Advertisement

Transcriptional Control of Dendritic Cell Differentiation

  • Izumi Sasaki
  • Tsuneyasu KaishoEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 381)

Abstract

Dendritic cells (DCs) are professional antigen presenting cells involved critically not only in provoking innate immune responses but also in establishing adaptive immune responses. Dendritic cells are heterogenous and divided into several subsets, including plasmactyoid DCs (pDCs) and several types of conventional DCs (cDCs), which show subset-specific functions. Plasmactyoid DCs are featured by their ability to produce large amounts of type I interferons (IFNs) in response to nucleic acid sensors, TLR7 and TLR9 and involved in anti-viral immunity and pathogenesis of certain autoimmune disorders such as psoriasis. Conventional DCs include the DC subsets with high crosspresentation activity, which contributes to anti-viral and anti-tumor immunity. These subsets are generated from hematopoietic stem cells (HSCs) via several intermediate progenitors and the development is regulated by the transcriptional mechanisms in which subset-specific transcription factors play major roles. We have recently found that an Ets family transcription factor, SPI-B, which is abundantly expressed in pDCs among DC subsets, plays critical roles in functions and late stage development of pDCs. SPI-B functions in cooperation with other transcription factors, especially, interferon regulatory factor (IRF) family members. Here we review the transcription factor-based molecular mechanisms for generation and functions of DCs, mainly by focusing on the roles of SPI-B and its relatives.

Keywords

Basic Leucine Zipper Transcription Factor Bone Marrow Chimeric Mouse Macrophage Colony Stimulate Factor Receptor Ifnb Promoter Interferon Regulatory Factor Family Member 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Tadamitsu Kishimoto for supporting this work through the Kishimoto Foundation. This work was also supported by Grant-in-Aids from Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology.

References

  1. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCrossRefGoogle Scholar
  2. Aliberti J, Schulz O, Pennington DJ et al (2003) Essential role for ICSBP in the in vivo development of murine CD8alpha + dendritic cells. Blood 101:305–310PubMedCrossRefGoogle Scholar
  3. Allman D, Dalod M, Asselin-Paturel C et al (2006) Ikaros is required for plasmacytoid dendritic cell differentiation. Blood 108:4025–4034PubMedCentralPubMedCrossRefGoogle Scholar
  4. Amiel J, Rio M, de Pontual L et al (2007) Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet 80:988–993PubMedCentralPubMedCrossRefGoogle Scholar
  5. Anderson KL, Perkin H, Surh CD et al (2000) Transcription factor PU.1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells. J immunol 164:1855–1861PubMedCrossRefGoogle Scholar
  6. Anderson MK, Weiss AH, Hernandez-Hoyos G et al (2002) Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage. Immunity 16:285–296PubMedCrossRefGoogle Scholar
  7. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  8. Belz GT, Nutt SL (2012) Transcriptional programming of the dendritic cell network. Nat Rev Immunol 12:101–113PubMedCrossRefGoogle Scholar
  9. Beutler B, Eidenschenk C, Crozat K et al (2007) Genetic analysis of resistance to viral infection. Nat Rev Immunol 7:753–766PubMedCrossRefGoogle Scholar
  10. Blasius AL, Beutler B (2010) Intracellular toll-like receptors. Immunity 32:305–315PubMedCrossRefGoogle Scholar
  11. Brass AL, Kehrli E, Eisenbeis CF et al (1996) Pip, a lymphoid-restricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU.1. Genes Dev 10:2335–2347PubMedCrossRefGoogle Scholar
  12. Burkly L, Hession C, Ogata L et al (1995) Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373:531–536PubMedCrossRefGoogle Scholar
  13. Carotta S, Dakic A, D’Amico A et al (2010a) The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32:628–641PubMedCrossRefGoogle Scholar
  14. Carotta S, Wu L, Nutt SL (2010b) Surprising new roles for PU.1 in the adaptive immune response. Immunol Rev 238:63–75PubMedCrossRefGoogle Scholar
  15. Cisse B, Caton ML, Lehner M et al (2008) Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135:37–48PubMedCentralPubMedCrossRefGoogle Scholar
  16. Collin M, Bigley V, Haniffa M et al (2011) Human dendritic cell deficiency: the missing ID? Nat Rev Immunol 11:575–583PubMedCrossRefGoogle Scholar
  17. Collins A, Littman DR, Taniuchi I (2009) RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat Rev Immunol 9:106–115PubMedCrossRefGoogle Scholar
  18. Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5:1219–1226PubMedCrossRefGoogle Scholar
  19. de Lau W, Kujala P, Schneeberger K et al (2012) Peyer’s patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured “miniguts”. Mol Cell Biol 32:3639–3647PubMedCentralPubMedCrossRefGoogle Scholar
  20. De Silva NS, Simonetti G, Heise N et al (2012) The diverse roles of IRF4 in late germinal center B-cell differentiation. Immunol Rev 247:73–92PubMedCrossRefGoogle Scholar
  21. Dickinson RE, Griffin H, Bigley V et al (2011) Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 118:2656–2658PubMedCrossRefGoogle Scholar
  22. Dorsey MJ, Tae HJ, Sollenberger KG et al (1995) B-ATF: a novel human bZIP protein that associates with members of the AP-1 transcription factor family. Oncogene 11:2255–2265PubMedGoogle Scholar
  23. Edelson BT, Bradstreet TR, Kc W et al (2011) Batf3-dependent CD11b(low/-) peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS ONE 6:e25660PubMedCentralPubMedCrossRefGoogle Scholar
  24. Escalante CR, Brass AL, Pongubala JM et al (2002) Crystal structure of PU.1/IRF-4/DNA ternary complex. Mol Cell 10:1097–1105PubMedCrossRefGoogle Scholar
  25. Fukui R, Saitoh S, Matsumoto F et al (2009) Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing. J Exp Med 206:1339–1350PubMedCentralPubMedCrossRefGoogle Scholar
  26. Gao Y, Nish SA, Jiang R et al (2013) Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 39:722–732PubMedCrossRefGoogle Scholar
  27. Geissmann F, Manz MG, Jung S et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661PubMedCentralPubMedCrossRefGoogle Scholar
  28. Georgopoulos K, Bigby M, Wang JH et al (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 79:143–156PubMedCrossRefGoogle Scholar
  29. Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8:594–606PubMedCrossRefGoogle Scholar
  30. Ginhoux F, Liu K, Helft J et al (2009) The origin and development of nonlymphoid tissue CD103 + DCs. J Exp Med 206:3115–3130PubMedCentralPubMedCrossRefGoogle Scholar
  31. Gotoh K, Tanaka Y, Nishikimi A et al (2008) Differential requirement for DOCK2 in migration of plasmacytoid dendritic cells versus myeloid dendritic cells. Blood 111:2973–2976PubMedCrossRefGoogle Scholar
  32. Hambleton S, Salem S, Bustamante J et al (2011) IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 365:127–138PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hildner K, Edelson BT, Purtha WE et al (2008) Batf3 deficiency reveals a critical role for CD8alpha + dendritic cells in cytotoxic T cell immunity. Science 322:1097–1100PubMedCentralPubMedCrossRefGoogle Scholar
  34. Honda K, Mizutani T, Taniguchi T (2004) Negative regulation of IFN-alpha/beta signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells. Proc Natl Acad Sci USA 101:2416–2421PubMedCentralPubMedCrossRefGoogle Scholar
  35. Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6:644–658PubMedCrossRefGoogle Scholar
  36. Honda K, Yanai H, Negishi H et al (2005) IRF-7 is the master regulator of type I interferon-dependent immune responses. Nature 434:772–777PubMedCrossRefGoogle Scholar
  37. Hoshino K, Sugiyama T, Matsumoto M et al (2006) IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature 440:949–953PubMedCrossRefGoogle Scholar
  38. Ichikawa E, Hida S, Omatsu Y et al (2004) Defective development of splenic and epidermal CD4 + dendritic cells in mice deficient for IFN regulatory factor-2. Proc Natl Acad Sci USA 101:3909–3914PubMedCentralPubMedCrossRefGoogle Scholar
  39. Izaguirre A, Barnes BJ, Amrute S et al (2003) Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J Leukoc Biol 74:1125–1138PubMedCrossRefGoogle Scholar
  40. Jackson JT, Hu Y, Liu R et al (2011) Id2 expression delineates differential checkpoints in the genetic program of CD8alpha + and CD103 + dendritic cell lineages. EMBO J 30:2690–2704PubMedCentralPubMedCrossRefGoogle Scholar
  41. Kaisho T, Tanaka T (2008) Turning NF-kappaB and IRFs on and off in DC. Trends Immunol 29:329–336PubMedCrossRefGoogle Scholar
  42. Kanaya T, Hase K, Takahashi D et al (2012) The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. Nat Immunol 13:729–736PubMedCentralPubMedCrossRefGoogle Scholar
  43. Kashiwada M, Pham NL, Pewe LL et al (2011) NFIL3/E4BP4 is a key transcription factor for CD8alpha(+) dendritic cell development. Blood 117:6193–6197PubMedCentralPubMedCrossRefGoogle Scholar
  44. Knoop KA, Kumar N, Butler BR et al (2009) RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J Immunol 183:5738–5747PubMedCentralPubMedCrossRefGoogle Scholar
  45. Kohyama M, Ise W, Edelson BT et al (2009) Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457:318–321PubMedCentralPubMedCrossRefGoogle Scholar
  46. Kumamoto Y, Linehan M, Weinstein JS et al (2013) CD301b(+) dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39:733–743PubMedCrossRefGoogle Scholar
  47. Lazorchak A, Jones ME, Zhuang Y (2005) New insights into E-protein function in lymphocyte development. Trends Immunol 26:334–338PubMedCrossRefGoogle Scholar
  48. Lefebvre JM, Haks MC, Carleton MO et al (2005) Enforced expression of Spi-B reverses T lineage commitment and blocks beta-selection. J Immunol 174:6184–6194PubMedCrossRefGoogle Scholar
  49. Leprince D, Gegonne A, Coll J et al (1983) A putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature 306:395–397PubMedCrossRefGoogle Scholar
  50. Liu K, Nussenzweig MC (2010) Origin and development of dendritic cells. Immunol Rev 234:45–54PubMedCrossRefGoogle Scholar
  51. Maraskovsky E, Brasel K, Teepe M et al (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184:1953–1962PubMedCrossRefGoogle Scholar
  52. Marecki S, Riendeau CJ, Liang MD et al (2001) PU.1 and multiple IFN regulatory factor proteins synergize to mediate transcriptional activation of the human IL-1 beta gene. J Immunol 166:6829–6838PubMedCrossRefGoogle Scholar
  53. McKenna HJ, Stocking KL, Miller RE et al (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489–3497PubMedGoogle Scholar
  54. Moore AJ, Anderson MK (2013) Dendritic cell development: a choose-your-own-adventure story. Adv Hematol 2013:949513PubMedCentralPubMedCrossRefGoogle Scholar
  55. Murphy TL, Tussiwand R, Murphy KM (2013) Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks. Nat Rev Immunol 13:499–509PubMedCrossRefGoogle Scholar
  56. Neutra MR, Frey A, Kraehenbuhl JP (1996) Epithelial M cells: gateways for mucosal infection and immunization. Cell 86:345–348PubMedCrossRefGoogle Scholar
  57. Oikawa T, Yamada T (2003) Molecular biology of the Ets family of transcription factors. Gene 303:11–34PubMedCrossRefGoogle Scholar
  58. Onai N, Kurabayashi K, Hosoi-Amaike M et al (2013) A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 38:943–957PubMedCrossRefGoogle Scholar
  59. Persson EK, Uronen-Hansson H, Semmrich M et al (2013) IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38:958–969PubMedCrossRefGoogle Scholar
  60. Rathinam C, Geffers R, Yucel R et al (2005) The transcriptional repressor Gfi1 controls STAT3-dependent dendritic cell development and function. Immunity 22:717–728PubMedCrossRefGoogle Scholar
  61. Rehli M, Poltorak A, Schwarzfischer L et al (2000) PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J Biol Chem 275:9773–9781PubMedCrossRefGoogle Scholar
  62. Sasaki I, Hoshino K, Sugiyama T et al (2012) Spi-B is critical for plasmacytoid dendritic cell function and development. Blood 120:4733–4743PubMedCrossRefGoogle Scholar
  63. Sato S, Kaneto S, Shibata N et al (2013) Transcription factor Spi-B-dependent and -independent pathways for the development of Peyer’s patch M cells. Mucosal Immunol 6:838–846PubMedCrossRefGoogle Scholar
  64. Sawai CM, Sisirak V, Ghosh HS et al (2013) Transcription factor Runx2 controls the development and migration of plasmacytoid dendritic cells. J Exp Med 210:2151–2159PubMedCentralPubMedCrossRefGoogle Scholar
  65. Schiavoni G, Mattei F, Sestili P et al (2002) ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med 196:1415–1425PubMedCentralPubMedCrossRefGoogle Scholar
  66. Schlitzer A, Loschko J, Mair K et al (2011) Identification of CCR9- murine plasmacytoid DC precursors with plasticity to differentiate into conventional DCs. Blood 117:6562–6570PubMedCrossRefGoogle Scholar
  67. Schlitzer A, McGovern N, Teo P et al (2013) IRF4 transcription factor-dependent CD11b + dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38:970–983PubMedCentralPubMedCrossRefGoogle Scholar
  68. Schotte R, Nagasawa M, Weijer K et al (2004) The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J Exp Med 200:1503–1509PubMedCentralPubMedCrossRefGoogle Scholar
  69. Shortman K, Heath WR (2010) The CD8 + dendritic cell subset. Immunol Rev 234:18–31PubMedCrossRefGoogle Scholar
  70. Spits H, Couwenberg F, Bakker AQ et al (2000) Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J Exp Med 192:1775–1784PubMedCentralPubMedCrossRefGoogle Scholar
  71. Su GH, Chen HM, Muthusamy N et al (1997) Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J 16:7118–7129PubMedCentralPubMedCrossRefGoogle Scholar
  72. Suzuki S, Honma K, Matsuyama T et al (2004) Critical roles of interferon regulatory factor 4 in CD11bhighCD8alpha- dendritic cell development. Proc Natl Acad Sci USA 101:8981–8986PubMedCentralPubMedCrossRefGoogle Scholar
  73. Tailor P, Tamura T, Morse HC 3rd et al (2008) The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 111:1942–1945PubMedCentralPubMedCrossRefGoogle Scholar
  74. Tamura T, Tailor P, Yamaoka K et al (2005) IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J Immunol 174:2573–2581PubMedCrossRefGoogle Scholar
  75. Tsujimura H, Tamura T, Ozato K (2003) Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J Immunol 170:1131–1135PubMedCrossRefGoogle Scholar
  76. Tussiwand R, Lee WL, Murphy TL et al (2012) Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490:502–507PubMedCentralPubMedCrossRefGoogle Scholar
  77. Uematsu S, Sato S, Yamamoto M et al (2005) Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J Exp Med 201:915–923PubMedCentralPubMedCrossRefGoogle Scholar
  78. Waskow C, Liu K, Darrasse-Jeze G et al (2008) The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9:676–683PubMedCentralPubMedCrossRefGoogle Scholar
  79. Watson DK, McWilliams-Smith MJ, Nunn MF et al (1985) The ets sequence from the transforming gene of avian erythroblastosis virus, E26, has unique domains on human chromosomes 11 and 21: both loci are transcriptionally active. Proc Natl Acad Sci USA 82:7294–7298PubMedCentralPubMedCrossRefGoogle Scholar
  80. Welty NE, Staley C, Ghilardi N et al (2013) Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J Exp Med 210:2011–2024PubMedCentralPubMedCrossRefGoogle Scholar
  81. Wu L, D’Amico A, Winkel KD et al (1998) RelB is essential for the development of myeloid-related CD8alpha- dendritic cells but not of lymphoid-related CD8alpha + dendritic cells. Immunity 9:839–847PubMedCrossRefGoogle Scholar
  82. Xu Y, Schnorrer P, Proietto A et al (2011) IL-10 controls cystatin C synthesis and blood concentration in response to inflammation through regulation of IFN regulatory factor 8 expression. J Immunol 186:3666–3673PubMedCrossRefGoogle Scholar
  83. Yamazaki C, Sugiyama M, Ohta T et al (2013) Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J Immunol 190:6071–6082PubMedCrossRefGoogle Scholar
  84. Zhang JA, Mortazavi A, Williams BA et al (2012) Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 149:467–482PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratory for Immune Regulation, WPI Immunology Frontier Research CenterOsaka UniversitySuitaJapan
  2. 2.Laboratory for Inflammatory RegulationRIKEN Center for Integrative Medical Sciences (IMS-RCAI)YokohamaJapan

Personalised recommendations