Advertisement

Modulation of the Ubiquitination Machinery by Legionella

  • Andree Hubber
  • Tomoko Kubori
  • Hiroki NagaiEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 376)

Abstract

The bacterial pathogen Legionella pneumophila manipulates its intracellular fate by co-opting host processes. Using bacterial proteins translocated into host cells, L. pneumophila targets pathways shared by unicellular protozoa and higher eukaryotes. In eukaryotes, an important mechanism that regulates numerous cellular processes, including those designed to kill invading microorganisms, is ubiquitination. Post-translational modification of proteins with ubiquitin is a highly regulated process that either targets proteins for degradation or modifies their activity. It is emerging that L. pneumophila possesses functional mimics of eukaryotic E3 ubiquitin ligases that function with the host ubiquitination machinery to select and modify substrates for polyubiquitination. L. pneumophila proteins have been identified that ubiquitinate both host and bacterial proteins, and ubiquitination of the bacterial protein SidH results in its degradation by the host proteasome. This pathway allows L. pneumophila to temporally regulate effector function inside host cells, and facilitates optimal L. pneumophila replication by undefined mechanisms. This review will focus on our current knowledge of the proteins used by L. pneumophila to co-opt the host ubiquitination machinery, and current progress toward understanding the ubiquitin-mediated processes manipulated by L. pneumophila to facilitate intracellular survival and propagation.

Keywords

Effector Protein HECT Domain Host Pathway Host Process Dali Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Drs Xuan Bui Thanh and Masafumi Koike for critical reading of the manuscript. Research in the Nagai laboratory was supported by Grants-in-Aid for Scientific Research (23117002, 23390105, 24659198) from Ministry of Education, Culture, Sports, Science and Technology, Japan. Andree Hubber is supported by a postdoctoral fellowship for foreign researchers awarded by the Japanese Society for the Promotion of Science (JSPS).

References

  1. Al-Khodor S, Price CT, Habyarimana F, Kalia A, Abu Kwaik Y (2008) A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol 70:908–923PubMedGoogle Scholar
  2. Al-Quadan T, Kwaik YA (2011) Molecular characterization of exploitation of the polyubiquitination and farnesylation machineries of Dictyostelium discoideum by the AnkB F-box effector of Legionella pneumophila. Front Microbiol 2:23PubMedCrossRefGoogle Scholar
  3. Angot A, Vergunst A, Genin S, Peeters N (2007) Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog 3:e3PubMedCrossRefGoogle Scholar
  4. Ardley HC, Robinson PA (2005) E3 ubiquitin ligases. Essays Biochem 41:15–30PubMedCrossRefGoogle Scholar
  5. Berger KH, Isberg RR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7:7–19PubMedCrossRefGoogle Scholar
  6. Bruggemann H, Hagman A, Jules M, Sismeiro O, Dillies MA et al (2006) Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 8:1228–1240PubMedCrossRefGoogle Scholar
  7. Calvo-Garrido J, Carilla-Latorre S, Kubohara Y, Santos-Rodrigo N, Mesquita A et al (2010) Autophagy in Dictyostelium: genes and pathways, cell death and infection. Autophagy 6:686–701PubMedCrossRefGoogle Scholar
  8. Canadien V, Tan T, Zilber R, Szeto J, Perrin AJ et al (2005) Cutting edge: microbial products elicit formation of dendritic cell aggresome-like induced structures in macrophages. J Immunol 174:2471–2475PubMedGoogle Scholar
  9. Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D et al (2010) Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLoS Genet 6:e1000851PubMedCrossRefGoogle Scholar
  10. Choy A, Dancourt J, Mugo B, O’Connor TJ, Isberg RR et al (2012) The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338:1072–1076PubMedCrossRefGoogle Scholar
  11. Clague MJ, Urbe S (2010) Ubiquitin: same molecule, different degradation pathways. Cell 143:682–685PubMedCrossRefGoogle Scholar
  12. Clague MJ, Coulson JM, Urbe S (2012) Cellular functions of the DUBs. J Cell Sci 125:277–286PubMedCrossRefGoogle Scholar
  13. Coombs N, Sompallae R, Olbermann P, Gastaldello S, Goppel D et al (2011) Helicobacter pylori affects the cellular deubiquitinase USP7 and ubiquitin-regulated components TRAF6 and the tumour suppressor p53. Int J Med Microbiol 301:213–224PubMedCrossRefGoogle Scholar
  14. David Y, Ziv T, Admon A, Navon A (2010) The E2 ubiquitin-conjugating enzymes direct polyubiquitination to preferred lysines. J Biol Chem 285:8595–8604PubMedCrossRefGoogle Scholar
  15. de Bie P, Ciechanover A (2011) Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ 18:1393–1402PubMedCrossRefGoogle Scholar
  16. de Felipe KS, Pampou S, Jovanovic OS, Pericone CD, Ye SF et al (2005) Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 187:7716–7726PubMedCrossRefGoogle Scholar
  17. de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M et al (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4:e1000117PubMedCrossRefGoogle Scholar
  18. Diao J, Zhang Y, Huibregtse JM, Zhou D, Chen J (2008) Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat Struct Mol Biol 15:65–70PubMedCrossRefGoogle Scholar
  19. Dorer MS, Kirton D, Bader JS, Isberg RR (2006) RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2:315–327CrossRefGoogle Scholar
  20. Ensminger AW, Isberg RR (2010) E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect Immun 78:3905–3919PubMedCrossRefGoogle Scholar
  21. Ernst R, Claessen JH, Mueller B, Sanyal S, Spooner E et al (2011) Enzymatic blockade of the ubiquitin-proteasome pathway. PLoS Biol 8:e1000605PubMedCrossRefGoogle Scholar
  22. Farbrother P, Wagner C, Na J, Tunggal B, Morio T et al (2006) Dictyostelium transcriptional host cell response upon infection with Legionella. Cell Microbiol 8:438–456PubMedCrossRefGoogle Scholar
  23. Fujita N, Yoshimori T (2011) Ubiquitination-mediated autophagy against invading bacteria. Curr Opin Cell Biol 23:492–497PubMedCrossRefGoogle Scholar
  24. Goody PR, Heller K, Oesterlin LK, Muller MP, Itzen A et al (2012) Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J 31:1774–1784PubMedCrossRefGoogle Scholar
  25. Habyarimana F, Al-Khodor S, Kalia A, Graham JE, Price CT et al (2008) Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol 10:1460–1474PubMedCrossRefGoogle Scholar
  26. Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. EMBO J 24:3353–3359PubMedCrossRefGoogle Scholar
  27. Haglund K, Dikic I (2012) The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 125:265–275PubMedCrossRefGoogle Scholar
  28. Harhaj EW, Dixit VM (2012) Regulation of NF-kappaB by deubiquitinases. Immunol Rev 246:107–124PubMedCrossRefGoogle Scholar
  29. Hartmann AM, Rujescu D, Giannakouros T, Nikolakaki E, Goedert M et al (2001) Regulation of alternative splicing of human tau exon 10 by phosphorylation of splicing factors. Mol Cell Neurosci 18:80–90PubMedCrossRefGoogle Scholar
  30. Heidtman M, Chen EJ, Moy MY, Isberg RR (2009) Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11:230–248PubMedCrossRefGoogle Scholar
  31. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedCrossRefGoogle Scholar
  32. Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258:8206–8214PubMedGoogle Scholar
  33. Hessa T, Sharma A, Mariappan M, Eshleman HD, Gutierrez E et al (2011) Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475:394–397PubMedCrossRefGoogle Scholar
  34. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172PubMedCrossRefGoogle Scholar
  35. Hicks SW, Galan JE (2010) Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases. Curr Opin Microbiol 13:41–46PubMedCrossRefGoogle Scholar
  36. Horwitz MA (1987) Characterization of avirulent mutant Legionella pneumophila that survive but do not multiply within human monocytes. J Exp Med 166:1310–1328PubMedCrossRefGoogle Scholar
  37. Huang L, Boyd D, Amyot WM, Hempstead AD, Luo ZQ et al (2011) The E Block motif is associated with Legionella pneumophila translocated substrates. Cell Microbiol 13:227–245PubMedCrossRefGoogle Scholar
  38. Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283PubMedCrossRefGoogle Scholar
  39. Hutchins AP, Liu S, Diez D, Miranda-Saavedra D (2013) The repertoires of ubiquitinating and deubiquitinating enzymes in eukaryotic genomes. Mol Biol Evol 30:1172–1187 Google Scholar
  40. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J et al (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857PubMedCrossRefGoogle Scholar
  41. Ikeda F, Crosetto N, Dikic I (2010) What determines the specificity and outcomes of ubiquitin signaling? Cell 143:677–681PubMedCrossRefGoogle Scholar
  42. Ivanov SS, Roy CR (2009) Modulation of ubiquitin dynamics and suppression of DALIS formation by the Legionella pneumophila Dot/Icm system. Cell Microbiol 11:261–278PubMedCrossRefGoogle Scholar
  43. Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D et al (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4:134–139PubMedCrossRefGoogle Scholar
  44. Jiang X, Chen ZJ (2012) The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol 12:35–48Google Scholar
  45. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296PubMedCrossRefGoogle Scholar
  46. Joshi AD, Swanson MS (2011) Secrets of a successful pathogen: legionella resistance to progression along the autophagic pathway. Front Microbiol 2:138PubMedCrossRefGoogle Scholar
  47. Kawahara H, Minami R, Yokota N (2013) BAG6/BAT3: emerging roles in quality control for nascent polypeptides. J Biochem 153:147–160PubMedCrossRefGoogle Scholar
  48. Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M, et al (2013) A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol 43:1333–1344Google Scholar
  49. Kipreos ET, Pagano M (2000) The F-box protein family. Genome Biol 1:REVIEWS3002Google Scholar
  50. Kirkin V, McEwan DG, Novak I, Dikic I (2009a) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269PubMedCrossRefGoogle Scholar
  51. Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL et al (2009b) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516PubMedCrossRefGoogle Scholar
  52. Koepp DM, Harper JW, Elledge SJ (1999) How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97:431–434PubMedCrossRefGoogle Scholar
  53. Kozak NA, Buss M, Lucas CE, Frace M, Govil D et al (2010) Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968. J Bacteriol 192:1030–1044PubMedCrossRefGoogle Scholar
  54. Kubori T, Nagai H (2011) Bacterial effector-involved temporal and spatial regulation by hijack of the host ubiquitin pathway. Front Microbiol 2:145PubMedCrossRefGoogle Scholar
  55. Kubori T, Hyakutake A, Nagai H (2008) Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 67:1307–1319PubMedCrossRefGoogle Scholar
  56. Kubori T, Shinzawa N, Kanuka H, Nagai H (2010) Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 6:e1001216PubMedCrossRefGoogle Scholar
  57. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA et al (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 3:e1487PubMedCrossRefGoogle Scholar
  58. Ligeon LA, Temime-Smaali N, Lafont F (2011) Ubiquitylation and autophagy in the control of bacterial infections and related inflammatory responses. Cell Microbiol 13:1303–1311PubMedCrossRefGoogle Scholar
  59. Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ et al (2010) The Legionella pneumophila F-box protein Lpp 2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol 12:1272–1291PubMedCrossRefGoogle Scholar
  60. Magori S, Citovsky V (2011a) Hijacking of the host SCF ubiquitin ligase machinery by plant pathogens. Front Plant Sci 2:87PubMedCrossRefGoogle Scholar
  61. Magori S, Citovsky V (2011b) Agrobacterium counteracts host-induced degradation of its effector F-box protein. Sci Signal 4:ra69PubMedCrossRefGoogle Scholar
  62. Marra A, Blander SJ, Horwitz MA, Shuman HA (1992) Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc Natl Acad Sci U S A 89:9607–9611PubMedCrossRefGoogle Scholar
  63. Matsuda F, Fujii J, Yoshida S (2009) Autophagy induced by 2-deoxy-d-glucose suppresses intracellular multiplication of Legionella pneumophila in A/J mouse macrophages. Autophagy 5:484–493PubMedCrossRefGoogle Scholar
  64. McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA et al (1977) Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 297:1197–1203PubMedCrossRefGoogle Scholar
  65. Mesquita FS, Thomas M, Sachse M, Santos AJ, Figueira R et al (2012) The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLoS Pathog 8:e1002743PubMedCrossRefGoogle Scholar
  66. Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7:766–772PubMedCrossRefGoogle Scholar
  67. Minami R, Hayakawa A, Kagawa H, Yanagi Y, Yokosawa H et al (2010) BAG-6 is essential for selective elimination of defective proteasomal substrates. J Cell Biol 190:637–650PubMedCrossRefGoogle Scholar
  68. Misaghi S, Balsara ZR, Catic A, Spooner E, Ploegh HL et al (2006) Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol Microbiol 61:142–150PubMedCrossRefGoogle Scholar
  69. Mocciaro A, Rape M (2012) Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control. J Cell Sci 125:255–263PubMedCrossRefGoogle Scholar
  70. Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL et al (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1211–1214PubMedCrossRefGoogle Scholar
  71. Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE et al (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:103–106PubMedCrossRefGoogle Scholar
  72. Muller MP, Peters H, Blumer J, Blankenfeldt W, Goody RS et al (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946–949PubMedCrossRefGoogle Scholar
  73. Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682PubMedCrossRefGoogle Scholar
  74. Nathan JA, Tae Kim H, Ting L, Gygi SP, Goldberg AL (2013) Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J 32:552–565PubMedCrossRefGoogle Scholar
  75. Neunuebel MR, Chen Y, Gaspar AH, Backlund PS Jr, Yergey A et al (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333:453–456Google Scholar
  76. O’Connor TJ, Boyd D, Dorer MS, Isberg RR (2012) Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science 338:1440–1444PubMedCrossRefGoogle Scholar
  77. Otto GP, Wu MY, Clarke M, Lu H, Anderson OR et al (2004) Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum. Mol Microbiol 51:63–72PubMedCrossRefGoogle Scholar
  78. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145PubMedCrossRefGoogle Scholar
  79. Patel JC, Hueffer K, Lam TT, Galan JE (2009) Diversification of a Salmonella virulence protein function by ubiquitin-dependent differential localization. Cell 137:283–294PubMedCrossRefGoogle Scholar
  80. Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616PubMedCrossRefGoogle Scholar
  81. Pierre P (2005) Dendritic cells, DRiPs, and DALIS in the control of antigen processing. Immunol Rev 207:184–190PubMedCrossRefGoogle Scholar
  82. Prasad J, Colwill K, Pawson T, Manley JL (1999) The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol Cell Biol 19:6991–7000PubMedGoogle Scholar
  83. Price CT, Kwaik YA (2010) Exploitation of host polyubiquitination machinery through molecular mimicry by eukaryotic-like bacterial F-box effectors. Front Microbiol 1:122PubMedGoogle Scholar
  84. Price CT, Al-Khodor S, Al-Quadan T, Santic M, Habyarimana F et al (2009) Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog 5:e1000704PubMedCrossRefGoogle Scholar
  85. Price CT, Al-Khodor S, Al-Quadan T, Abu Kwaik Y (2010) Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae. Infect Immun 78:2079–2088PubMedCrossRefGoogle Scholar
  86. Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y (2011) Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334:1553–1557PubMedCrossRefGoogle Scholar
  87. Quezada CM, Hicks SW, Galan JE, Stebbins CE (2009) A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc Natl Acad Sci U S A 106:4864–4869PubMedCrossRefGoogle Scholar
  88. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397PubMedCrossRefGoogle Scholar
  89. Rytkonen A, Poh J, Garmendia J, Boyle C, Thompson A et al (2007) SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc Natl Acad Sci U S A 104:3502–3507PubMedCrossRefGoogle Scholar
  90. Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M et al (2010) The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J Bacteriol 192:1045–1057PubMedCrossRefGoogle Scholar
  91. Schwertz H, Tolley ND, Foulks JM, Denis MM, Risenmay BW et al (2006) Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 203:2433–2440PubMedCrossRefGoogle Scholar
  92. Segal G, Shuman HA (1999) Possible origin of the Legionella pneumophila virulence genes and their relation to Coxiella burnetii. Mol Microbiol 33:669–670PubMedCrossRefGoogle Scholar
  93. Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A 95:1669–1674PubMedCrossRefGoogle Scholar
  94. Sepulveda JL, Wu C (2006) The parvins. Cell Mol Life Sci 63:25–35PubMedCrossRefGoogle Scholar
  95. Shahnazari S, Brumell JH (2011) Mechanisms and consequences of bacterial targeting by the autophagy pathway. Curr Opin Microbiol 14:68–75PubMedCrossRefGoogle Scholar
  96. Shanks J, Burtnick MN, Brett PJ, Waag DM, Spurgers KB et al (2009) Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun 77:1636–1648PubMedCrossRefGoogle Scholar
  97. Singer AU, Rohde JR, Lam R, Skarina T, Kagan O et al (2008) Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat Struct Mol Biol 15:1293–1301PubMedCrossRefGoogle Scholar
  98. Szeto J, Kaniuk NA, Canadien V, Nisman R, Mizushima N et al (2006) ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2:189–199PubMedGoogle Scholar
  99. Tan Y, Luo ZQ (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475:506–509PubMedCrossRefGoogle Scholar
  100. Tan Y, Arnold RJ, Luo ZQ (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci U S A 108:21212–21217PubMedCrossRefGoogle Scholar
  101. Thomas M, Mesquita FS, Holden DW (2012) The DUB-ious lack of ALIS in Salmonella infection: a Salmonella deubiquitinase regulates the autophagy of protein aggregates. Autophagy 8:1824–1826PubMedCrossRefGoogle Scholar
  102. Tung SM, Unal C, Ley A, Pena C, Tunggal B et al (2010) Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol 12:765–780PubMedCrossRefGoogle Scholar
  103. Ulrich HD, Walden H (2010) Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol 11:479–489PubMedCrossRefGoogle Scholar
  104. van Wijk SJ, Timmers HT (2010) The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 24:981–993PubMedCrossRefGoogle Scholar
  105. Vandenabeele P, Bertrand MJ (2012) The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling. Nat Rev Immunol 12:833–844PubMedCrossRefGoogle Scholar
  106. Vogel JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873–876PubMedCrossRefGoogle Scholar
  107. Wang Q, Liu Y, Soetandyo N, Baek K, Hegde R et al (2011) A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol Cell 42:758–770PubMedCrossRefGoogle Scholar
  108. Windheim M, Peggie M, Cohen P (2008) Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochem J 409:723–729PubMedCrossRefGoogle Scholar
  109. Xin DW, Liao S, Xie ZP, Hann DR, Steinle L et al (2012) Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLoS Pathog 8:e1002707PubMedCrossRefGoogle Scholar
  110. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y et al (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145PubMedCrossRefGoogle Scholar
  111. Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764PubMedCrossRefGoogle Scholar
  112. Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656PubMedCrossRefGoogle Scholar
  113. Ye Z, Petrof EO, Boone D, Claud EC, Sun J (2007) Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. Am J Pathol 171:882–892PubMedCrossRefGoogle Scholar
  114. Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M et al (2009) Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 11:1233–1240PubMedCrossRefGoogle Scholar
  115. Zeng LR, Park CH, Venu RC, Gough J, Wang GL (2008) Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Mol Plant 1:800–815PubMedCrossRefGoogle Scholar
  116. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T et al (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183:5909–5916PubMedCrossRefGoogle Scholar
  117. Zhou H, Monack DM, Kayagaki N, Wertz I, Yin J et al (2005) Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation. J Exp Med 202:1327–1332PubMedCrossRefGoogle Scholar
  118. Zhu Y, Li H, Hu L, Wang J, Zhou Y et al (2008) Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat Struct Mol Biol 15:1302–1308PubMedCrossRefGoogle Scholar
  119. Zhu W, Banga S, Tan Y, Zheng C, Stephenson R et al (2011) Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS ONE 6:e17638PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Research Institute for Microbial DiseasesOsaka UniversitySuita, OsakaJapan

Personalised recommendations