Advertisement

Influenza A Virus Reassortment

  • John Steel
  • Anice C. Lowen
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 385)

Abstract

Reassortment is the process by which influenza viruses swap gene segments. This genetic exchange is possible due to the segmented nature of the viral genome and occurs when two differing influenza viruses co-infect a cell. The viral diversity generated through reassortment is vast and plays an important role in the evolution of influenza viruses. Herein we review recent insights into the contribution of reassortment to the natural history and epidemiology of influenza A viruses, gained through population scale phylogenic analyses. We describe methods currently used to study reassortment in the laboratory, and we summarize recent progress made using these experimental approaches to further our understanding of influenza virus reassortment and the contexts in which it occurs.

Keywords

Influenza Virus Avian Influenza Avian Influenza Virus High Resolution Melt Swine Influenza Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Pan/99

A/Panama/2007/1999 (H3N2)

Finch/91

A/finch/England/2051/1991 (H5N2)

Moscow/99

A/Moscow/10/1999 (H3N2)

PR8

A/Puerto Rico/8/1934 (H1N1)

NL/09

A/Netherlands/602/2009 (H1N1)

Anhui/13

A/Anhui/1/2013 (H7N9)

RT

Reverse transcription

PCR

Polymerase chain reaction

HRM

High resolution melt analysis

Ct

Cycle threshold

cDNA

Complementary DNA

dsDNA

Double stranded DNA

vRNPs

Viral ribonucleoproteins

HPAI

Highly pathogenic avian influenza

LPAI

Low pathogenic avian influenza

TRIG

Triple reassortant internal gene

pH1N1

2009 pandemic H1N1 influenza virus

Notes

Acknowledgments

Research in the authors’ laboratories is supported by the NIH under R01 AI099000 (to AL) and the Center for Excellence in Influenza Research and Surveillance (CEIRS) contract number HHSN272201400004C (to JS and AL).

References

  1. Abolnik C, Gerdes GH, Sinclair M et al (2010) Phylogenetic analysis of influenza A viruses (H6N8, H1N8, H4N2, H9N2, H10N7) isolated from wild birds, ducks, and ostriches in South Africa from 2007 to 2009. Avian Dis 54:313–322CrossRefPubMedGoogle Scholar
  2. Al Faress S, Ferraris O, Moules V, Valette M, Hay A, Lina B (2008) Identification and characterization of a late AH1N2 human reassortant in France during the 2002–2003 influenza season. Virus Res 132:33–41. doi:S0168-1702(07)00369-3,  10.1016/j.virusres.2007.10.007
  3. Alexander DJ (2007) An overview of the epidemiology of avian influenza. Vaccine 25:5637–5644CrossRefPubMedGoogle Scholar
  4. Amorim MJ, Bruce EA, Read EK, Foeglein A, Mahen R, Stuart AD, Digard P (2011) A Rab11 and microtubule dependent mechanism for cytoplasmic transport of influenza A virus vRNA. J Virol. doi: 10.1128/JVI.02606-10
  5. Avilov SV, Moisy D, Naffakh N, Cusack S (2012) Influenza A virus progeny vRNP trafficking in live infected cells studied with the virus-encoded fluorescently tagged PB2 protein. Vaccine 30:7411–7417. doi: 10.1016/j.vaccine.2012.09.077, S0264-410X(12)01421-1
  6. Bahl J, Vijaykrishna D, Holmes EC, Smith GJ, Guan Y (2009) Gene flow and competitive exclusion of avian influenza A virus in natural reservoir hosts. Virology 390:289–297. doi:S0042-6822(09)00287-6,  10.1016/j.virol.2009.05.002
  7. Balint A, Metreveli G, Widen F et al (2009) The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant. Virol J 6:180. doi: 10.1186/1743-422X-6-180
  8. Banbura MW, Kawaoka Y, Thomas TL, Webster RG (1991) Reassortants with equine 1 (H7N7) influenza virus hemagglutinin in an avian influenza virus genetic background are pathogenic in chickens. Virology 184:469–471CrossRefPubMedGoogle Scholar
  9. Brockwell-Staats C, Webster RG, Webby RJ (2009) Diversity of influenza viruses in swine and the emergence of a novel human pandemic influenza A (H1N1). Influenza Other Respir Viruses 3:207–213. doi: 10.1111/j.1750-2659.2009.00096.x CrossRefPubMedCentralPubMedGoogle Scholar
  10. Brown IH, Harris PA, McCauley JW, Alexander DJ (1998) Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol 79(Pt 12):2947–2955PubMedGoogle Scholar
  11. Campbell PJ, Danzy S, Kyriakis CS, Deymier MJ, Lowen AC, Steel J (2014) The M segment of the 2009 pandemic influenza virus confers increased NA activity, filamentous morphology and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses. J Virol. doi: 10.1128/JVI.03607-13
  12. Capua I, Cattoli G, Terregino C, Marangon S (2008) Avian influenza in Italy 1997-2006. In: Klenk HD, Matrosovich MN, Stech J (eds) Avian influenza. Karger, Basel, pp 59–70CrossRefGoogle Scholar
  13. Castrucci MR, Donatelli I, Sidoli L, Barigazzi G, Kawaoka Y, Webster RG (1993) Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 193:503–506. doi:S0042-6822(83)71155-4,  10.1006/viro.1993.1155
  14. Chambers TM, Hinshaw VS, Kawaoka Y, Easterday BC, Webster RG (1991) Influenza viral infection of swine in the United States 1988–1989. Arch Virol 116:261–265CrossRefPubMedGoogle Scholar
  15. Chen H, Yuan H, Gao R et al (2014) Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet 383:714–721. doi: 10.1016/S0140-6736(14)60111-2
  16. Chen LM, Davis CT, Zhou H, Cox NJ, Donis RO (2008) Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses. PLoS Pathog 4:e1000072. doi: 10.1371/journal.ppat.1000072 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Chen MJ, La T, Zhao P, Tam JS, Rappaport R, Cheng SM (2006) Genetic and phylogenetic analysis of multi-continent human influenza A(H1N2) reassortant viruses isolated in 2001 through 2003. Virus Res 122:200–205. doi:S0168-1702(06)00245-0,  10.1016/j.virusres.2006.07.010
  18. Chin PS, Hoffmann E, Webby R, Webster RG, Guan Y, Peiris M, Shortridge KF (2002) Molecular evolution of H6 influenza viruses from poultry in Southeastern China: prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97 (H5N1)-like genes in poultry. J Virol 76:507–516CrossRefPubMedCentralPubMedGoogle Scholar
  19. Chou YY, Albrecht RA, Pica N et al (2011) The M segment of the 2009 new pandemic H1N1 influenza virus is critical for its high transmission efficiency in the guinea pig model. J Virol 85:11235–11241. doi: 10.1128/JVI.05794-11
  20. Chou YY, Heaton NS, Gao Q, Palese P, Singer R, Lionnet T (2013) Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. PLoS Pathog 9:e1003358. doi: 10.1371/journal.ppat.1003358, PPATHOGENS-D-12-03007
  21. Chou YY, Vafabakhsh R, Doganay S, Gao Q, Ha T, Palese P (2012) One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis. Proc Natl Acad Sci USA 109:9101–9106. doi: 10.1073/pnas.1206069109
  22. Cline TD, Karlsson EA, Freiden P, Seufzer BJ, Rehg JE, Webby RJ, Schultz-Cherry S (2011) Increased pathogenicity of a reassortant 2009 pandemic H1N1 influenza virus containing an H5N1 hemagglutinin. J Virol 85:12262–12270. doi: 10.1128/JVI.05582-11
  23. Deng G, Tan D, Shi J et al (2013) Complex reassortment of multiple subtypes of avian influenza viruses in domestic ducks at the dongting lake region of china. J Virol 87:9452–9462. doi: 10.1128/JVI.00776-13
  24. Dlugolenski D, Jones L, Tompkins SM, Crameri G, Wang LF, Tripp RA (2013) Bat cells from Pteropus alecto are susceptible to influenza A virus infection and reassortment. Influenza Other Respi Viruses. doi: 10.1111/irv.12128 Google Scholar
  25. Duan L, Bahl J, Smith GJ et al (2008) The development and genetic diversity of H5N1 influenza virus in China, 1996–2006. Virology 380:243–254. doi:S0042-6822(08)00485-6,  10.1016/j.virol.2008.07.038
  26. Dugan VG, Chen R, Spiro DJ et al (2008) The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog 4:e1000076. doi: 10.1371/journal.ppat.1000076 CrossRefPubMedCentralPubMedGoogle Scholar
  27. Ellis JS, Alvarez-Aguero A, Gregory V, Lin YP, Hay A, Zambon MC (2003) Influenza AH1N2 viruses, United Kingdom, 2001–2002 influenza season. Emerg Infect Dis 9:304–310CrossRefPubMedCentralPubMedGoogle Scholar
  28. Essere B, Yver M, Gavazzi C et al (2013) Critical role of segment-specific packaging signals in genetic reassortment of influenza A viruses. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1308649110
  29. Eurosurveillance (2009) Pandemic alert level 6: scientific criteria for an influenza pandemic fulfilled. Euro Surveill 14:19237. doi: 19237Google Scholar
  30. Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A (1999) Rescue of influenza A virus from recombinant DNA. J Virol 73:9679–9682PubMedCentralPubMedGoogle Scholar
  31. Fujii K, Fujii Y, Noda T et al (2005) Importance of both the coding and the segment-specific noncoding regions of the influenza A virus NS segment for its efficient incorporation into virions. J Virol 79:3766–3774 doi:79/6/3766,  10.1128/JVI.79.6.3766-3774.2005
  32. Fujii Y, Goto H, Watanabe T, Yoshida T, Kawaoka Y (2003) Selective incorporation of influenza virus RNA segments into virions. Proc Natl Acad Sci USA 100:2002–2007. doi: 10.1073/pnas.0437772100 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Fulvini AA, Ramanunninair M, Le J et al (2011) Gene constellation of influenza A virus reassortants with high growth phenotype prepared as seed candidates for vaccine production. PLoS One 6:e20823. doi: 10.1371/journal.pone.0020823, PONE-D-11-01114
  34. Fusaro A, Monne I, Salviato A et al (2011) Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications. J Virol 85:8413–8421. doi: 10.1128/JVI.00219-11
  35. Gao Q, Palese P (2009) Rewiring the RNAs of influenza virus to prevent reassortment. Proc Natl Acad Sci U S A 106:15891–15896. doi: 10.1073/pnas.0908897106 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Garcia-Sastre A, Schmolke M (2014) Avian influenza A H10N8—a virus on the verge? Lancet 383:676–677. doi: 10.1016/S0140-6736(14)60163-X CrossRefPubMedGoogle Scholar
  37. Garten RJ, Davis CT, Russell CA et al (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201. doi: 10.1126/science.1176225 CrossRefPubMedCentralPubMedGoogle Scholar
  38. Ghedin E, Sengamalay NA, Shumway M et al (2005) Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437:1162–1166. doi: 10.1038/nature04239 CrossRefPubMedGoogle Scholar
  39. Gog JR, Afonso Edos S, Dalton RM et al (2007) Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res 35:1897–1907. doi: 10.1093/nar/gkm087 CrossRefPubMedCentralPubMedGoogle Scholar
  40. Greenbaum BD, Li OT, Poon LL, Levine AJ, Rabadan R (2012) Viral reassortment as an information exchange between viral segments. Proc Natl Acad Sci USA 109:3341–3346. doi: 10.1073/pnas.1113300109 CrossRefPubMedCentralPubMedGoogle Scholar
  41. Gregory V, Bennett M, Orkhan MH et al (2002) Emergence of influenza A H1N2 reassortant viruses in the human population during 2001. Virology 300:1–7. doi: S0042682202915138Google Scholar
  42. Grimm D, Staeheli P, Hufbauer M et al (2007) Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proc Natl Acad Sci USA 104:6806–6811. doi: 10.1073/pnas.0701849104 CrossRefPubMedCentralPubMedGoogle Scholar
  43. Guan Y, Shortridge KF, Krauss S, Webster RG (1999) Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci USA 96:9363–9367CrossRefPubMedCentralPubMedGoogle Scholar
  44. Guo YJ, Xu XY, Cox NJ (1992) Human influenza A (H1N2) viruses isolated from China. J Gen Virol 73(Pt 2):383–387CrossRefPubMedGoogle Scholar
  45. Harnach R, Hubik R, Chivatal O (1950) Isolation of influenza virus in Czechoslovakia. Cas Cesk Vet 5:289PubMedGoogle Scholar
  46. Hinshaw VS, Wood JM, Webster RG, Deibel R, Turner B (1985) Circulation of influenza viruses and paramyxoviruses in waterfowl originating from two different areas of North America. Bull World Health Organ 63:711–719PubMedCentralPubMedGoogle Scholar
  47. Holmes EC, Ghedin E, Miller N et al (2005) Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol 3:e300. doi:05-PLBI-RA-0438R1,  10.1371/journal.pbio.0030300
  48. Hughes J, Allen RC, Baguelin M et al (2012) Transmission of equine influenza virus during an outbreak is characterized by frequent mixed infections and loose transmission bottlenecks. PLoS Pathog 8:e1003081. doi: 10.1371/journal.ppat.1003081, PPATHOGENS-D-12-01833
  49. Imai M, Watanabe T, Hatta M et al (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428. doi: 10.1038/nature10831 PubMedCentralPubMedGoogle Scholar
  50. Ince WL, Gueye-Mbaye A, Bennink JR, Yewdell JW (2013) Reassortment complements spontaneous mutation in influenza A virus NP and M1 genes to accelerate adaptation to a new host. J Virol 87:4330–4338. doi: 10.1128/JVI.02749-12 CrossRefPubMedCentralPubMedGoogle Scholar
  51. Ito T, Couceiro JN, Kelm S et al (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373PubMedCentralPubMedGoogle Scholar
  52. Jackson S, Van Hoeven N, Chen LM, Maines TR, Cox NJ, Katz JM, Donis RO (2009) Reassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessment. J Virol 83:8131–8140. doi: 10.1128/JVI.00534-09 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Jin H, Zhou H, Liu H et al (2005) Two residues in the hemagglutinin of A/Fujian/411/02-like influenza viruses are responsible for antigenic drift from A/Panama/2007/99. Virology 336:113–119 doi:S0042-6822(05)00155-8,  10.1016/j.virol.2005.03.010
  54. Kaplan MM, Payne AM (1959) Serological survey in animals for type A influenza in relation to the 1957 pandemic. Bull World Health Organ 20:465–488PubMedCentralPubMedGoogle Scholar
  55. Karasin AI, Carman S, Olsen CW (2006) Identification of human H1N2 and human-swine reassortant H1N2 and H1N1 influenza A viruses among pigs in Ontario, Canada (2003 to 2005). J Clin Microbiol 44:1123–1126. doi:44/3/1123,  10.1128/JCM.44.3.1123-1126.2006
  56. Karasin AI, Olsen CW, Anderson GA (2000a) Genetic characterization of an H1N2 influenza virus isolated from a pig in Indiana. J Clin Microbiol 38:2453–2456PubMedCentralPubMedGoogle Scholar
  57. Karasin AI, Schutten MM, Cooper LA et al (2000b) Genetic characterization of H3N2 influenza viruses isolated from pigs in North America, 1977–1999: evidence for wholly human and reassortant virus genotypes. Virus Res 68:71–85. doi: S0168-1702(00)00154-4Google Scholar
  58. Kaverin NV, Gambaryan AS, Bovin NV et al (1998) Postreassortment changes in influenza A virus hemagglutinin restoring HA-NA functional match. Virology 244:315–321 doi:S0042-6822(98)99119-X,  10.1006/viro.1998.9119
  59. Kaverin NV, Matrosovich MN, Gambaryan AS et al (2000) Intergenic HA-NA interactions in influenza A virus: postreassortment substitutions of charged amino acid in the hemagglutinin of different subtypes. Virus Res 66:123–129. doi: S0168170299001318Google Scholar
  60. Kilbourne ED (2006) Influenza pandemics of the 20th century. Emerg Infect Dis 12:9–14CrossRefPubMedCentralPubMedGoogle Scholar
  61. Kimble JB, Angel M, Wan H, Sutton TC, Finch C, Perez DR (2014) Alternative reassortment events leading to transmissible H9N1 influenza viruses in the ferret model. J Virol 88:66–71. doi: 10.1128/JVI.02677-13 CrossRefPubMedCentralPubMedGoogle Scholar
  62. Kiseleva I, Dubrovina I, Bazhenova E, Fedorova E, Larionova N, Rudenko L (2012) Possible outcomes of reassortment in vivo between wild type and live attenuated influenza vaccine strains. Vaccine 30:7395–7399. doi: 10.1016/j.vaccine.2012.09.076, S0264-410X(12)01420-X
  63. Kitikoon P, Nelson MI, Killian ML, Anderson TK, Koster L, Culhane MR, Vincent AL (2013) Genotype patterns of contemporary reassorted H3N2 virus in US swine. J Gen Virol 94:1236–1241. doi: 10.1099/vir.0.51839-0, 94/Pt_6/1236
  64. Koehler AV, Pearce JM, Flint PL, Franson JC, Ip HS (2008) Genetic evidence of intercontinental movement of avian influenza in a migratory bird: the northern pintail (Anas acuta). Mol Ecol 17:4754–4762. doi:MEC3953,  10.1111/j.1365-294X.2008.03953.x
  65. Koen JS (1919) A practical method for field diagnosis of swine diseases. Am J Vet Med 14:468–470Google Scholar
  66. Krauss S, Obert CA, Franks J et al (2007) Influenza in migratory birds and evidence of limited intercontinental virus exchange. PLoS Pathog 3:e167. doi:07-PLPA-RA-0309,  10.1371/journal.ppat.0030167
  67. Krauss S, Walker D, Pryor SP, Niles L, Chenghong L, Hinshaw VS, Webster RG (2004) Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne Zoonotic Dis 4:177–189CrossRefPubMedGoogle Scholar
  68. Kreibich A, Stech O, Hundt J, Ziller M, Mettenleiter TC, Stech J (2013) Avian influenza virus h3 hemagglutinin may enable high fitness of novel human virus reassortants. PLoS One 8:e79165. doi: 10.1371/journal.pone.0079165, PONE-D-13-04453
  69. Kundin WD (1970) Hong Kong A-2 influenza virus infection among swine during a human epidemic in Taiwan. Nature 228:857CrossRefPubMedGoogle Scholar
  70. Lakdawala SS, Lamirande EW, Suguitan AL Jr et al (2011) Eurasian-origin gene segments contribute to the transmissibility, aerosol release, and morphology of the 2009 pandemic H1N1 influenza virus. PLoS Pathog 7:e1002443. doi: 10.1371/journal.ppat.1002443, PPATHOGENS-D-11-01769
  71. Lam TT, Hon CC, Pybus OG et al (2008) Evolutionary and transmission dynamics of reassortant H5N1 influenza virus in Indonesia. PLoS Pathog 4:e1000130. doi: 10.1371/journal.ppat.1000130 CrossRefPubMedCentralPubMedGoogle Scholar
  72. Lam TT, Ip HS, Ghedin E et al (2012) Migratory flyway and geographical distance are barriers to the gene flow of influenza virus among North American birds. Ecol Lett 15:24–33. doi: 10.1111/j.1461-0248.2011.01703.x CrossRefPubMedCentralPubMedGoogle Scholar
  73. Lam TT, Wang J, Shen Y et al (2013) The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature. doi: 10.1038/nature12515 Google Scholar
  74. Lam TT, Zhu H, Wang J et al (2011) Reassortment events among swine influenza A viruses in China: implications for the origin of the 2009 influenza pandemic. J Virol 85:10279–10285. doi: 10.1128/JVI.05262-11 CrossRefPubMedCentralPubMedGoogle Scholar
  75. Lange J, Groth M, Kanrai P et al (2013) Circulation of classical swine influenza virus in Europe between the wars? Arch Virol. doi: 10.1007/s00705-013-1950-x PubMedGoogle Scholar
  76. Li C, Hatta M, Nidom CA, Muramoto Y, Watanabe S, Neumann G, Kawaoka Y (2010) Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. Proc Natl Acad Sci USA 107:4687–4692. doi: 10.1073/pnas.0912807107 CrossRefPubMedCentralPubMedGoogle Scholar
  77. Li C, Hatta M, Watanabe S, Neumann G, Kawaoka Y (2008) Compatibility among polymerase subunit proteins is a restricting factor in reassortment between equine H7N7 and human H3N2 influenza viruses. J Virol 82:11880–11888. doi: 10.1128/JVI.01445-08 CrossRefPubMedCentralPubMedGoogle Scholar
  78. Li KS, Guan Y, Wang J et al (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430:209–213. doi: 10.1038/nature02746 CrossRefPubMedGoogle Scholar
  79. Lin YP, Shaw M, Gregory V et al (2000) Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci USA 97:9654–9658. doi: 10.1073/pnas.160270697 CrossRefPubMedCentralPubMedGoogle Scholar
  80. Lubeck MD, Palese P, Schulman JL (1979) Nonrandom association of parental genes in influenza A virus recombinants. Virology 95:269–274CrossRefPubMedGoogle Scholar
  81. Lvov DK, Kaverin NV (2008) Avian influenza in Northern Eurasia. In: Klenk HD, Matrosovich MN, Stech J (eds) Avian influenza. Karger, Basel, pp 41–58CrossRefGoogle Scholar
  82. Ma W, Lager KM, Lekcharoensuk P et al (2010) Viral reassortment and transmission after co-infection of pigs with classical H1N1 and triple-reassortant H3N2 swine influenza viruses. J Gen Virol 91:2314–2321. doi: 10.1099/vir.0.021402-0
  83. Maines TR, Chen LM, Matsuoka Y et al (2006) Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. Proc Natl Acad Sci USA 103:12121–12126. doi: 10.1073/pnas.0605134103 CrossRefPubMedCentralPubMedGoogle Scholar
  84. Marsh GA, Hatami R, Palese P (2007) Specific residues of the influenza A virus hemagglutinin viral RNA are important for efficient packaging into budding virions. J Virol 81:9727–9736. doi: 10.1128/JVI.01144-07 CrossRefPubMedCentralPubMedGoogle Scholar
  85. Marsh GA, Rabadan R, Levine AJ, Palese P (2008) Highly conserved regions of influenza a virus polymerase gene segments are critical for efficient viral RNA packaging. J Virol 82:2295–2304. doi: 10.1128/JVI.02267-07 CrossRefPubMedCentralPubMedGoogle Scholar
  86. Marshall N, Priyamvada L, Ende Z, Steel J, Lowen AC (2013) Influenza virus reassortment occurs with high frequency in the absence of segment mismatch. PLoS Pathog 9:e1003421. doi: 10.1371/journal.ppat.1003421, PPATHOGENS-D-12-03096
  87. Matsuoka Y, Swayne DE, Thomas C et al (2009) Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. J Virol 83:4704–4708. doi: 10.1128/JVI.01987-08 CrossRefPubMedCentralPubMedGoogle Scholar
  88. Mayer V, Schulman JL, Kilbourne ED (1973) Nonlinkage of neurovirulence exclusively to viral hemagglutinin or neuraminidase in genetic recombinants of A-NWS (HON1) influenza virus. J Virol 11:272–278PubMedCentralPubMedGoogle Scholar
  89. Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D, Kawaoka Y (2000) Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol 74:6015–6020CrossRefPubMedCentralPubMedGoogle Scholar
  90. MMWR (2004) Preliminary assessment of the effectiveness of the 2003–2004 inactivated influenza vaccine–Colorado, December 2003. MMWR Morb Mortal Wkly Rep 53:8–11. doi:mm5301aGoogle Scholar
  91. MMWR (2009) Outbreak of swine-origin influenza A (H1N1) virus infection–Mexico, March-April 2009. MMWR Morb Mortal Wkly Rep 58:467–470 doi:mm5817a5Google Scholar
  92. MMWR (2012) Influenza A (H3N2) variant virus-related hospitalizations: Ohio, 2012. MMWR Morb Mortal Wkly Rep 61:764–767. doi:mm6138a3Google Scholar
  93. Mukherjee TR, Agrawal AS, Chakrabarti S, Chawla-Sarkar M (2012) Full genomic analysis of an influenza A (H1N2) virus identified during 2009 pandemic in Eastern India: evidence of reassortment event between co-circulating A(H1N1)pdm09 and A/Brisbane/10/2007-like H3N2 strains. Virol J 9:233. doi: 10.1186/1743-422X-9-233 CrossRefPubMedCentralPubMedGoogle Scholar
  94. Munster VJ, Baas C, Lexmond P et al (2007) Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 3:e61. doi:06-PLPA-RA-0436R3,  10.1371/journal.ppat.0030061
  95. Murcia PR, Baillie GJ, Stack JC et al (2013) Evolution of equine influenza virus in vaccinated horses. J Virol. doi: 10.1128/JVI.03379-12 Google Scholar
  96. Murcia PR, Hughes J, Battista P et al (2012) Evolution of an Eurasian avian-like influenza virus in naive and vaccinated pigs. PLoS Pathog 8:e1002730. doi: 10.1371/journal.ppat.1002730, PPATHOGENS-D-12-00315
  97. Nardelli L, Pascucci S, Gualandi GL, Loda P (1978) Outbreaks of classical swine influenza in Italy in 1976. Zentralbl Veterinarmed B 25:853–857CrossRefPubMedGoogle Scholar
  98. Nelson MI, Edelman L, Spiro DJ et al (2008a) Molecular epidemiology of A/H3N2 and A/H1N1 influenza virus during a single epidemic season in the United States. PLoS Pathog 4:e1000133. doi: 10.1371/journal.ppat.1000133 CrossRefPubMedCentralPubMedGoogle Scholar
  99. Nelson MI, Simonsen L, Viboud C et al (2006) Stochastic processes are key determinants of short-term evolution in influenza a virus. PLoS Pathog 2:e125. doi:06-PLPA-RA-0281R2,  10.1371/journal.ppat.0020125
  100. Nelson MI, Viboud C, Simonsen L et al (2008b) Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog 4:e1000012. doi: 10.1371/journal.ppat.1000012 CrossRefPubMedCentralPubMedGoogle Scholar
  101. Nelson MI, Vincent AL, Kitikoon P, Holmes EC, Gramer MR (2012) Evolution of novel reassortant A/H3N2 influenza viruses in North American swine and humans, 2009-2011. J Virol 86:8872–8878. doi: 10.1128/JVI.00259-12 CrossRefPubMedCentralPubMedGoogle Scholar
  102. Neumann G, Watanabe T, Ito H et al (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA 96:9345–9350CrossRefPubMedCentralPubMedGoogle Scholar
  103. Neverov AD, Lezhnina KV, Kondrashov AS, Bazykin GA (2014) Intrasubtype reassortments cause adaptive amino acid replacements in H3N2 influenza genes. PLoS Genet 10:e1004037. doi: 10.1371/journal.pgen.1004037, PGENETICS-D-13-01606
  104. Nguyen T, Rivailler P, Davis CT et al (2012) Evolution of highly pathogenic avian influenza (H5N1) virus populations in Vietnam between 2007 and 2010. Virology 432:405–416. doi: 10.1016/j.virol.2012.06.021, S0042-6822(12)00323-6
  105. Nishikawa F, Sugiyama T (1983) Direct isolation of H1N2 recombinant virus from a throat swab of a patient simultaneously infected with H1N1 and H3N2 influenza A viruses. J Clin Microbiol 18:425–427PubMedCentralPubMedGoogle Scholar
  106. Noda T, Sagara H, Yen A, Takada A, Kida H, Cheng RH, Kawaoka Y (2006) Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439:490–492. doi: 10.1038/nature04378 CrossRefPubMedGoogle Scholar
  107. Noda T, Sugita Y, Aoyama K et al (2012) Three-dimensional analysis of ribonucleoprotein complexes in influenza A virus. Nat Commun 3:639. doi: 10.1038/ncomms1647 CrossRefPubMedCentralPubMedGoogle Scholar
  108. Octaviani CP, Li C, Noda T, Kawaoka Y (2011) Reassortment between seasonal and swine-origin H1N1 influenza viruses generates viruses with enhanced growth capability in cell culture. Virus Res 156:147–150. doi:S0168-1702(10)00457-0,  10.1016/j.virusres.2010.12.014
  109. Octaviani CP, Ozawa M, Yamada S, Goto H, Kawaoka Y (2010) High level of genetic compatibility between swine-origin H1N1 and highly pathogenic avian H5N1 influenza viruses. J Virol 84:10918–10922. doi: 10.1128/JVI.01140-10 CrossRefPubMedCentralPubMedGoogle Scholar
  110. Olson SH, Parmley J, Soos C et al (2014) Sampling strategies and biodiversity of influenza a subtypes in wild birds. PLoS One 9:e90826. doi: 10.1371/journal.pone.0090826, PONE-D-13-36482
  111. Palese P, Schulman JL (1976a) Differences in RNA patterns of influenza A viruses. J Virol 17:876–884PubMedCentralPubMedGoogle Scholar
  112. Palese P, Schulman JL (1976b) Mapping of the influenza virus genome: identification of the hemagglutinin and the neuraminidase genes. Proc Natl Acad Sci USA 73:2142–2146CrossRefPubMedCentralPubMedGoogle Scholar
  113. Pasick J, Pedersen J, Hernandez MS (2012) Avian influenza in North America, 2009–2011. Avian Dis 56:845–848CrossRefPubMedGoogle Scholar
  114. Peiris JS, Guan Y, Markwell D, Ghose P, Webster RG, Shortridge KF (2001) Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment? J Virol 75:9679–9686. doi: 10.1128/JVI.75.20.9679-9686.2001 CrossRefPubMedCentralPubMedGoogle Scholar
  115. Pensaert M, Ottis K, Vandeputte J, Kaplan MM, Bachmann PA (1981) Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential importance for man. Bull World Health Organ 59:75–78PubMedCentralPubMedGoogle Scholar
  116. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC (2008) The genomic and epidemiological dynamics of human influenza A virus. Nature 453:615–619. doi: 10.1038/nature06945 CrossRefPubMedCentralPubMedGoogle Scholar
  117. Reperant LA, Kuiken T, Osterhaus AD (2012) Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans. Vaccine 30:4419–4434. doi: 10.1016/j.vaccine.2012.04.049, S0264-410X(12)00585-3
  118. Ritchey MB, Palese P, Schulman JL (1976) Mapping of the influenza virus genome. III. Identification of genes coding for nucleoprotein, membrane protein, and nonstructural protein. J Virol 20:307–313PubMedCentralPubMedGoogle Scholar
  119. Scholtissek C (1995) Molecular evolution of influenza viruses. Virus Genes 11:209–215CrossRefPubMedGoogle Scholar
  120. Schrauwen EJ, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA, Herfst S (2013) Reassortment between Avian H5N1 and human influenza viruses is mainly restricted to the matrix and neuraminidase gene segments. PLoS One 8:e59889. doi: 10.1371/journal.pone.0059889, PONE-D-12-35235
  121. Schrauwen EJ, Herfst S, Chutinimitkul S et al (2011) Possible increased pathogenicity of pandemic (H1N1) 2009 influenza virus upon reassortment. Emerg Infect Dis 17:200–208CrossRefPubMedCentralPubMedGoogle Scholar
  122. Shope RE (1931) Swine influenza: Iii. filtration experiments and etiology. J Exp Med 54:373–385CrossRefPubMedCentralPubMedGoogle Scholar
  123. Shortridge KF, Webster RG, Butterfield WK, Campbell CH (1977) Persistence of Hong Kong influenza virus variants in pigs. Science 196:1454–1455CrossRefPubMedGoogle Scholar
  124. Simonsen L, Viboud C, Grenfell BT et al (2007) The genesis and spread of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Mol Biol Evol 24:1811–1820. doi: 10.1093/molbev/msm103 CrossRefPubMedGoogle Scholar
  125. Smith GJ, Vijaykrishna D, Bahl J et al (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1125. doi: 10.1038/nature08182 CrossRefPubMedGoogle Scholar
  126. Stincarelli M, Arvia R, De Marco MA et al (2013) Reassortment ability of the 2009 pandemic H1N1 influenza virus with circulating human and avian influenza viruses: public health risk implications. Virus Res 175:151–154. doi: 10.1016/j.virusres.2013.04.012, S0168-1702(13)00129-9
  127. Takizawa N, Kumakura M, Takeuchi K, Kobayashi N, Nagata K (2010) Sorting of influenza A virus RNA genome segments after nuclear export. Virology 401:248–256. doi:S0042-6822(10)00152-2,  10.1016/j.virol.2010.02.030
  128. Tao H, Steel J, Lowen AC (2014) Intrahost dynamics of influenza virus reassortment. J Virol 88:7485–7492. doi: 10.1128/JVI.00715-14
  129. Van Reeth K, Brown IH, Durrwald R et al (2008) Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003. Influenza Other Respir Viruses 2:99–105 doi: 10.1111/j.1750-2659.2008.00043.x, IRV043
  130. Vijaykrishna D, Bahl J, Riley S et al (2008) Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog 4:e1000161. doi: 10.1371/journal.ppat.1000161 CrossRefPubMedCentralPubMedGoogle Scholar
  131. Vijaykrishna D, Poon LL, Zhu HC et al (2010) Reassortment of pandemic H1N1/2009 influenza A virus in swine. Science 328:1529. doi:328/5985/1529,  10.1126/science.1189132
  132. Vijaykrishna D, Smith GJ, Pybus OG et al (2011) Long-term evolution and transmission dynamics of swine influenza A virus. Nature 473:519–522. doi: 10.1038/nature10004 CrossRefPubMedGoogle Scholar
  133. Vincent AL, Ma W, Lager KM, Janke BH, Richt JA (2008) Swine influenza viruses a North American perspective. Adv Virus Res 72:127–154. doi: 10.1016/S0065-3527(08)00403-X CrossRefPubMedGoogle Scholar
  134. Wagner R, Matrosovich M, Klenk HD (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12:159–166. doi: 10.1002/rmv.352 CrossRefPubMedGoogle Scholar
  135. Wan XF, Dong L, Lan Y et al (2011) Indications that live poultry markets are a major source of human H5N1 influenza virus infection in China. J Virol 85:13432–13438. doi: 10.1128/JVI.05266-11 CrossRefPubMedCentralPubMedGoogle Scholar
  136. Webby RJ, Rossow K, Erickson G, Sims Y, Webster R (2004) Multiple lineages of antigenically and genetically diverse influenza A virus co-circulate in the United States swine population. Virus Res 103:67–73 doi: 10.1016/j.virusres.2004.02.015, S0168170204001145
  137. Webby RJ, Swenson SL, Krauss SL, Gerrish PJ, Goyal SM, Webster RG (2000) Evolution of swine H3N2 influenza viruses in the United States. J Virol 74:8243–8251CrossRefPubMedCentralPubMedGoogle Scholar
  138. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179PubMedCentralPubMedGoogle Scholar
  139. Webster RG, Sharp GB, Claas EC (1995) Interspecies transmission of influenza viruses. Am J Respir Crit Care Med 152:S25–S30CrossRefPubMedGoogle Scholar
  140. Weingartl HM, Berhane Y, Hisanaga T et al (2010) Genetic and pathobiologic characterization of pandemic H1N1 2009 influenza viruses from a naturally infected swine herd. J Virol 84:2245–2256. doi: 10.1128/JVI.02118-09 CrossRefPubMedCentralPubMedGoogle Scholar
  141. Werner O, Harder T, Veits J et al (2008) Avian influenza outbreaks in Germany—development of new avian vaccines. In: Klenk HD, Matrosovich MN, Stech J (eds) Avian influenza. Karger, Basel, pp 71–87CrossRefGoogle Scholar
  142. Westgeest KB, Russell CA, Lin X et al (2013) Genome-wide analysis of reassortment and evolution of human influenza A(H3N2) viruses circulating between 1968 and 2011. J Virol. doi: 10.1128/jvi.02163-13 PubMedGoogle Scholar
  143. WHO (2014) Confirmed human cases of avian influenza A(H7N9) reported to WHO Report 13 WHO 2014Google Scholar
  144. Wille M, Tolf C, Avril A, Latorre-Margalef N, Wallerstrom S, Olsen B, Waldenstrom J (2013) Frequency and patterns of reassortment in natural influenza A virus infection in a reservoir host. Virology 443:150–160. doi: 10.1016/j.virol.2013.05.004, S0042-6822(13)00263-8
  145. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860CrossRefPubMedGoogle Scholar
  146. Worobey M, Han GZ, Rambaut A (2014a) A synchronized global sweep of the internal genes of modern avian influenza virus. Nature. doi: 10.1038/nature13016 PubMedCentralPubMedGoogle Scholar
  147. Worobey M, Han GZ, Rambaut A (2014b) Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus. Proc Natl Acad Sci USA 111:8107–8112. doi: 10.1073/pnas.1324197111
  148. Wright PF, Neumann G, Kawaoka Y (2006) Orthomyxoviruses. In: Knipe DMH, Howley PM (eds) Fields virology. Lippincott-Raven, Philidelphia, pp 1691–1740Google Scholar
  149. Wu A, Su C, Wang D, et al (2013) Sequential reassortments underlie diverse influenza H7N9 genotypes in China. Cell Host Microbe. doi:S1931-3128(13)00298-9,  10.1016/j.chom.2013.09.001
  150. Xu X, Smith CB, Mungall BA, et al (2002) Intercontinental circulation of human influenza A(H1N2) reassortant viruses during the 2001-2002 influenza season. J Infect Dis 186:1490–1493. doi:JID020620,  10.1086/344738
  151. Zell R, Scholtissek C, Ludwig S (2013) Genetics, evolution, and the zoonotic capacity of European swine influenza viruses. Curr Top Microbiol Immunol 370:29–55. doi:10.1007/82_2012_267 PubMedGoogle Scholar
  152. Zhang Y, Zhang Q, Kong H et al (2013) H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science 340:1459–1463. doi: 10.1126/science.1229455 CrossRefPubMedGoogle Scholar
  153. Zhao ZM, Shortridge KF, Garcia M, Guan Y, Wan XF (2008) Genotypic diversity of H5N1 highly pathogenic avian influenza viruses. J Gen Virol 89:2182-2193 doi: 89/9/2182,  10.1099/vir.0.2008/001875-0
  154. Zhou NN, Senne DA, Landgraf JS et al (1999) Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J Virol 73:8851–8856PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyEmory University School of MedicineAtlantaUSA

Personalised recommendations