Advertisement

The Hemagglutinin: A Determinant of Pathogenicity

  • Eva Böttcher-Friebertshäuser
  • Wolfgang Garten
  • Mikhail Matrosovich
  • Hans Dieter Klenk
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 385)

Abstract

The hemagglutinin (HA) is a prime determinant of the pathogenicity of influenza A viruses. It initiates infection by binding to cell surface receptors and by inducing membrane fusion. The fusion capacity of HA depends on cleavage activation by host proteases, and it has long been known that highly pathogenic avian influenza viruses displaying a multibasic cleavage site differ in protease sensitivity from low pathogenic avian and mammalian influenza viruses with a monobasic cleavage site. Evidence is increasing that there are also variations in proteolytic activation among the viruses with a monobasic cleavage site, and several proteases have been identified recently that activate these viruses in a natural setting. Differences in protease sensitivity of HA and in tissue specificity of the enzymes are important determinants for virus tropism in the respiratory tract and for systemic spread of infection. Protease inhibitors that interfere with cleavage activation have the potential to be used for antiviral therapy and attenuated viruses have been generated by mutation of the cleavage site that can be used for the development of inactivated and live vaccines. It has long been known that human and avian influenza viruses differ in their specificity for sialic acid-containing cell receptors, and it is now clear that human tissues contain also receptors for avian viruses. Differences in receptor-binding specificity of seasonal and zoonotic viruses and differential expression of receptors for these viruses in the human respiratory tract account, at least partially, for the severity of disease. Receptor binding and fusion activation are modulated by HA glycosylation, and interaction of the glycans of HA with cellular lectins also affects virus infectivity. Interestingly, some of the mechanisms underlying pathogenicity are determinants of host range and transmissibility, as well.

Keywords

Influenza Virus Avian Influenza Virus Human Virus Highly Pathogenic Avian Influenza Virus Human Influenza Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Sabine Fischbach for expert secretarial help. Research of the authors was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 593, SFB 1021), the European Union 7th Framework Programme (278433 Predemics, 258084 FLUPIG), the Bundesministerium für Bildung und Forschung (FluResearchNet, DZIF), and the von Behring-Roentgen-Stiftung.

References

  1. Abe Y, Takashita E, Sugawara K, Matsuzaki Y, Muraki Y, Hongo S (2004) Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J Virol 78:9605–9611. doi: 10.1128/JVI.78.18.9605-9611.2004 PubMedCentralPubMedGoogle Scholar
  2. Afar DE, Vivanco I, Hubert RS et al (2001) Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res 61:1686–1692PubMedGoogle Scholar
  3. Baigent SJ, McCauley JW (2001) Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. Virus Res 79:177–185PubMedGoogle Scholar
  4. Banks J, Speidel ES, Moore E et al (2001) Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Arch Virol 146:963–973PubMedGoogle Scholar
  5. Baron J, Tarnow C, Mayoli-Nüssle D et al (2013) Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses. J Virol 87:1811–1820. doi: 10.1128/JVI.02320-12 PubMedCentralPubMedGoogle Scholar
  6. Baum LG, Paulson JC (1990) Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem 40:35–38Google Scholar
  7. Beaulieu A, Gravel E, Cloutier A et al (2013) Matriptase proteolytically activates influenza virus and promotes multicycle replication in the human airway epithelium. J Virol 87:4237–4251. doi: 10.1128/JVI.03005-12 PubMedCentralPubMedGoogle Scholar
  8. Becker GL, Sielaff F, Than ME et al (2010) Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics. J Med Chem 53:1067–1075. doi: 10.1021/jm9012455 PubMedCentralPubMedGoogle Scholar
  9. Becker GL, Lu Y, Hardes K et al (2012) Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases. J Biol Chem 287:21992–22003. doi: 10.1074/jbc.M111.332643 PubMedCentralPubMedGoogle Scholar
  10. Beigel JH, Farrar J, Han AM et al (2005) Avian influenza A (H5N1) infection in humans. N Engl J Med 353:1374–1385PubMedGoogle Scholar
  11. Belser JA, Gustin KM, Pearce MB et al (2013) Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature 501:556–559PubMedGoogle Scholar
  12. Bertram S, Heurich A, Lavender H et al (2012) Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One 7:e35876. doi: 10.1371/journal.pone.0035876 PubMedCentralPubMedGoogle Scholar
  13. Bosch FX, Orlich M, Klenk HD, Rott R (1979) The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology 95:197–207PubMedGoogle Scholar
  14. Böttcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M (2006) Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 80:9896–9898. doi: 10.1128/JVI.01118-06 PubMedCentralPubMedGoogle Scholar
  15. Böttcher-Friebertshäuser E, Freuer C, Sielaff F et al (2010) Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. J Virol 84:5605–5614. doi: 10.1128/JVI.00140-10 PubMedCentralPubMedGoogle Scholar
  16. Böttcher-Friebertshäuser E, Stein DA, Klenk HD, Garten W (2011) Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2. J Virol 85:1554–1562. doi: 10.1128/JVI.01294-10 PubMedCentralPubMedGoogle Scholar
  17. Böttcher-Friebertshäuser E, Lu Y, Meyer D, Sielaff F, Steinmetzer T, Klenk HD, Garten W (2012) Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine 30:7374–7380. doi: 10.1016/j.vaccine.2012.10.001 PubMedGoogle Scholar
  18. Böttcher-Friebertshäuser E, Klenk HD, Garten W (2013) Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium. Pathog Dis 69:87–100. doi: 10.1111/2049-632X.12053 PubMedGoogle Scholar
  19. Campitelli L, Mogavero E, De Marco MA et al (2004) Interspecies transmission of an H7N3 influenza virus from wild birds to intensively reared domestic poultry in Italy. Virology 323:24–36. doi: 10.1016/j.virol.2004.02.015 PubMedGoogle Scholar
  20. Chaipan C, Kobasa D, Bertram S et al (2009) Proteolytic activation of the 1918 influenza virus hemagglutinin. J Virol 83:3200–3211. doi: 10.1128/JVI.02205-08 PubMedCentralPubMedGoogle Scholar
  21. Chan MC, Chan RW, Yu WC et al (2009) Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells. Respir Res 10:102PubMedCentralPubMedGoogle Scholar
  22. Chan MC, Chan RW, Chan LL et al (2013a) Tropism and innate host responses of a novel avian influenza A H7N9 virus: an analysis of ex vivo and in vitro cultures of the human respiratory tract. Lancet Respir Med 1:534–542Google Scholar
  23. Chan RW, Chan MC, Nicholls JM, Malik Peiris JS (2013b) Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses. Virus Res 178:133–145Google Scholar
  24. Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC (1998) Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–417PubMedGoogle Scholar
  25. Chu VC, Whittaker GR (2004) Influenza virus entry and infection require host cell N-linked glycoprotein. Proc Natl Acad Sci USA 101:18153–18158. doi: 10.1073/pnas.0405172102 PubMedCentralPubMedGoogle Scholar
  26. Chutinimitkul S, Herfst S, Steel J et al (2010) Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. J Virol 84:11802–11813PubMedCentralPubMedGoogle Scholar
  27. Couceiro JN, Paulson JC, Baum LG (1993) Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res 29:155–165PubMedGoogle Scholar
  28. Deshpande KL, Fried VA, Ando M, Webster RG (1987) Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc Natl Acad Sci USA 84:36–40PubMedCentralPubMedGoogle Scholar
  29. Feldmann A, Schäfer MK, Garten W, Klenk HD (2000) Targeted infection of endothelial cells by avian influenza virus A/FPV/Rostock/34 (H7N1) in chicken embryos. J Virol 74:8018–8027PubMedCentralPubMedGoogle Scholar
  30. Fouchier RA, Schneeberger PM, Rozendaal FW et al (2004) Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci USA 101:1356–1361. doi: 10.1073/pnas.0308352100 PubMedCentralPubMedGoogle Scholar
  31. Gabriel G, Garn H, Wegmann M, Renz H, Herwig A, Klenk HD, Stech J (2008) The potential of a protease activation mutant of a highly pathogenic avian influenza virus for a pandemic live vaccine. Vaccine 26:956–965. doi: 10.1016/j.vaccine.2007.11.052 PubMedGoogle Scholar
  32. Galloway SE, Reed ML, Russell CJ, Steinhauer DA (2013) Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications for host range and adaptation. PLoS Pathog 9:e1003151. doi: 10.1371/journal.ppat.1003151 PubMedCentralPubMedGoogle Scholar
  33. Gambaryan AS, Robertson JS, Matrosovich MN (1999) Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. Virology 258:232–239. doi: 10.1006/viro.1999.9732 PubMedGoogle Scholar
  34. Gambaryan AS, Matrosovich TY, Philipp J et al (2012) Receptor-binding profiles of H7 subtype influenza viruses in different host species. J Virol 86:4370–4379PubMedCentralPubMedGoogle Scholar
  35. Gamblin SJ, Skehel JJ (2010) Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285:28403–28409PubMedCentralPubMedGoogle Scholar
  36. Gao R, Cao B, Hu Y et al (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:1888–1897. doi: 10.1056/NEJMoa1304459 PubMedGoogle Scholar
  37. Garcia M, Crawford JM, Latimer JW, Rivera-Cruz E, Perdue ML (1996) Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol 77(Pt 7):1493–1504PubMedGoogle Scholar
  38. Garten W, Klenk HD (2008) Cleavage activation of the influenza virus hemagglutinin and its role in pathogenesis. Klenk HD, Matrosovich MN, Stech J (eds) Avian Influenza. Karger, Basel, pp 156–167Google Scholar
  39. Garten W, Bosch FX, Linder D, Rott R, Klenk HD (1981) Proteolytic activation of the influenza virus hemagglutinin: the structure of the cleavage site and the enzymes involved in cleavage. Virology 115:361–374PubMedGoogle Scholar
  40. Garten W, Stieneke A, Shaw E, Wikstrom P, Klenk HD (1989) Inhibition of proteolytic activation of influenza virus hemagglutinin by specific peptidyl chloroalkyl ketones. Virology 172:25–31PubMedGoogle Scholar
  41. Garten W, Hallenberger S, Ortmann D et al (1994) Processing of viral glycoproteins by the subtilisin-like endoprotease furin and its inhibition by specific peptidylchloroalkylketones. Biochimie 76:217–225PubMedGoogle Scholar
  42. Geisler C, Jarvis DL (2011) Effective glycoanalysis with Maackia amurensis lectins requires a clear understanding of their binding specificities. Glycobiology 21:988–993PubMedCentralPubMedGoogle Scholar
  43. Glycobiology (2009) Essentials of glycobiology, 2nd edn. In: Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New YorkGoogle Scholar
  44. Gohrbandt S, Veits J, Breithaupt A et al (2011) H9 avian influenza reassortant with engineered polybasic cleavage site displays a highly pathogenic phenotype in chicken. J Gen Virol 92:1843–1853. doi: 10.1099/vir.0.031591-0 PubMedGoogle Scholar
  45. Goto H, Kawaoka Y (1998) A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc Natl Acad Sci USA 95:10224–10228PubMedCentralPubMedGoogle Scholar
  46. Gotoh B, Ogasawara T, Toyoda T, Inocencio NM, Hamaguchi M, Nagai Y (1990) An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J 9:4189–4195PubMedCentralPubMedGoogle Scholar
  47. Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2002) H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. EMBO J 21:865–875. doi: 10.1093/emboj/21.5.865 PubMedCentralPubMedGoogle Scholar
  48. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W (1992) Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360:358–361. doi: 10.1038/360358a0 PubMedGoogle Scholar
  49. Hamilton BS, Whittaker GR (2013) Cleavage activation of human-adapted influenza virus subtypes by kallikrein-related peptidases 5 and 12. J Biol Chem 288:17399–17407. doi: 10.1074/jbc.M112.440362 PubMedCentralPubMedGoogle Scholar
  50. Hartshorn KL (2010) Role of surfactant protein A and D (SP-A and SP-D) in human antiviral host defense. Front Biosci (Schol.Ed) 2:527–546Google Scholar
  51. Hatesuer B, Bertram S, Mehnert N, Bahgat MM, Nelson PS, Pöhlmann S, Schughart K (2013) Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice. PLoS Pathog 9:e1003774. doi: 10.1371/journal.ppat.1003774 PubMedCentralPubMedGoogle Scholar
  52. Herfst S, Schrauwen EJ, Linster M et al (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–1541PubMedGoogle Scholar
  53. Hillaire ML, van Eijk M, van Trierum SE et al (2011) Assessment of the antiviral properties of recombinant porcine SP-D against various influenza A viruses in vitro. PLoS One 6:e25005. doi: 10.1371/journal.pone.0025005 PubMedCentralPubMedGoogle Scholar
  54. Hillaire ML, Haagsman HP, Osterhaus AD, Rimmelzwaan GF, van EM (2013) Pulmonary surfactant protein D in first-line innate defence against influenza A virus infections. J Innate Immun 5:197–208Google Scholar
  55. Horimoto T, Nakayama K, Smeekens SP, Kawaoka Y (1994) Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol 68:6074–6078PubMedCentralPubMedGoogle Scholar
  56. Horimoto T, Rivera E, Pearson J, Senne D, Krauss S, Kawaoka Y, Webster RG (1995) Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology 213:223–230. doi: 10.1006/viro.1995.1562 PubMedGoogle Scholar
  57. Huang RT, Rott R, Klenk HD (1981) Influenza viruses cause hemolysis and fusion of cells. Virology 110:243–247PubMedGoogle Scholar
  58. Imai M, Watanabe T, Hatta M et al (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428PubMedCentralPubMedGoogle Scholar
  59. Imai M, Herfst S, Sorrell EM et al (2013) Transmission of influenza A/H5N1 viruses in mammals. Virus Res. 178:15–20PubMedGoogle Scholar
  60. Kawaoka Y, Webster RG (1988) Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc Natl Acad Sci U S A 85:324–328PubMedCentralPubMedGoogle Scholar
  61. Kawaoka Y, Naeve CW, Webster RG (1984) Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology 139:303–316PubMedGoogle Scholar
  62. Keil W, Geyer R, Dabrowski J, Dabrowski U, Niemann H, Stirm S, Klenk HD (1985) Carbohydrates of influenza virus. Structural elucidation of the individual glycans of the FPV hemagglutinin by two-dimensional 1H n.m.r. and methylation analysis. EMBO J 4:2711–2720PubMedCentralPubMedGoogle Scholar
  63. Kesic MJ, Meyer M, Bauer R, Jaspers I (2012) Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection. PLoS One 7:e35108. doi: 10.1371/journal.pone.0035108 PubMedCentralPubMedGoogle Scholar
  64. Khatchikian D, Orlich M, Rott R (1989) Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340:156–157. doi: 10.1038/340156a0 PubMedGoogle Scholar
  65. Kido H, Yokogoshi Y, Sakai K, Tashiro M, Kishino Y, Fukutomi A, Katunuma N (1992) Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein. J Biol Chem 267:13573–13579PubMedGoogle Scholar
  66. Kido H, Okumura Y, Yamada H, Le TQ, Yano M (2007) Proteases essential for human influenza virus entry into cells and their inhibitors as potential therapeutic agents. Curr Pharm Des 13:405–414PubMedGoogle Scholar
  67. Kim TS, Heinlein C, Hackman RC, Nelson PS (2006) Phenotypic analysis of mice lacking the Tmprss2-encoded protease. Mol Cell Biol 26:965–975. doi: 10.1128/MCB.26.3.965-975.2006 PubMedCentralPubMedGoogle Scholar
  68. Klenk HD, Garten W (1994) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2:39–43PubMedGoogle Scholar
  69. Klenk HD, Schwarz RT (1987) Variations in glycosylation of the influenza virus hemagglutinin of subtype H7. Brief report. Arch Virol 97:359–363Google Scholar
  70. Klenk HD, Rott R, Orlich M, Blodorn J (1975) Activation of influenza A viruses by trypsin treatment. Virology 68:426–439PubMedGoogle Scholar
  71. Klenk HD, Garten W, Matrosovich M (2013) Pathogenesis. In: Webster RG, Monto AS, Braciale TJ, Lamb RA (eds) Textbook of influenza. Wiley-Blackwell, New York, pp 157–171Google Scholar
  72. Knepper J, Schierhorn KL, Becher A et al (2013) The novel human influenza A(H7N9) virus is naturally adapted to efficient growth in human lung tissue. MBio. 4:e00601–e00613PubMedCentralPubMedGoogle Scholar
  73. Koopmans M, Vennema H, Heersma H et al (2003) Early identification of common-source foodborne virus outbreaks in Europe. Emerg Infect Dis 9:1136–1142. doi: 10.3201/eid0909.020766 PubMedCentralPubMedGoogle Scholar
  74. Korteweg C, Gu J (2010) Pandemic influenza A (H1N1) virus infection and avian influenza A (H5N1) virus infection: a comparative analysis. Biochem. Cell Biol 88:575–587PubMedGoogle Scholar
  75. Kuiken T, Taubenberger JK (2008) Pathology of human influenza revisited. Vaccine 26(Suppl 4):D59–D66PubMedCentralPubMedGoogle Scholar
  76. Kurtz J, Manvell RJ, Banks J (1996) Avian influenza virus isolated from a woman with conjunctivitis. Lancet 348:901–902. doi: 10.1016/S0140-6736(05)64783-6 PubMedGoogle Scholar
  77. Lazarowitz SG, Choppin PW (1975) Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68:440–454PubMedGoogle Scholar
  78. Lazarowitz SG, Goldberg AR, Choppin PW (1973) Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: host cell activation of serum plasminogen. Virology 56:172–180PubMedGoogle Scholar
  79. Liem NT, Nakajima N, Phat LP et al (2008) H5N1-infected cells in lung with diffuse alveolar damage in exudative phase from a fatal case in Vietnam. Jpn J Infect Dis 61:157–160Google Scholar
  80. Liu J, Stevens DJ, Haire LF et al (2009) Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proc Natl Acad Sci USA 106:17175–17180. doi: 10.1073/pnas.0906849106 PubMedCentralPubMedGoogle Scholar
  81. Liu Y, Childs RA, Matrosovich T et al (2010) Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J Virol 84:12069–12074PubMedCentralPubMedGoogle Scholar
  82. Liu S, Sun J, Cai J et al (2013) Epidemiological, clinical and viral characteristics of fatal cases of human avian influenza A (H7N9) virus in Zhejiang Province. China J Infect 67:595–605Google Scholar
  83. Londrigan SL, Turville SG, Tate MD, Deng YM, Brooks AG, Reading PC (2011) N-linked glycosylation facilitates sialic acid-independent attachment and entry of influenza A viruses into cells expressing DC-SIGN or L-SIGN. J Virol 85:2990–3000. doi: 10.1128/JVI.01705-10 PubMedCentralPubMedGoogle Scholar
  84. Lu X, Shi Y, Gao F, Xiao H, Wang M, Qi J, Gao GF (2012) Insights into avian influenza virus pathogenicity: the hemagglutinin precursor HA0 of subtype H16 has an alpha-helix structure in its cleavage site with inefficient HA1/HA2 cleavage. J Virol 86:12861–12870. doi: 10.1128/JVI.01606-12 PubMedCentralPubMedGoogle Scholar
  85. Lu X, Qi J, Shi Y et al (2013) Structure and receptor binding specificity of hemagglutinin H13 from avian influenza A virus H13N6. J Virol 87:9077–9085. doi: 10.1128/JVI.00235-13 PubMedCentralPubMedGoogle Scholar
  86. Maeda T, Kawasaki K, Ohnishi S (1981) Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2. Proc Natl Acad Sci USA 78:4133–4137PubMedCentralPubMedGoogle Scholar
  87. Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci USA 101:4620–4624PubMedCentralPubMedGoogle Scholar
  88. Matrosovich MN, Klenk HD, Kawaoka Y (2006) Receptor specificity, host range and pathogenicity of influenza viruses. In: Kawaoka Y (ed) Influenza virology: current topics. Caister Academic Press, Wymondham, pp 95–137Google Scholar
  89. Matrosovich M, Matrosovich T, Uhlendorff J, Garten W, Klenk HD (2007) Avian-virus-like receptor specificity of the hemagglutinin impedes influenza virus replication in cultures of human airway epithelium. Virology 361:384–390PubMedGoogle Scholar
  90. Matrosovich MN, Gambaryan AS, Klenk HD (2008) Receptor specificity of influenza viruses and its alteration during interspecies transmission. In: Klenk HD, Matrosovich MN, Stech J (eds) Avian influenza. Karger, Basel, pp 134–155Google Scholar
  91. Maurer-Stroh S, Lee RT, Gunalan V, Eisenhaber F (2013) The highly pathogenic H7N3 avian influenza strain from July 2012 in Mexico acquired an extended cleavage site through recombination with host 28S rRNA. Virol J 10:139. doi: 10.1186/1743-422X-10-139 PubMedCentralPubMedGoogle Scholar
  92. Meyer D, Sielaff F, Hammami M, Böttcher-Friebertshäuser E, Garten W, Steinmetzer T (2013) Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation. Biochem J 452:331–343. doi: 10.1042/BJ20130101 PubMedGoogle Scholar
  93. Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D, Kawaoka Y (2000) Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol 74:6015–6020PubMedCentralPubMedGoogle Scholar
  94. Murakami M, Towatari T, Ohuchi M et al (2001) Mini-plasmin found in the epithelial cells of bronchioles triggers infection by broad-spectrum influenza A viruses and Sendai virus. Eur J Biochem 268:2847–2855PubMedGoogle Scholar
  95. Ng WC, Liong S, Tate MD et al (2014) The macrophage galactose-type lectin can function as an attachment and entry receptor for influenza virus. J Virol 88:1659–1672. doi: 10.1128/JVI.02014-13 PubMedCentralPubMedGoogle Scholar
  96. Nicholls JM, Bourne AJ, Chen H, Guan Y, Peiris JS (2007a) Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Respir Res 8:73PubMedCentralPubMedGoogle Scholar
  97. Nicholls JM, Chan MC, Chan WY et al (2007b) Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat. Med. 13:147–149PubMedGoogle Scholar
  98. Oberst MD, Singh B, Ozdemirli M, Dickson RB, Johnson MD, Lin CY (2003) Characterization of matriptase expression in normal human tissues. J Histochem Cytochem 51:1017–1025PubMedGoogle Scholar
  99. Ocana-Macchi M, Bel M, Guzylack-Piriou L et al (2009) Hemagglutinin-dependent tropism of H5N1 avian influenza virus for human endothelial cells. J Virol 83:12947–12955PubMedCentralPubMedGoogle Scholar
  100. Ohuchi R, Ohuchi M, Garten W, Klenk HD (1991) Human influenza virus hemagglutinin with high sensitivity to proteolytic activation. J Virol 65:3530–3537PubMedCentralPubMedGoogle Scholar
  101. Ohuchi M, Ohuchi R, Feldmann A, Klenk HD (1997a) Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. J Virol 71:8377–8384PubMedCentralPubMedGoogle Scholar
  102. Ohuchi R, Ohuchi M, Garten W, Klenk HD (1997b) Oligosaccharides in the stem region maintain the influenza virus hemagglutinin in the metastable form required for fusion activity. J Virol 71:3719–3725PubMedCentralPubMedGoogle Scholar
  103. Orlich M, Gottwald H, Rott R (1994) Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology 204:462–465. doi: 10.1006/viro.1994.1555 PubMedGoogle Scholar
  104. Pantin-Jackwood MJ, Swayne DE (2009) Pathogenesis and pathobiology of avian influenza virus infection in birds. Rev Sci Tech 28:113–136PubMedGoogle Scholar
  105. Pappas C, Viswanathan K, Chandrasekaran A, Raman R, Katz JM, Sasisekharan R, Tumpey TM (2010) Receptor specificity and transmission of H2N2 subtype viruses isolated from the pandemic of 1957. PLoS One 5:e11158Google Scholar
  106. Pasick J, Handel K, Robinson J et al (2005) Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. J Gen Virol 86:727–731. doi: 10.1099/vir.0.80478-0 PubMedGoogle Scholar
  107. Peiris MJS (2009) Avian influenza viruses in humans. Rev Sci Tech 28:161–173Google Scholar
  108. Peitsch C, Klenk HD, Garten W, Böttcher-Friebertshäuser E (2014) Activation of influenza A viruses by host proteases from swine airway epithelium. J Virol 88:282–291. doi: 10.1128/JVI.01635-13 PubMedCentralPubMedGoogle Scholar
  109. Perdue ML, Garcia M, Senne D, Fraire M (1997) Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res 49:173–186PubMedGoogle Scholar
  110. Qi L, Kash JC, Dugan VG et al (2011) The ability of pandemic influenza virus hemagglutinins to induce lower respiratory pathology is associated with decreased surfactant protein D binding. Virology 412:426–434. doi: 10.1016/j.virol.2011.01.029 PubMedCentralPubMedGoogle Scholar
  111. Reading PC, Tate MD, Pickett DL, Brooks AG (2007) Glycosylation as a target for recognition of influenza viruses by the innate immune system. Adv Exp Med Biol 598:279–292PubMedGoogle Scholar
  112. Reading PC, Pickett DL, Tate MD, Whitney PG, Job ER, Brooks AG (2009) Loss of a single N-linked glycan from the hemagglutinin of influenza virus is associated with resistance to collectins and increased virulence in mice. Respir Res 10:117PubMedCentralPubMedGoogle Scholar
  113. Roberts PC, Garten W, Klenk HD (1993) Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin. J Virol 67:3048–3060PubMedCentralPubMedGoogle Scholar
  114. Roberts KL, Shelton H, Scull M, Pickles R, Barclay WS (2011) Lack of transmission of a human influenza virus with avian receptor specificity between ferrets is not due to decreased virus shedding but rather a lower infectivity in vivo. J Gen Virol 92:1822–1831PubMedGoogle Scholar
  115. Roehm C, Horimoto T, Kawaoka Y, Suss J, Webster RG (1995) Do hemagglutinin genes of highly pathogenic avian influenza viruses constitute unique phylogenetic lineages? Virology 209:664–670. doi: 10.1006/viro.1995.1301 Google Scholar
  116. Russell RJ, Gamblin SJ, Haire LF, Stevens DJ, Xiao B, Ha Y, Skehel JJ (2004) H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology 325:287–296PubMedGoogle Scholar
  117. Rykkvin R, Kilander A, Dudman SG, Hungnes O (2013) Within-patient emergence of the influenza A (H1N1) pdm09 HA1 222G variant and clear association with severe disease, Norway. Euro Surveill 18:20369Google Scholar
  118. Sakai K, Ami Y, Tahara M et al (2014) The host protease TMPRSS2 plays a major role for in vivo replication of emerging H7N9 and seasonal influenza viruses. J Virol. doi: 10.1128/JVI.03677-13 PubMedGoogle Scholar
  119. Sales KU, Hobson JP, Wagenaar-Miller R et al (2011) Expression and genetic loss of function analysis of the HAT/DESC cluster proteases TMPRSS11A and HAT. PLoS One 6:e23261. doi: 10.1371/journal.pone.0023261 PubMedCentralPubMedGoogle Scholar
  120. Sato M, Yoshida S, Iida K, Tomozawa T, Kido H, Yamashita M (2003) A novel influenza A virus activating enzyme from porcine lung: purification and characterization. Biol Chem 384:219–227. doi: 10.1515/BC.2003.024 PubMedGoogle Scholar
  121. Schäfer W, Stroh A, Berghofer S et al (1995) Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBO J 14:2424–2435PubMedCentralPubMedGoogle Scholar
  122. Scheiblauer H, Reinacher M, Tashiro M, Rott R (1992) Interactions between bacteria and influenza A virus in the development of influenza pneumonia. J Infect Dis 166:783–791PubMedGoogle Scholar
  123. Schrauwen EJ, Bestebroer TM, Munster VJ et al (2011) Insertion of a multibasic cleavage site in the haemagglutinin of human influenza H3N2 virus does not increase pathogenicity in ferrets. J Gen Virol 92:1410–1415. doi: 10.1099/vir.0.030379-0 PubMedCentralPubMedGoogle Scholar
  124. Seidah NG, Mayer G, Zaid A et al (2008) The activation and physiological functions of the proprotein convertases. Int J Biochem Cell Biol 40:1111–1125. doi: 10.1016/j.biocel.2008.01.030 PubMedGoogle Scholar
  125. Seidel W, Kunkel F, Geisler B, Garten W, Herrmann B, Dohner L, Klenk HD (1991) Intraepidemic variants of influenza virus H3 hemagglutinin differing in the number of carbohydrate side chains. Arch Virol 120:289–296PubMedGoogle Scholar
  126. Shieh WJ, Blau DM, Denison AM et al (2010) 2009 pandemic influenza A (H1N1): pathology and pathogenesis of 100 fatal cases in the United States. Am J Pathol 177:166–175PubMedCentralPubMedGoogle Scholar
  127. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436PubMedGoogle Scholar
  128. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569. doi: 10.1146/annurev.biochem.69.1.531 PubMedGoogle Scholar
  129. Skehel JJ, Stevens DJ, Daniels RS, Douglas AR, Knossow M, Wilson IA, Wiley DC (1984) A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci USA 81:1779–1783PubMedCentralPubMedGoogle Scholar
  130. Soda K, Asakura S, Okamatsu M, Sakoda Y, Kida H (2011) H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens. Virol J 8:64. doi: 10.1186/1743-422X-8-64 PubMedCentralPubMedGoogle Scholar
  131. Sorrell EM, Schrauwen EJ, Linster M, de GM, Herfst S, Fouchier RA (2011) Predicting ‘airborne’ influenza viruses: (trans-) mission impossible? Curr Opin Virol 1:635–642Google Scholar
  132. Stech J, Garn H, Wegmann M, Wagner R, Klenk HD (2005) A new approach to an influenza live vaccine: modification of the cleavage site of hemagglutinin. Nat Med 11:683–689. doi: 10.1038/nm1256 PubMedGoogle Scholar
  133. Stech O, Veits J, Weber S et al (2009) Acquisition of a polybasic hemagglutinin cleavage site by a low-pathogenic avian influenza virus is not sufficient for immediate transformation into a highly pathogenic strain. J Virol 83:5864–5868. doi: 10.1128/JVI.02649-08 PubMedCentralPubMedGoogle Scholar
  134. Stech J, Garn H, Herwig A et al (2011) Influenza B virus with modified hemagglutinin cleavage site as a novel attenuated live vaccine. J Infect Dis 204:1483–1490. doi: 10.1093/infdis/jir613 PubMedGoogle Scholar
  135. Steinhauer DA (1999) Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258:1–20. doi: 10.1006/viro.1999.9716 PubMedGoogle Scholar
  136. Stevens J, Corper AL, Basler CF, Taubenberger JK, Palese P, Wilson IA (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303:1866–1870PubMedGoogle Scholar
  137. Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410PubMedGoogle Scholar
  138. Stieneke-Gröber A, Vey M, Angliker H et al (1992) Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 11:2407–2414PubMedCentralPubMedGoogle Scholar
  139. Suarez DL, Senne DA, Banks J et al (2004) Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis 10:693–699. doi: 10.3201/eid1004.030396 PubMedCentralPubMedGoogle Scholar
  140. Sun X, Tse LV, Ferguson AD, Whittaker GR (2010) Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J Virol 84:8683–8690. doi: 10.1128/JVI.00797-10 PubMedCentralPubMedGoogle Scholar
  141. Szabo R, Bugge TH (2008) Type II transmembrane serine proteases in development and disease. Int J Biochem Cell Biol 40:1297–1316. doi: 10.1016/j.biocel.2007.11.013 PubMedGoogle Scholar
  142. Tarnow C, Engels G, Arendt A et al (2014) TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol 88:4744–4751. doi: 10.1128/JVI.03799-13 PubMedGoogle Scholar
  143. Tashiro M, Ciborowski P, Klenk HD, Pulverer G, Rott R (1987a) Role of Staphylococcus protease in the development of influenza pneumonia. Nature 325:536–537. doi: 10.1038/325536a0 PubMedGoogle Scholar
  144. Tashiro M, Ciborowski P, Reinacher M, Pulverer G, Klenk HD, Rott R (1987b) Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity. Virology 157:421–430PubMedGoogle Scholar
  145. Tate MD, Brooks AG, Reading PC (2011a) Inhibition of lectin-mediated innate host defences in vivo modulates disease severity during influenza virus infection. Immunol Cell Biol 89:482–491PubMedGoogle Scholar
  146. Tate MD, Brooks AG, Reading PC (2011b) Specific sites of N-linked glycosylation on the hemagglutinin of H1N1 subtype influenza A virus determine sensitivity to inhibitors of the innate immune system and virulence in mice. J Immunol 187:1884–1894PubMedGoogle Scholar
  147. Tate MD, Job ER, Deng YM, Gunalan V, Maurer-Stroh S, Reading PC (2014) Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6:1294–1316. doi: 10.3390/v6031294 PubMedCentralPubMedGoogle Scholar
  148. Taubenberger JK, Morens DM (2008) The pathology of influenza virus infections. Annu Rev Pathol 3:499–522PubMedCentralPubMedGoogle Scholar
  149. Teijaro JR, Walsh KB, Cahalan S et al (2011) Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146:980–991PubMedCentralPubMedGoogle Scholar
  150. Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766. doi: 10.1038/nrm934 PubMedCentralPubMedGoogle Scholar
  151. Thompson CI, Barclay WS, Zambon MC, Pickles RJ (2006) Infection of human airway epithelium by human and avian strains of influenza a virus. J Virol 80:8060–8068PubMedCentralPubMedGoogle Scholar
  152. To KK, Chan JF, Chen H, Li L, Yuen KY (2013) The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities. Lancet Infect Dis 13:809–821. doi: 10.1016/S1473-3099(13)70167-1 PubMedGoogle Scholar
  153. Tomashefski JF, Farver CF (2008) Anatomy and histology of the lung. In: Tomashefski JF, Cagle PT, Farver CF, Fraire AE (eds) Dail and Hammar’s pulmonary pathology. Springer, New York, pp 20–48Google Scholar
  154. Tong S, Zhu X, Li Y et al (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9:e1003657. doi: 10.1371/journal.ppat.1003657 PubMedCentralPubMedGoogle Scholar
  155. Tse LV, Hamilton AM, Friling T, Whittaker GR (2014) A novel activation mechanism of avian influenza virus H9N2 by furin. J Virol 88:1673–1683. doi: 10.1128/JVI.02648-13 PubMedCentralPubMedGoogle Scholar
  156. Tumpey TM, Maines TR, Van HN et al (2007) A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315:655–659PubMedGoogle Scholar
  157. Uiprasertkul M, Puthavathana P, Sangsiriwut K et al (2005) Influenza A H5N1 replication sites in humans. Emerg Infect Dis 11:1036–1041PubMedCentralPubMedGoogle Scholar
  158. Upham JP, Pickett D, Irimura T, Anders EM, Reading PC (2010) Macrophage receptors for influenza A virus: role of the macrophage galactose-type lectin and mannose receptor in viral entry. J Virol 84:3730–3737. doi: 10.1128/JVI.02148-09 PubMedCentralPubMedGoogle Scholar
  159. van Kolfschooten F (2003) Dutch veterinarian becomes first victim of avian influenza. Lancet 361:1444. doi: 10.1016/S0140-6736(03)13156-X PubMedGoogle Scholar
  160. van Riel D, Munster VJ, de WE, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2006) H5N1 Virus Attachment to Lower Respiratory Tract. Science 312:399Google Scholar
  161. van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2007) Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 171:1215–1223Google Scholar
  162. van Riel D, den Bakker MA, Leijten LM et al (2010) Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses. Am J Pathol 176:1614–1618PubMedCentralPubMedGoogle Scholar
  163. van Riel D, Leijten LM, van der Eerden M et al (2011) Highly pathogenic avian influenza virus H5N1 infects alveolar macrophages without virus production or excessive TNF-alpha induction. PLoS Pathog 7:e1002099Google Scholar
  164. van Riel D, Leijten LM, de Graaf M et al (2013) Novel avian-origin influenza A (H7N9) virus attaches to epithelium in both upper and lower respiratory tract of humans. Am J Pathol 183:1137–1143Google Scholar
  165. Vey M, Orlich M, Adler S, Klenk HD, Rott R, Garten W (1992) Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R. Virology 188:408–413PubMedGoogle Scholar
  166. Vigerust DJ, Ulett KB, Boyd KL, Madsen J, Hawgood S, McCullers JA (2007) N-linked glycosylation attenuates H3N2 influenza viruses. J Virol 81:8593–8600PubMedCentralPubMedGoogle Scholar
  167. Viswanathan K, Chandrasekaran A, Srinivasan A, Raman R, Sasisekharan V, Sasisekharan R (2010) Glycans as receptors for influenza pathogenesis. Glycoconj J 27:561–570PubMedCentralPubMedGoogle Scholar
  168. Veits J, Weber S, Stech O, Breithaupt A, Gräber M, Gohrbandt S, Bogs J, Hundt J, Teifke JP, Mettenleiter TC, Stech J (2012) Avian influenza hemagglutinins H2, H4, H8 and H14 support a highly pathogenic phenotype. Proc Natl Acad Sci USA 109:2579–2584PubMedCentralPubMedGoogle Scholar
  169. Wagner R, Heuer D, Wolff T, Herwig A, Klenk HD (2002a) N-Glycans attached to the stem domain of haemagglutinin efficiently regulate influenza A virus replication. J Gen Virol 83:601–609PubMedGoogle Scholar
  170. Wagner R, Matrosovich M, Klenk HD (2002b) Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12:159–166. doi: 10.1002/rmv.352 PubMedGoogle Scholar
  171. Walther T, Karamanska R, Chan RW et al (2013) Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog 9:e1003223Google Scholar
  172. Wan H, Perez DR (2007) Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol 81:5181–5191PubMedCentralPubMedGoogle Scholar
  173. Watanabe T, Kiso M, Fukuyama S et al (2013) Characterization of H7N9 influenza A viruses isolated from humans. Nature 501:551–555PubMedCentralPubMedGoogle Scholar
  174. Webby RJ, Perez DR, Coleman JS et al (2004) Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet 363:1099–1103. doi: 10.1016/S0140-6736(04)15892-3 PubMedGoogle Scholar
  175. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179PubMedCentralPubMedGoogle Scholar
  176. Wei SH, Yang JR, Wu HS et al (2013) Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Respir Med 1:771–778. doi: 10.1016/S2213-2600(13)70221-2 PubMedGoogle Scholar
  177. Weinheimer VK, Becher A, Tonnies M et al (2012) Influenza A viruses target type II pneumocytes in the human lung. J Infect Dis 206:1685–1694PubMedGoogle Scholar
  178. Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289:366–373PubMedGoogle Scholar
  179. Xiong X, Martin SR, Haire LF et al (2013) Receptor binding by an H7N9 influenza virus from humans. Nature 499:496–499PubMedGoogle Scholar
  180. Yao L, Korteweg C, Hsueh W, Gu J (2008) Avian influenza receptor expression in H5N1-infected and noninfected human tissues. FASEB J 22:733–740PubMedGoogle Scholar
  181. Yasuoka S, Ohnishi T, Kawano S et al (1997) Purification, characterization, and localization of a novel trypsin-like protease found in the human airway. Am J Respir Cell Mol Biol 16:300–308. doi: 10.1165/ajrcmb.16.3.9070615 PubMedGoogle Scholar
  182. Yu WC, Chan RW, Wang J et al (2011) Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. J Virol 85:6844–6855PubMedCentralPubMedGoogle Scholar
  183. Zeng H, Pappas C, Belser JA et al (2012) Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection. J Virol 86:667–678PubMedCentralPubMedGoogle Scholar
  184. Zhirnov OP, Ikizler MR, Wright PF (2002) Cleavage of influenza a virus hemagglutinin in human respiratory epithelium is cell associated and sensitive to exogenous antiproteases. J Virol 76:8682–8689PubMedCentralPubMedGoogle Scholar
  185. Zhirnov OP, Vorobjeva IV, Ovcharenko AV, Klenk HD (2003) Intracellular cleavage of human influenza a virus hemagglutinin and its inhibition. Biochemistry (Mosc) 68:1020–1026Google Scholar
  186. Zhirnov OP, Klenk HD, Wright PF (2011) Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral Res 92:27–36. doi: 10.1016/j.antiviral.2011.07.014 PubMedGoogle Scholar
  187. Zhou J, Wang D, Gao R et al (2013) Biological features of novel avian influenza A (H7N9) virus. Nature 499:500–503PubMedGoogle Scholar
  188. Zhu X, Yu W, McBride R et al (2013) Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc Natl Acad Sci USA 110:1458–1463. doi: 10.1073/pnas.1218509110 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Eva Böttcher-Friebertshäuser
    • 1
  • Wolfgang Garten
    • 1
  • Mikhail Matrosovich
    • 1
  • Hans Dieter Klenk
    • 1
  1. 1.Institut für VirologiePhilipps-UniversitätMarburgGermany

Personalised recommendations