The Future of HIV-1 Therapeutics pp 243-252

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 389)

Illustrations of the HIV Life Cycle

Abstract

Illustrations of the HIV Life Cycle. The illustrations include proteins, nucleic acids and membranes; small molecules and water are omitted for clarity. Host cell molecules are shown in shades of blue and green and blood plasma proteins are shown in shades of tan and brown. HIV proteins are shown in red and magenta, HIV RNA is in yellow and HIV DNA is in yellow-green. The 3D model of the mature virion was generated using CellPACK by Graham Johnson

Illustrations of the major steps of HIV life cycle are presented that integrate information from structural and biophysical studies. The illustrations depict HIV and its interaction with its cellular host at a magnification that reveals all macromolecules. This report describes the sources of scientific support for the structures and processes shown in the illustrations.

References

  1. Ambrose Z, Aiken C (2014) HIV-1 uncoating: connection to nuclear entry and regulation by host proteins. Virology 454–455:371–379. doi:10.1016/j.virol.2014.02.004, [pii] S0042-6822(14)00048-8
  2. Balasubramaniam M, Freed EO (2011) New insights into HIV assembly and trafficking. Physiology (Bethesda) 26(4):236-251. doi:10.1152/physiol.00051.2010, [pii] 26/4/236
  3. Bell NM, Lever AM 2013 HIV Gag polyprotein: processing and early viral particle assembly. Trends Microbiol 21(3):136–144. doi:10.1016/j.tim.2012.11.006, [pii] S0966-842X(12)00212-0
  4. Brierley I, Dos Ramos FJ (2006) Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res 119 (1):29-42. doi:10.1016/j.virusres.2005.10.008, [pii] S0168-1702(05)00321-7
  5. Briggs JA, Krausslich HG (2011) The molecular architecture of HIV. J Mol Biol 410 (4):491–500. doi:10.1016/j.jmb.2011.04.021, [pii] S0022-2836(11)00436-0
  6. Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, Vogt VM, Johnson MC (2004) The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11 (7):672–675. doi:10.1038/nsmb785, [pii] nsmb785
  7. Checkley MA, Luttge BG, Freed EO (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 410 (4):582–608. doi:10.1016/j.jmb.2011.04.042, [pii] S0022-2836(11)00471-2
  8. Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J, Anders M, Schneider J, Muller B, Hell SW, Krausslich HG (2012) Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338 (6106):524–528. doi:10.1126/science.1226359, [pii] 338/6106/524
  9. Datta SA, Curtis JE, Ratcliff W, Clark PK, Crist RM, Lebowitz J, Krueger S, Rein A (2007) Conformation of the HIV-1 Gag protein in solution. J Mol Biol 365 (3):812–824. doi:10.1016/j.jmb.2006.10.073, [pii] S0022-2836(06)01453-7
  10. de Marco A, Muller B, Glass B, Riches JD, Krausslich HG, Briggs JA (2010) Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS Pathog 6(11):e1001215. doi:10.1371/journal.ppat.1001215 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Di Nunzio F (2013) New insights in the role of nucleoporins: a bridge leading to concerted steps from HIV-1 nuclear entry until integration. Virus Res 178 (2):187–196. doi:10.1016/j.virusres.2013.09.003, [pii] S0168-1702(13)00295-5
  12. Diribarne G, Bensaude O (2009) 7SK RNA, a non-coding RNA regulating P-TEFb, a general transcription factor. RNA Biol 6 (2):122–128, [pii] 8115Google Scholar
  13. Engelman A, Cherepanov P (2012) The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol 10 (4):279–290. doi:10.1038/nrmicro2747, [pii] nrmicro2747
  14. Fassati A (2012) Multiple roles of the capsid protein in the early steps of HIV-1 infection. Virus Res 170 (1–2):15–24. doi:10.1016/j.virusres.2012.09.012, [pii] S0168-1702(12)00365-6
  15. Fernandes J, Jayaraman B, Frankel A (2012) The HIV-1 Rev response element: an RNA scaffold that directs the cooperative assembly of a homo-oligomeric ribonucleoprotein complex. RNA Biol 9 (1):6–11. doi:10.4161/rna.9.1.18178, [pii] 18178
  16. Fisher RJ, Rein A, Fivash M, Urbaneja MA, Casas-Finet JR, Medaglia M, Henderson LE (1998) Sequence-specific binding of human immunodeficiency virus type 1 nucleocapsid protein to short oligonucleotides. J Virol 72(3):1902–1909PubMedCentralPubMedGoogle Scholar
  17. Ganser-Pornillos BK, Yeager M, Pornillos O (2012) Assembly and architecture of HIV. Adv Exp Med Biol 726:441–465. doi:10.1007/978-1-4614-0980-9_20 CrossRefPubMedGoogle Scholar
  18. Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18 (2):203–217. doi:10.1016/j.sbi.2008.02.001, [pii] S0959-440X(08)00028-6
  19. Gaudin R, de Alencar BC, Arhel N, Benaroch P (2013) HIV trafficking in host cells: motors wanted! Trends Cell Biol 23 (12):652–662. doi:10.1016/j.tcb.2013.09.004, [pii] S0962-8924(13)00156-6
  20. Goodsell DS (2009) The machinery of life, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  21. Goodsell DS (2011) Eukaryotic cell panorama. Biochem Mol Biol Educ 39(2):91–101. doi:10.1002/bmb.20494 CrossRefPubMedGoogle Scholar
  22. Goodsell DS (2012) Illustrating the machinery of life: viruses. Biochem Mol Biol Educ 40(5):291–296. doi:10.1002/bmb.20636 CrossRefPubMedGoogle Scholar
  23. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21 (1):77–91. doi:10.1016/j.devcel.2011.05.015, [pii] S1534-5807(11)00207-3
  24. Herschhorn A, Hizi A (2010) Retroviral reverse transcriptases. Cell Mol Life Sci 67(16):2717–2747. doi:10.1007/s00018-010-0346-2 CrossRefPubMedGoogle Scholar
  25. Hughes SH (2014) Reverse transcription of retroviruses and LTR retrotransposons. Microbiol Spectr 2(5):MDNA3-0027–2014Google Scholar
  26. Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11 (8):556–566. doi:10.1038/nrm2937, [pii] nrm2937
  27. Ivanchenko S, Godinez WJ, Lampe M, Krausslich HG, Eils R, Rohr K, Brauchle C, Muller B, Lamb DC (2009) Dynamics of HIV-1 assembly and release. PLoS Pathog 5(11):e1000652. doi:10.1371/journal.ppat.1000652 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Johnson GT, Autin L, Al-Alusi M, Goodsell DS, Sanner MF, Olson AJ (2015) cellPACK: a virtual mesoscope to model and visualize structural systems biology. Nat Methods 12 (1):85–91. doi:10.1038/nmeth.3204, [pii] nmeth.3204
  29. Johnson GT, Goodsell DS, Autin L, Forli S, Sanner MF, Olson AJ (2014) 3D molecular models of whole HIV-1 virions generated with cellPACK. Faraday Discuss 169:23–44. doi:10.1039/c4fd00017j CrossRefPubMedGoogle Scholar
  30. Julien JP, Lee PS, Wilson IA (2012) Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Immunol Rev 250(1):180–198. doi:10.1111/imr.12005 CrossRefPubMedCentralPubMedGoogle Scholar
  31. Karn J, Stoltzfus CM (2012) Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2 (2):a006916. doi:10.1101/cshperspect.a006916, [pii] a006916
  32. Klasse PJ (2012) The molecular basis of HIV entry. Cell Microbiol 14(8):1183–1192. doi:10.1111/j.1462-5822.2012.01812.x CrossRefPubMedCentralPubMedGoogle Scholar
  33. Krishnan L, Engelman A (2012) Retroviral integrase proteins and HIV-1 DNA integration. J Biol Chem 287 (49):40858–40866. doi:10.1074/jbc.R112.397760, [pii] R112.397760
  34. Lim RY, Aebi U, Fahrenkrog B (2008) Towards reconciling structure and function in the nuclear pore complex. Histochem Cell Biol 129(2):105–116. doi:10.1007/s00418-007-0371-x CrossRefPubMedCentralPubMedGoogle Scholar
  35. Maertens GN, Hare S, Cherepanov P (2010) The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468 (7321):326–329. doi:10.1038/nature09517, [pii] nature09517
  36. Maillot B, Levy N, Eiler S, Crucifix C, Granger F, Richert L, Didier P, Godet J, Pradeau-Aubreton K, Emiliani S, Nazabal A, Lesbats P, Parissi V, Mely Y, Moras D, Schultz P, Ruff M (2013) Structural and functional role of INI1 and LEDGF in the HIV-1 preintegration complex. PLoS ONE 8 (4):e60734. doi:10.1371/journal.pone.0060734, [pii] PONE-D-12-31606
  37. Mangus DA, Evans MC, Jacobson A (2003) Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 4(7):223. doi:10.1186/gb-2003-4-7-223 CrossRefPubMedCentralPubMedGoogle Scholar
  38. McCullough J, Colf LA, Sundquist WI (2013) Membrane fission reactions of the mammalian ESCRT pathway. Annu Rev Biochem 82:663–692. doi:10.1146/annurev-biochem-072909-101058 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Michel F, Crucifix C, Granger F, Eiler S, Mouscadet JF, Korolev S, Agapkina J, Ziganshin R, Gottikh M, Nazabal A, Emiliani S, Benarous R, Moras D, Schultz P, Ruff M (2009) Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor. EMBO J 28 (7):980–991. doi:10.1038/emboj.2009.41, [pii] emboj200941
  40. Muller B, Tessmer U, Schubert U, Krausslich HG (2000) Human immunodeficiency virus type 1 Vpr protein is incorporated into the virion in significantly smaller amounts than gag and is phosphorylated in infected cells. J Virol 74(20):9727–9731CrossRefPubMedCentralPubMedGoogle Scholar
  41. O’Carroll IP, Soheilian F, Kamata A, Nagashima K, Rein A (2013) Elements in HIV-1 Gag contributing to virus particle assembly. Virus Res 171 (2):341–345. doi:10.1016/j.virusres.2012.10.016, [pii] S0168-1702(12)00405-4
  42. Onafuwa-Nuga AA, Telesnitsky A, King SR (2006) 7SL RNA, but not the 54-kd signal recognition particle protein, is an abundant component of both infectious HIV-1 and minimal virus-like particles. RNA 12 (4):542–546. doi:10.1261/rna.2306306, [pii] rna.2306306
  43. Ott DE (2008) Cellular proteins detected in HIV-1. Rev Med Virol 18(3):159–175. doi:10.1002/rmv.570 CrossRefPubMedGoogle Scholar
  44. Ott M, Geyer M, Zhou Q (2011) The control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe 10 (5):426–435. doi:10.1016/j.chom.2011.11.002, [pii] S1931-3128(11)00336-2
  45. Pettit SC, Simsic J, Loeb DD, Everitt L, Hutchison CA 3rd, Swanstrom R (1991) Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid. J Biol Chem 266(22):14539–14547PubMedGoogle Scholar
  46. Popowicz GM, Schleicher M, Noegel AA, Holak TA (2006) Filamins: promiscuous organizers of the cytoskeleton. Trends Biochem Sci 31 (7):411–419. doi:10.1016/j.tibs.2006.05.006, [pii] S0968-0004(06)00140-X
  47. Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, Doran ER, Rafalski JA, Whitehorn EA, Baumeister K et al (1985) Complete nucleotide sequence of the AIDS virus. HTLV-III. Nature 313(6000):277–284CrossRefGoogle Scholar
  48. Rocha-Perugini V, Gordon-Alonso M, Sanchez-Madrid F (2014) PIP2: choreographer of actin-adaptor proteins in the HIV-1 dance. Trends Microbiol 22 (7):379–388. doi:10.1016/j.tim.2014.03.009, [pii] S0966-842X(14)00071-7
  49. Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A 103 (30):11364–11369. doi:10.1073/pnas.0602818103, [pii] 0602818103
  50. Schweitzer CJ, Jagadish T, Haverland N, Ciborowski P, Belshan M (2013) Proteomic analysis of early HIV-1 nucleoprotein complexes. J Proteome Res 12(2):559–572. doi:10.1021/pr300869h CrossRefPubMedCentralPubMedGoogle Scholar
  51. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136 (4):731–745. doi:10.1016/j.cell.2009.01.042, [pii] S0092-8674(09)00090-7
  52. Sundquist WI, Krausslich HG (2012) HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2 (7):a006924. doi:10.1101/cshperspect.a006924, [pii] a006924
  53. Tang C, Louis JM, Aniana A, Suh JY, Clore GM (2008) Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease. Nature 455 (7213):693–696. doi:10.1038/nature07342, [pii] nature07342
  54. Votteler J, Sundquist WI (2013) Virus budding and the ESCRT pathway. Cell Host Microbe 14 (3):232–241. doi:10.1016/j.chom.2013.08.012, [pii] S1931-3128(13)00294-1
  55. Waheed AA, Freed EO (2012) HIV type 1 Gag as a target for antiviral therapy. AIDS Res Hum Retroviruses 28(1):54–75. doi:10.1089/AID.2011.0230 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Warrilow D, Tachedjian G, Harrich D (2009) Maturation of the HIV reverse transcription complex: putting the jigsaw together. Rev Med Virol 19(6):324–337. doi:10.1002/rmv.627 CrossRefPubMedGoogle Scholar
  57. Wright ER, Schooler JB, Ding HJ, Kieffer C, Fillmore C, Sundquist WI, Jensen GJ (2007) Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 26 (8):2218–2226. doi:10.1038/sj.emboj.7601664, [pii] 7601664
  58. Yazaki K, Yoshida T, Wakiyama M, Miura K (2000) Polysomes of eukaryotic cells observed by electron microscopy. J Electron Microsc (Tokyo) 49(5):663–668CrossRefGoogle Scholar
  59. Zhu P, Liu J, Bess J Jr, Chertova E, Lifson JD, Grise H, Ofek GA, Taylor KA, Roux KH (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441 (7095):847–852. doi:10.1038/nature04817, [pii] nature04817

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Integrative Structural and Computational Biology and RCSB Protein Data BankThe Scripps Research InstituteLa JollaUSA

Personalised recommendations