta A (2004) CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci USA 101(27):10116–10121. doi: 10.1073/pnas.0403744101 PubMedCentralPubMedCrossRefGoogle Scholar
  130. Smyth MJ, Johnstone RW (2000) Role of TNF in lymphocyte-mediated cytotoxicity. Microsc Res Tech 50(3):196–208. doi: 10.1002/1097-0029(20000801)50:3<196:AID-JEMT3>3.0.CO;2-9 PubMedCrossRefGoogle Scholar
  131. Smyth MJ, Kelly JM, Baxter AG, Korner H, Sedgwick JD (1998) An essential role for tumor necrosis factor in natural killer cell-mediated tumor rejection in the peritoneum. J Exp Med 188(9):1611–1619PubMedCentralPubMedCrossRefGoogle Scholar
  132. Smyth MJ, Thia KY, Cretney E, Kelly JM, Snook MB, Forbes CA, Scalzo AA (1999) Perforin is a major contributor to NK cell control of tumor metastasis. J Immunol 162(11):6658–6662PubMedGoogle Scholar
  133. Smyth MJ, Taniguchi M, Street SE (2000a) The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 165(5):2665–2670PubMedCrossRefGoogle Scholar
  134. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA (2000b) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192(5):755–760PubMedCentralPubMedCrossRefGoogle Scholar
  135. Smyth MJ, Crowe NY, Godfrey DI (2001) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13(4):459–463PubMedCrossRefGoogle Scholar
  136. Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2(11):850–861. doi: 10.1038/nrc928 PubMedCrossRefGoogle Scholar
  137. Smyth MJ, Swann J, Kelly JM, Cretney E, Yokoyama WM, Diefenbach A, Sayers TJ, Hayakawa Y (2004) NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med 200(10):1325–1335. doi: 10.1084/jem.20041522 PubMedCentralPubMedCrossRefGoogle Scholar
  138. Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y (2005) NKG2D function protects the host from tumor initiation. J Exp Med 202(5):583–588. doi: 10.1084/jem.20050994 PubMedCentralPubMedCrossRefGoogle Scholar
  139. Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C, Chase JM, Rothman PB, Yu J, Riley JK, Zhu J, Tian Z, Yokoyama WM (2014) Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3:e01659. doi: 10.7554/eLife.01659
  140. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, Foa R, Santoni A (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113(15):3503–3511. doi: 10.1182/blood-2008-08-173914 PubMedCrossRefGoogle Scholar
  141. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol 13(2):145–149. doi: 10.1038/nri3365 PubMedCrossRefGoogle Scholar
  142. Srivastava RM, Lee SC, Andrade Filho PA, Lord CA, Jie HB, Davidson HC, Lopez-Albaitero A, Gibson SP, Gooding WE, Ferrone S, Ferris RL (2013) Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clinical Cancer Res Official J Am Assoc Cancer Res 19(7):1858–1872. doi: 10.1158/1078-0432.CCR-12-2426 CrossRefGoogle Scholar
  143. Strbo N, Oizumi S, Sotosek-Tokmadzic V, Podack ER (2003) Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity 18(3):381–390PubMedCrossRefGoogle Scholar
  144. Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97(1):192–197PubMedCrossRefGoogle Scholar
  145. Street SE, Trapani JA, MacGregor D, Smyth MJ (2002) Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 196(1):129–134PubMedCentralPubMedCrossRefGoogle Scholar
  146. Tahara-Hanaoka S, Shibuya K, Kai H, Miyamoto A, Morikawa Y, Ohkochi N, Honda S, Shibuya A (2006) Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 107(4):1491–1496. doi: 10.1182/blood-2005-04-1684 PubMedCrossRefGoogle Scholar
  147. Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H, Okumura K (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7(1):94–100. doi: 10.1038/83416 PubMedCrossRefGoogle Scholar
  148. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, Okumura K (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195(2):161–169PubMedCentralPubMedCrossRefGoogle Scholar
  149. Takeda K, Cretney E, Hayakawa Y, Ota T, Akiba H, Ogasawara K, Yagita H, Kinoshita K, Okumura K, Smyth MJ (2005) TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105(5):2082–2089. doi: 10.1182/blood-2004-08-3262 PubMedCrossRefGoogle Scholar
  150. Talmadge JE, Meyers KM, Prieur DJ, Starkey JR (1980) Role of NK cells in tumour growth and metastasis in beige mice. Nature 284(5757):622–624PubMedCrossRefGoogle Scholar
  151. Terme M, Ullrich E, Aymeric L, Meinhardt K, Coudert JD, Desbois M, Ghiringhelli F, Viaud S, Ryffel B, Yagita H, Chen L, Mecheri S, Kaplanski G, Prevost-Blondel A, Kato M, Schultze JL, Tartour E, Kroemer G, Degli-Esposti M, Chaput N, Zitvogel L (2012) Cancer-induced immunosuppression: IL-18-elicited immunoablative NK cells. Cancer Res 72(11):2757–2767. doi: 10.1158/0008-5472.CAN-11-3379 PubMedCrossRefGoogle Scholar
  152. Tu MM, Mahmoud AB, Wight A, Mottashed A, Belanger S, Rahim MM, Abou-Samra E, Makrigiannis AP (2014) Ly49 family receptors are required for cancer immunosurveillance mediated by natural killer cells. Cancer Res 74(14):3684–3694. doi: 10.1158/0008-5472.CAN-13-3021 PubMedCrossRefGoogle Scholar
  153. Urosevic M, Dummer R (2008) Human leukocyte antigen-G and cancer immunoediting. Cancer Res 68(3):627–630. doi: 10.1158/0008-5472.CAN-07-2704 PubMedCrossRefGoogle Scholar
  154. Vaidya SV, Stepp SE, McNerney ME, Lee JK, Bennett M, Lee KM, Stewart CL, Kumar V, Mathew PA (2005) Targeted disruption of the 2B4 gene in mice reveals an in vivo role of 2B4 (CD244) in the rejection of B16 melanoma cells. J Immunol 174(2):800–807PubMedCrossRefGoogle Scholar
  155. van den Broek MF, Kagi D, Zinkernagel RM, Hengartner H (1995) Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur J Immunol 25(12):3514–3516. doi: 10.1002/eji.1830251246 PubMedCrossRefGoogle Scholar
  156. van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184(5):1781–1790PubMedCrossRefGoogle Scholar
  157. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271. doi: 10.1146/annurev-immunol-031210-101324 PubMedCrossRefGoogle Scholar
  158. Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, Augugliaro R, Moretta L, Moretta A (1998) NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 187(12):2065–2072PubMedCentralPubMedCrossRefGoogle Scholar
  159. Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L (2014) Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol 44(6):1582–1592. doi: 10.1002/eji.201344272 PubMedCrossRefGoogle Scholar
  160. Vivier E (2006) What is natural in natural killer cells? Immunol Lett 107(1):1–7. doi: 10.1016/j.imlet.2006.07.004 PubMedCrossRefGoogle Scholar
  161. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510. doi: 10.1038/ni1582 PubMedCrossRefGoogle Scholar
  162. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49. doi: 10.1126/science.1198687 PubMedCentralPubMedCrossRefGoogle Scholar
  163. Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6(12):940–952. doi: 10.1038/nri1983 PubMedCrossRefGoogle Scholar
  164. Walzer T, Blery M, Chaix J, Fuseri N, Chasson L, Robbins SH, Jaeger S, Andre P, Gauthier L, Daniel L, Chemin K, Morel Y, Dalod M, Imbert J, Pierres M, Moretta A, Romagne F, Vivier E (2007) Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci USA 104(9):3384–3389. doi: 10.1073/pnas.0609692104 PubMedCentralPubMedCrossRefGoogle Scholar
  165. Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10(5):317–327. doi: 10.1038/nri2744 PubMedCentralPubMedCrossRefGoogle Scholar
  166. Wendel M, Galani IE, Suri-Payer E, Cerwenka A (2008) Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68(20):8437–8445. doi: 10.1158/0008-5472.CAN-08-1440 PubMedCrossRefGoogle Scholar
  167. Wilk E, Kalippke K, Buyny S, Schmidt RE, Jacobs R (2008) New aspects of NK cell subset identification and inference of NK cells’ regulatory capacity by assessing functional and genomic profiles. Immunobiology 213(3–4):271–283. doi: 10.1016/j.imbio.2007.10.012 PubMedCrossRefGoogle Scholar
  168. Yajima T, Nishimura H, Wajjwalku W, Harada M, Kuwano H, Yoshikai Y (2002) Overexpression of interleukin-15 in vivo enhances antitumor activity against MHC class I-negative and -positive malignant melanoma through augmented NK activity and cytotoxic T-cell response. Int J Cancer 99(4):573–578. doi: 10.1002/ijc.10395 PubMedCrossRefGoogle Scholar
  169. Young A, Mittal D, Stagg J, Smyth MJ (2014) Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4(8):879–888. doi: 10.1158/2159-8290.CD-14-0341 PubMedCrossRefGoogle Scholar
  170. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188(12):2375–2380PubMedCentralPubMedCrossRefGoogle Scholar
  171. Zhang C, Zhang J, Tian Z (2006) The regulatory effect of natural killer cells: do “NK-reg cells” exist? Cell Mol Immunol 3(4):241–254PubMedGoogle Scholar
  172. Zhao BG, Vasilakos JP, Tross D, Smirnov D, Klinman DM (2014) Combination therapy targeting toll like receptors 7, 8 and 9 eliminates large established tumors. J Immunother Cancer 2:12. doi: 10.1186/2051-1426-2-12 PubMedCentralPubMedCrossRefGoogle Scholar
  173. Zheng LM, Ojcius DM, Garaud F, Roth C, Maxwell E, Li Z, Rong H, Chen J, Wang XY, Catino JJ, King I (1996) Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J Exp Med 184(2):579–584PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Immunology in Cancer and Infection LaboratoryQIMR Berghofer Medical Research InstituteHerstonAustralia
  2. 2.School of MedicineUniversity of QueenslandHerstonAustralia

Personalised recommendations