Advertisement

High-Dimensional Single-Cell Cancer Biology

  • Jonathan M. IrishEmail author
  • Deon B. Doxie
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 377)

Abstract

Cancer cells are distinguished from each other and from healthy cells by features that drive clonal evolution and therapy resistance. New advances in high-dimensional flow cytometry make it possible to systematically measure mechanisms of tumor initiation, progression, and therapy resistance on millions of cells from human tumors. Here we describe flow cytometry techniques that enable a “single-cell ” view of cancer. High-dimensional techniques like mass cytometry enable multiplexed single-cell analysis of cell identity, clinical biomarkers, signaling network phospho-proteins, transcription factors, and functional readouts of proliferation, cell cycle status, and apoptosis. This capability pairs well with a signaling profiles approach that dissects mechanism by systematically perturbing and measuring many nodes in a signaling network. Single-cell approaches enable study of cellular heterogeneity of primary tissues and turn cell subsets into experimental controls or opportunities for new discovery. Rare populations of stem cells or therapy-resistant cancer cells can be identified and compared to other types of cells within the same sample. In the long term, these techniques will enable tracking of minimal residual disease (MRD) and disease progression. By better understanding biological systems that control development and cell–cell interactions in healthy and diseased contexts, we can learn to program cells to become therapeutic agents or target malignant signaling events to specifically kill cancer cells. Single-cell approaches that provide deep insight into cell signaling and fate decisions will be critical to optimizing the next generation of cancer treatments combining targeted approaches and immunotherapy.

Keywords

Signaling Network Minimal Residual Disease Signaling Profile Methanol Permeabilization Cell Cycle Status 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aghaeepour N, Finak G, Flow CAPC, Consortium D, Hoos H, Mosmann TR et al (2013) Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 10:228–238PubMedCentralPubMedCrossRefGoogle Scholar
  2. el Amir AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31:545–552CrossRefGoogle Scholar
  3. Andreeff M, Slater DE, Bressler J, Furth ME (1986) Cellular RAS oncogene expression and cell cycle measured by flow cytometry in hematopoietic cell lines. Blood 67:676–681PubMedGoogle Scholar
  4. Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW et al (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 9:252–263PubMedCrossRefGoogle Scholar
  5. Baerlocher GM, Vulto I, de Jong G, Lansdorp PM (2006) Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc 1:2365–2376PubMedCrossRefGoogle Scholar
  6. Barcellos-Hoff MH, Lyden D, Wang TC (2013) The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 13:511–518PubMedCrossRefGoogle Scholar
  7. Behbehani GK, Bendall SC, Clutter MR, Fantl WJ, Nolan GP (2012) Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 81:552–566PubMedCentralPubMedCrossRefGoogle Scholar
  8. Belloc F, Belaud-Rotureau MA, Lavignolle V, Bascans E, Braz-Pereira E, Durrieu F et al (2000) Flow cytometry detection of caspase 3 activation in preapoptotic leukemic cells. Cytometry 40:151–160PubMedCrossRefGoogle Scholar
  9. Bendall SC, Nolan GP (2012) From single cells to deep phenotypes in cancer. Nat Biotechnol 30:639–647PubMedCrossRefGoogle Scholar
  10. Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2012) A deep profiler’s guide to cytometry. Trends Immunol 33:323–332PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bendall SC, Simonds EF, Qiu P, el Amir AD, Krutzik PO, Finck R et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV et al (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30:858–867PubMedCentralPubMedCrossRefGoogle Scholar
  13. Bourton EC, Plowman PN, Zahir SA, Senguloglu GU, Serrai H, Bottley G et al (2012) Multispectral imaging flow cytometry reveals distinct frequencies of gamma-H2AX foci induction in DNA double strand break repair defective human cell lines. Cytometry A 81:130–137PubMedCrossRefGoogle Scholar
  14. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369:32–42PubMedCentralPubMedCrossRefGoogle Scholar
  15. Carney WP, Petit D, Hamer P, Der CJ, Finkel T, Cooper GM et al (1986) Monoclonal antibody specific for an activated RAS protein. Proc Nat Acad Sci USA 83:7485–7489PubMedCentralPubMedCrossRefGoogle Scholar
  16. Castillo R, Mascarenhas J, Telford W, Chadburn A, Friedman SM, Schattner EJ (2000) Proliferative response of mantle cell lymphoma cells stimulated by CD40 ligation and IL-4. Leukemia 14:292–298PubMedCrossRefGoogle Scholar
  17. Chow S, Hedley D (1995) Flow cytometric determination of glutathione in clinical samples. Cytometry 21:68–71PubMedCrossRefGoogle Scholar
  18. Cooperman J, Neely R, Teachey DT, Grupp S, Choi JK (2004) Cell division rates of primary human precursor B cells in culture reflect in vivo rates. Stem Cells 22:1111–1120PubMedCrossRefGoogle Scholar
  19. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA et al (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29:1120–1127PubMedCentralPubMedCrossRefGoogle Scholar
  20. Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639PubMedCentralPubMedCrossRefGoogle Scholar
  21. Emanuel PD, Bates LJ, Castleberry RP, Gualtieri RJ, Zuckerman KS (1991) Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 77:925–929PubMedGoogle Scholar
  22. Erlanson M, Landberg G (1998) Flow cytometric quantification of cyclin E in human cell lines and hematopoietic malignancies. Cytometry 32:214–222PubMedCrossRefGoogle Scholar
  23. Fienberg HG, Simonds EF, Fantl WJ, Nolan GP, Bodenmiller B (2012) A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 81:467–475PubMedCrossRefGoogle Scholar
  24. Flotho C, Kratz C, Niemeyer CM (2007) Targeting RAS signaling pathways in juvenile myelomonocytic leukemia. Curr Drug Targets 8:715–725PubMedCrossRefGoogle Scholar
  25. Gerdes MJ, Sevinsky CJ, Sood A, Adak S, Bello MO, Bordwell A et al (2013) Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc Nat Acad Sci USA 110:11982–11987PubMedCentralPubMedCrossRefGoogle Scholar
  26. Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN (2012) Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37:364–376PubMedCentralPubMedCrossRefGoogle Scholar
  27. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL et al (2013) Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood 121:1604–1611PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  29. Hasegawa D, Bugarin C, Giordan M, Bresolin S, Longoni D, Micalizzi C et al (2013) Validation of flow cytometric phospho-STAT5 as a diagnostic tool for juvenile myelomonocytic leukemia. Blood Cancer J 3:e160PubMedCentralPubMedCrossRefGoogle Scholar
  30. Holyoake T, Jiang X, Eaves C, Eaves A (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94:2056–2064PubMedGoogle Scholar
  31. Huang X, Traganos F, Darzynkiewicz Z (2003) DNA damage induced by DNA topoisomerase I- and topoisomerase II-inhibitors detected by histone H2AX phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle 2:614–619PubMedGoogle Scholar
  32. Irish J, Hovland R, Krutzik P, Perez O, Bruserud O, Gjertsen B et al (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:217–228PubMedCrossRefGoogle Scholar
  33. Irish J, Kotecha N, Nolan G (2006a) Innovation–mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 6:146–155PubMedCrossRefGoogle Scholar
  34. Irish JM, Czerwinski DK, Nolan GP, Levy R (2006b) Altered B-cell receptor signaling kinetics distinguish human follicular lymphoma. B cells from tumor-infiltrating nonmalignant B cells. Blood 108:3135–3142PubMedCentralPubMedCrossRefGoogle Scholar
  35. Irish JM, Anensen N, Hovland R, Skavland J, Borresen-Dale A-L, Bruserud O et al (2007) Flt3 Y591 duplication and Bc1-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood 109:2589–2596PubMedCrossRefGoogle Scholar
  36. Irish JM, Myklebust JH, Alizadeh AA, Houot R, Sharman JP, Czerwinski DK et al (2010) B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proc Nat Acad Sci USA 107:12747–12754PubMedCentralPubMedCrossRefGoogle Scholar
  37. Juan G, Traganos F, James WM, Ray JM, Roberge M, Sauve DM et al (1998) Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry 32:71–77PubMedCrossRefGoogle Scholar
  38. Kalisky T, Quake SR (2011) Single-cell genomics. Nat Methods 8:311–314PubMedCrossRefGoogle Scholar
  39. Kotecha N, Floress NJ, Irish JM, Simonds EF, Sakai DS, Archambeault S et al (2008) Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 14:335–343PubMedCentralPubMedCrossRefGoogle Scholar
  40. Krutzik PO, Crane JM, Clutter MR, Nolan GP (2008) High-content single-cell drug screening with phosphospecific flow cytometry. Nat Chem Biol 4:132–142PubMedCrossRefGoogle Scholar
  41. Krutzik PO, Hale MB, Nolan GP (2005) Characterization of the murine immunological signaling network with phosphospecific flow cytometry. J Immunol 175:2366–2373PubMedCrossRefGoogle Scholar
  42. Krutzik PO, Irish JM, Nolan GP, Perez OD (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110:206–221PubMedCrossRefGoogle Scholar
  43. Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3:361–368PubMedCrossRefGoogle Scholar
  44. Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A 55:61–70PubMedCrossRefGoogle Scholar
  45. Laane E, Tani E, Bjorklund E, Elmberger G, Everaus H, Skoog L et al (2005) Flow cytometric immunophenotyping including Bcl-2 detection on fine needle aspirates in the diagnosis of reactive lymphadenopathy and non-Hodgkin’s lymphoma. Cytometry B Clin Cytometry 64:34–42CrossRefGoogle Scholar
  46. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677–685PubMedCrossRefGoogle Scholar
  47. Maecker HT, Levy R (1989) Prevalence of antigen receptor variants in human T cell lines and tumors. J Immunol 142:1395–1404PubMedGoogle Scholar
  48. Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69:1037–1042PubMedCrossRefGoogle Scholar
  49. Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG et al (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Nat Acad Sci USA 104:11889–11894PubMedCentralPubMedCrossRefGoogle Scholar
  50. Mason D, Andre P, Bensussan A, Buckley C, Civin C, Clark E et al (2002) CD antigens 2002. Blood 99:3877–3880PubMedCrossRefGoogle Scholar
  51. Mayle A, Luo M, Jeong M, Goodell MA (2013) Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A 83:27–37PubMedCentralPubMedCrossRefGoogle Scholar
  52. Morkve O, Halvorsen OJ, Stangeland L, Gulsvik A, Laerum OD (1992) Quantitation of biological tumor markers (p53, c-myc, Ki-67 and DNA ploidy) by multiparameter flow cytometry in non-small-cell lung cancer. Int J Cancer 52:851–855PubMedCrossRefGoogle Scholar
  53. Myklebust JH, Irish JM, Brody J, Czerwinski DK, Houot R, Kohrt HE et al (2013) High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood 121:1367–1376PubMedCentralPubMedCrossRefGoogle Scholar
  54. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279PubMedCrossRefGoogle Scholar
  55. O’Brien MC, Bolton WE (1995) Comparison of cell viability probes compatible with fixation and permeabilization for combined surface and intracellular staining in flow cytometry. Cytometry 19:243–255PubMedCrossRefGoogle Scholar
  56. Ohtani S, Kagawa S, Tango Y, Umeoka T, Tokunaga N, Tsunemitsu Y et al (2004) Quantitative analysis of p53-targeted gene expression and visualization of p53 transcriptional activity following intratumoral administration of adenoviral p53 in vivo. Mol Cancer Ther 3:93–100PubMedGoogle Scholar
  57. Ornatsky OI, Lou X, Nitz M, Schafer S, Sheldrick WS, Baranov VI et al (2008) Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal Chem 80:2539–2547PubMedCrossRefGoogle Scholar
  58. Panoskaltsis N, Reid CD, Knight SC (2003) Quantification and cytokine production of circulating lymphoid and myeloid cells in acute myelogenous leukaemia. Leukemia 17:716–730PubMedCrossRefGoogle Scholar
  59. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4:648–655PubMedCrossRefGoogle Scholar
  60. Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G et al (2012) Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 7:e33788PubMedCentralPubMedCrossRefGoogle Scholar
  61. Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier LM et al (2009) Automated high-dimensional flow cytometric data analysis. Proc Nat Acad Sci USA 106:8519–8524PubMedCentralPubMedCrossRefGoogle Scholar
  62. Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29:886–891PubMedCentralPubMedCrossRefGoogle Scholar
  63. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  64. Rickert RC (2013) New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol 13:578–591PubMedCrossRefGoogle Scholar
  65. Robillard N, Pellat-Deceunynck C, Bataille R (2005) Phenotypic characterization of the human myeloma cell growth fraction. Blood 105:4845–4848PubMedCrossRefGoogle Scholar
  66. Sachen KL, Strohman MJ, Singletary J, Alizadeh AA, Kattah NH, Lossos C et al (2012) Self-antigen recognition by follicular lymphoma B-cell receptors. Blood 120:4182–4190PubMedCentralPubMedCrossRefGoogle Scholar
  67. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529PubMedCrossRefGoogle Scholar
  68. Schmid I, Krall WJ, Uittenbogaart CH, Braun J, Giorgi JV (1992) Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry 13:204–208PubMedCrossRefGoogle Scholar
  69. Schnitt SJ (2010) Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod Pathol 23(Suppl 2):S60–S64PubMedCrossRefGoogle Scholar
  70. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322PubMedCrossRefGoogle Scholar
  71. Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM et al (2002) Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99:1517–1526PubMedCrossRefGoogle Scholar
  72. Trentin L, Cabrelle A, Facco M, Carollo D, Miorin M, Tosoni A et al (2004) Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood 104:502–508PubMedCrossRefGoogle Scholar
  73. van Dongen JJ, Lhermitte L, Bottcher S, Almeida J, van der Velden VH, Flores-Montero J et al (2012) EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 26:1908–1975PubMedCentralPubMedCrossRefGoogle Scholar
  74. Van Meter MEM, Diaz-Flores E, Archard JA, Passegue E, Irish JM, Kotecha N et al (2007) K-Ras(G12D) expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. Blood 109:3945–3952PubMedCentralPubMedCrossRefGoogle Scholar
  75. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369:507–516PubMedCrossRefGoogle Scholar
  76. Wozniak J, Kopec-Szlezak J (2004) c-Kit receptor (CD117) expression on myeloblasts and white blood cell counts in acute myeloid leukemia. Cytometry B Clin Cytometry 58:9–16CrossRefGoogle Scholar
  77. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME et al (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11:41–46PubMedCentralPubMedCrossRefGoogle Scholar
  78. Zheng A, Castren K, Saily M, Savolainen ER, Koistinen P, Vahakangas K (1999) p53 status of newly established acute myeloid leukaemia cell lines. Br J Cancer 79:407–415Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Vanderbilt UniversityNashvilleUSA

Personalised recommendations