Advertisement

Comparative Structural Analysis of the Putative Mono-ADP-Ribosyltransferases of the ARTD/PARP Family

  • Ana Filipa Pinto
  • Herwig SchülerEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 384)

Abstract

The existence and significance of endogenous cytosolic and nuclear mono-ADP-ribosylation has been a matter of debate. Today, evidence suggests that the human enzymes that catalyze the reaction have been rounded up. Moreover, substrate proteins and specific functions for mono-ADP-ribosyltransferases are beginning to be defined. Reader domains that specifically recognize mono-ADP-ribosylated target proteins and erasers that remove the mono-ADP-ribosyl mark have been identified. Here, we review the contribution of crystal structures to our understanding of the putative mono-ADP-ribosyltransferases with Diphtheria toxin and ARTD1/PARP1 homology.

Keywords

PARP Inhibitor Diphtheria Toxin Bacterial Toxin Transferase Domain Nicotinamide Moiety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ARTC

ADP-ribosyltransferases with Clostridium toxin homology

ARTD

ADP-ribosyltransferases with Diphtheria toxin homology

DT

Diphtheria toxin

ExoA

Exotoxin A

mARTD

Mono-ADP-ribosylating ARTD enzymes

PARP

Poly-ADP-ribose polymerase

Notes

Acknowledgments

The majority of available mARTD crystal structures have been solved through funding by the Structural Genomics Consortium (www.thesgc.org). We wish to thank Torun Ekblad, Tobias Karlberg, Mirjam Klepsch, Ann-Gerd Thorsell, Patricia Verheugd, and Johan Weigelt for discussions, as well as Martin Moche (Protein Science Facility at Karolinska Institutet) and members of the Structural Genomics Consortium for their roles in solving mARTD crystal structures. Work in the laboratory is funded by the Swedish Foundation for Strategic Research, the Swedish Research Council, the Swedish Cancer Society, and the IngaBritt och Arne Lundbergs Research Foundation.

References

  1. Andersson CD, Karlberg T, Ekblad T et al (2012) Discovery of ligands for ADP-ribosyltransferases via docking-based virtual screening. J Med Chem 55(17):7706–7718PubMedCrossRefGoogle Scholar
  2. Aguiar RC, Takeyama K, He C et al (2005) B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity. J Biol Chem 280(40):33756–33765PubMedCrossRefGoogle Scholar
  3. Atasheva S, Akhrymuk M, Frolova EI et al (2012) New PARP gene with an anti-alphavirus function. J Virol 86(15):8147–8160PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barbarulo A, Iansante V, Chaidos A et al (2013) Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene 32(36):4231–4242PubMedCrossRefGoogle Scholar
  5. Barkauskaite E, Jankevicius G, Ladurner AG et al (2013) The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J 280(15):3491–3507PubMedCrossRefGoogle Scholar
  6. Bell CE, Eisenberg D (1996) Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 35(4):1137–1149PubMedCrossRefGoogle Scholar
  7. Blanke SR, Huang K, Wilson BA (1994) Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2. Biochemistry 33(17):5155–5161PubMedCrossRefGoogle Scholar
  8. Carter O’Connell I, Jin H, Morgan RK, David LL, Cohen MS (2014) Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets. J Am Chem Soc 136(14):5201–5204Google Scholar
  9. Chenna R, Sugawara H, Koike T et al (2003) Multiple sequence alignment with the Clustal series of programs. Nucl Acids Res 31(13):3497–3500PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cho SH, Goenka S, Henttinen T et al (2009) PARP-14, a member of the B-aggressive lymphoma family, transduces survival signals in primary B cells. Blood 113(11):2416–2425PubMedCrossRefPubMedCentralGoogle Scholar
  11. Crooks GE, Hon G, Chandonia JM et al (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190PubMedCrossRefPubMedCentralGoogle Scholar
  12. Di Paola S, Micaroni M, Di Tullio G et al (2012) PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1. PLoS One 7(6):e37352PubMedCrossRefPubMedCentralGoogle Scholar
  13. Domenighini M, Montecucco C, Ripka WC et al (1991) Computer modelling of the NAD binding site of ADP-ribosylating toxins: active-site structure and mechanism of NAD binding. Mol Microbiol 5(1):23–31PubMedCrossRefGoogle Scholar
  14. Feijs KL, Verheugd P, Lüscher B (2013a) Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology. FEBS J 280(15):3519–3529PubMedCrossRefGoogle Scholar
  15. Feijs KL, Verheugd P, Forst AH et al (2013b) Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell Biol 14(7):443–451PubMedCrossRefGoogle Scholar
  16. Gao G, Guo X, Goff SP (2002) Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297(5587):1703–1706PubMedCrossRefGoogle Scholar
  17. Gouet P, Courcelle E, Stuart DI et al (1999) ESPript: multiple sequence alignments in PostScript. Bioinformatics 15:305–308PubMedCrossRefGoogle Scholar
  18. He F, Tsuda K, Takahashi M et al (2012) Structural insight into the interaction of ADP-ribose with the PARP WWE domains. FEBS Lett 586(21):3858–3864PubMedCrossRefGoogle Scholar
  19. Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucl Acids Res 38:W545–W549PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hottiger MO, Hassa PO, Lüscher B et al (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219PubMedCrossRefGoogle Scholar
  21. Jørgensen R, Merrill AR, Yates SP et al (2005) Exotoxin A-eEF2 complex structure indicates ADP ribosylation by ribosome mimicry. Nature 436(7053):979–984PubMedCrossRefGoogle Scholar
  22. Jørgensen R, Wang Y, Visschedyk D et al (2008) The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep 9(8):802–809PubMedCrossRefPubMedCentralGoogle Scholar
  23. Jwa M, Chang P (2012) PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response. Nat Cell Biol 14(11):1223–1230PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kalisch T, Amé JC, Dantzer F et al (2012) New readers and interpretations of poly(ADP-ribosyl)ation. Trends Biochem Sci 37(9):381–390PubMedCrossRefGoogle Scholar
  25. Karlberg T, Markova N, Johansson I et al (2010) Structural basis for the interaction between tankyrase-2 and a potent Wnt-signaling inhibitor. J Med Chem 53(14):5352–5355PubMedCrossRefGoogle Scholar
  26. Karlberg T, Thorsell AG, Kallas Å et al (2012) Crystal structure of human ADP-ribose transferase ARTD15/PARP16 reveals a novel putative regulatory domain. J Biol Chem 287(29):24077–24081PubMedCrossRefPubMedCentralGoogle Scholar
  27. Karlberg T, Langelier MF, Pascal JM et al (2013) Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Mol Aspects Med 34(6):1088–1108PubMedCrossRefGoogle Scholar
  28. Kaufmann M, Feijs KL, Lüscher B (2014) Function and Regulation of the Mono-ADP-Ribosyltransferase ARTD10. Curr Top Microbiol Immunol [Epub ahead of print]Google Scholar
  29. Kleine H, Poreba E, Lesniewicz K et al (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32(1):57–69PubMedCrossRefGoogle Scholar
  30. Koch-Nolte F, Kernstock S, Mueller-Dieckmann C et al (2008) Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases. Front Biosci 13:6716–6729PubMedCrossRefGoogle Scholar
  31. Lehtiö L, Chi NW, Krauss S (2013) Tankyrases as drug targets. FEBS J 280(15):3576–3593PubMedCrossRefGoogle Scholar
  32. Leung AK, Vyas S, Rood JE et al (2011) Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42(4):489–499PubMedCrossRefPubMedCentralGoogle Scholar
  33. MacPherson L, Tamblyn L, Rajendra S et al (2013) 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Res 41(3):1604–1621PubMedCrossRefPubMedCentralGoogle Scholar
  34. Marsischky GT, Wilson BA, Collier RJ (1995) Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins. J Biol Chem 270(7):3247–3254PubMedCrossRefGoogle Scholar
  35. Mehrotra P, Riley JP, Patel R et al (2011) PARP-14 functions as a transcriptional switch for Stat6-dependent gene activation. J Biol Chem 286(3):1767–1776PubMedCrossRefPubMedCentralGoogle Scholar
  36. Otto H, Reche PA, Bazan F et al (2005) In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 6:139PubMedCrossRefPubMedCentralGoogle Scholar
  37. Pei J, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucl Acids Res 36(7):2295–2300PubMedCrossRefPubMedCentralGoogle Scholar
  38. Penning TD, Zhu GD, Gong J et al (2010) Optimization of phenyl-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase inhibitors: identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-66492), a highly potent and efficacious inhibitor. J Med Chem 53:3142–3153PubMedCrossRefGoogle Scholar
  39. Ruf A, Mennissier de Murcia J et al (1996) Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc Natl Acad Sci USA 93(15):7481–7485PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ruf A, Rolli V, de Murcia G et al (1998) The mechanism of the elongation and branching reaction of poly(ADP-ribose) polymerase as derived from crystal structures and mutagenesis. J Mol Biol 278(1):57–65PubMedCrossRefGoogle Scholar
  41. Verheugd P, Forst AH, Milke L et al (2013) Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10. Nat Commun 4:1683PubMedCrossRefGoogle Scholar
  42. Vyas S, Chesarone-Cataldo M, Todorova T (2013) A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat Commun 4:2240PubMedCrossRefPubMedCentralGoogle Scholar
  43. Wahlberg E, Karlberg T, Kouznetsova E et al (2012) Nat Biotech 30(3): 283–288Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden

Personalised recommendations