Skip to main content

Central Tolerance Induction

  • Chapter
  • First Online:
Thymic Development and Selection of T Lymphocytes

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 373))

Abstract

A critical function of the thymus is to help enforce tolerance to self. The importance of central tolerance in preventing autoimmunity has been enlightened by a deeper understanding of the interactions of developing T cells with a diverse population of thymic antigen presenting cell populations. Furthermore, there has been rapid progress in our understanding of how autoreactive T cell specificities are diverted into the T regulatory lineage. Here we review and highlight the recent progress in how tolerance is imposed on the developing thymocyte repertoire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltonen J (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17(4):399–403. doi:10.1038/ng1297-399

    Article  Google Scholar 

  • Abramson J, Giraud M, Benoist C, Mathis D (2010) Aire’s partners in the molecular control of immunological tolerance. Cell 140(1):123–135. doi:10.1016/j.cell.2009.12.030, S0092-8674(09)01616-X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, Kajiura F, Matsumoto M, Inoue J-I (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308:248–251

    Article  PubMed  CAS  Google Scholar 

  • Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, Maruyama Y, Asaumi Y, Kitazawa J, Takayanagi H, Penninger JM, Matsumoto M, Nitta T, Takahama Y, Inoue J-I (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29:423–437

    Article  PubMed  CAS  Google Scholar 

  • Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401

    Article  PubMed  CAS  Google Scholar 

  • Apostolou I, Sarukhan A, Klein L, von Boehmer H (2002) Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3:756–763

    PubMed  CAS  Google Scholar 

  • Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, Rolink A, Klein L (2007) Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8:351–358

    Article  PubMed  CAS  Google Scholar 

  • Baldwin TA, Sandau MM, Jameson SC, Hogquist KA (2005) The timing of TCR alpha expression critically influences T cell development and selection. J Exp Med 202(1):111–121. doi:10.1084/jem.20050359, jem.20050359 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Bautista JL, Lio C-WJ, Lathrop SK, Forbush K, Liang Y, Luo J, Rudensky AY, Hsieh C-S (2009) Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat Immunol 10:610–617

    Article  PubMed  CAS  Google Scholar 

  • Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20–21. doi:10.1038/83713

    Article  PubMed  CAS  Google Scholar 

  • Boehm T, Scheu S, Pfeffer K, Bleul CC (2003) Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. J Exp Med 198:757–769

    Article  PubMed  CAS  Google Scholar 

  • Bonasio R, Scimone ML, Schaerli P, Grabie N, Lichtman AH, von Andrian UH (2006) Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat Immunol 7:1092–1100

    Article  PubMed  CAS  Google Scholar 

  • Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H, Pellegrini M, Cory S, Adams JM, Strasser A (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415(6874):922–926. doi:10.1038/415922a, 415922a [pii]

    Article  PubMed  CAS  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    Article  PubMed  CAS  Google Scholar 

  • Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio C-WJ, Vegoe AL, Hsieh C-S, Jenkins MK, Farrar MA (2008) Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28:112–121

    Article  PubMed  CAS  Google Scholar 

  • Burnet F (1958) The clonal selection theory of acquired immunity. Vanderbilt University Press, Nashville

    Google Scholar 

  • Calnan BJ, Szychowski S, Chan FK, Cado D, Winoto A (1995) A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity 3(3):273–282

    Article  PubMed  CAS  Google Scholar 

  • Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, Bowcock AM (2000) JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 106:75–81

    Article  Google Scholar 

  • Cho HJ, Edmondson SG, Miller AD, Sellars M, Alexander ST, Somersan S, Punt JA (2003) Cutting edge: identification of the targets of clonal deletion in an unmanipulated thymus. J Immunol 170(1):10–13

    PubMed  CAS  Google Scholar 

  • D’Cruz LM, Klein L (2005) Development and function of agonist-induced CD25+ Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6:1152–1159

    Article  PubMed  Google Scholar 

  • Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, Hollander GA, Gascoigne NR, Palmer E (2006) Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444(7120):724–729. doi:10.1038/nature05269, nature05269 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Darrasse-Jeze G, Deroubaix S, Mouquet H, Victora GD, Eisenreich T, Yao Kh, Masilamani RF, Dustin ML, Rudensky A, Liu K, Nussenzweig MC (2009) Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med 206:1853–1862

    Article  PubMed  CAS  Google Scholar 

  • Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, Peltonen L, Walter J, Kyewski B (2005) Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202(1):33–45. doi:10.1084/jem.20050471, jem.20050471 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Derbinski J, Pinto S, Rosch S, Hexel K, Kyewski B (2008) Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc Natl Acad Sci USA 105(2):657–662. doi:10.1073/pnas.0707486105, 0707486105 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Derbinski J, Schulte A, Kyewski B, Klein L (2001) Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2(11):1032–1039. doi:10.1038/ni723ni723, ni723 [pii]

    Article  PubMed  CAS  Google Scholar 

  • DeVoss JJ, LeClair NP, Hou Y, Grewal NK, Johannes KP, Lu W, Yang T, Meagher C, Fong L, Strauss EC, Anderson MS (2010) An autoimmune response to odorant binding protein 1a is associated with dry eye in the Aire-deficient mouse. J Immunol 184:4236–4246

    Article  PubMed  CAS  Google Scholar 

  • DiPaolo RJ, Shevach EM (2009) CD4+ T-cell development in a mouse expressing a transgenic TCR derived from a Treg. Eur J Immunol 39:234–240

    Article  PubMed  CAS  Google Scholar 

  • Fassett MS, Jiang W, D’Alise AM, Mathis D, Benoist C (2012) Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proc Natl Acad Sci USA 109(10):3891–3896. doi:10.1073/pnas.1200090109, 1200090109 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Fehling HJ, Krotkova A, Saint-Ruf C, von Boehmer H (1995) Crucial role of the pre-T-cell receptor alpha gene in development of alpha beta but not gamma delta T cells. Nature 375(6534):795–798. doi:10.1038/375795a0

    Article  PubMed  CAS  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4(4):330–336. doi:10.1038/ni904, ni904 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341

    Article  PubMed  CAS  Google Scholar 

  • Fowlkes BJ, Schwartz RH, Pardoll DM (1988) Deletion of self-reactive thymocytes occurs at a CD4+8+ precursor stage. Nature 334(6183):620–623. doi:10.1038/334620a0

    Article  PubMed  CAS  Google Scholar 

  • Gallegos AM, Bevan MJ (2004) Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med 200:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Gil D, Schrum AG, Alarcon B, Palmer E (2005) T cell receptor engagement by peptide-MHC ligands induces a conformational change in the CD3 complex of thymocytes. J Exp Med 201(4):517–522. doi:10.1084/jem.20042036, jem.20042036 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Giraud M, Yoshida H, Abramson J, Rahl PB, Young RA, Mathis D, Benoist C (2012) Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci USA 109:535–540

    Article  PubMed  CAS  Google Scholar 

  • Gray D, Abramson J, Benoist C, Mathis D (2007) Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med 204:2521–2528

    Article  PubMed  CAS  Google Scholar 

  • Gray DHD, Kupresanin F, Berzins SP, Herold MJ, O′Reilly LA, Bouillet P, Strasser A (2012) The BH3-only proteins Bim and Puma cooperate to impose deletional tolerance of organ-specific antigens. Immunity 37:451–462

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, Hayashi Y, Matsumoto M, Matsuo K, Penninger JM, Takayanagi H, Yokota Y, Yamada H, Yoshikai Y, Inoue J-I, Akiyama T, Takahama Y (2008) The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29:438–450

    Article  PubMed  CAS  Google Scholar 

  • Hinterberger M, Aichinger M, da Costa OP, Voehringer D, Hoffmann R, Klein L (2010) Autonomous role of medullary thymic epithelial cells in central CD4(+) T cell tolerance. Nat Immunol 11:512–519

    Article  PubMed  CAS  Google Scholar 

  • Hori S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Hsieh C-S, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY (2004) Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21:267–277

    Article  PubMed  CAS  Google Scholar 

  • Hsieh C-S, Zheng Y, Liang Y, Fontenot JD, Rudensky AY (2006) An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 7:401–410

    Article  PubMed  CAS  Google Scholar 

  • Hubert FX, Kinkel SA, Davey GM, Phipson B, Mueller SN, Liston A, Proietto AI, Cannon PZF, Forehan S, Smyth GK, Wu L, Goodnow CC, Carbone FR, Scott HS, Heath WR (2011) Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood 118:2462–2472

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, Sakaguchi S (1999) Thymus and autoimmunity: production of CD25+ CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162:5317–5326

    PubMed  CAS  Google Scholar 

  • Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ (2001) Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:301–306

    Article  PubMed  CAS  Google Scholar 

  • Kajiura F, Sun S, Nomura T, Izumi K, Ueno T, Bando Y, Kuroda N, Han H, Li Y, Matsushima A, Takahama Y, Sakaguchi S, Mitani T, Matsumoto M (2004) NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol 172:2067–2075

    PubMed  CAS  Google Scholar 

  • Kappler JW, Roehm N, Marrack P (1987) T cell tolerance by clonal elimination in the thymus. Cell 49(2):273–280, 0092-8674(87)90568-X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Khattri R, Cox T, Yasayko S-A, Ramsdell F (2003) An essential role for Scurfin in CD4+ CD25+ T regulatory cells. Nat Immunol 4:337–342

    Article  PubMed  CAS  Google Scholar 

  • Kisielow P, Bluthmann H, Staerz UD, Steinmetz M, von Boehmer H (1988) Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+ 8+ thymocytes. Nature 333(6175):742–746. doi:10.1038/333742a0

    Article  PubMed  CAS  Google Scholar 

  • Knoechel B, Lohr J, Kahn E, Bluestone JA, Abbas AK (2005) Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med 202:1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Koble C, Kyewski B (2009) The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. J Exp Med 206:1505–1513

    Article  PubMed  CAS  Google Scholar 

  • Koh AS, Kingston RE, Benoist C, Mathis D (2010) Global relevance of Aire binding to hypomethylated lysine-4 of histone-3. Proc Natl Acad Sci USA 107(29):13016–13021. doi:10.1073/pnas.1004436107, 1004436107 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kwan J, Killeen N (2004) CCR7 directs the migration of thymocytes into the thymic medulla. J Immunol 172(7):3999–4007

    PubMed  CAS  Google Scholar 

  • Lee H-M, Bautista JL, Scott-Browne J, Mohan JF, Hsieh C-S (2012) A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. Immunity 37:475–486

    Article  PubMed  CAS  Google Scholar 

  • Lei Y, Ripen AM, Ishimaru N, Ohigashi I, Nagasawa T, Jeker LT, Bosl MR, Hollander GA, Hayashi Y, De Waal Malefyt R, Nitta T, Takahama Y (2011) Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med 208:383–394

    Article  PubMed  CAS  Google Scholar 

  • Leung MWL, Shen S, Lafaille JJ (2009) TCR-dependent differentiation of thymic Foxp3+ cells is limited to small clonal sizes. J Exp Med 206:2121–2130

    Article  PubMed  CAS  Google Scholar 

  • Li J, Park J, Foss D, Goldschneider I (2009) Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J Exp Med 206(3):607–622. doi:10.1084/jem.20082232, jem.20082232 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lio C-WJ, Hsieh C-S (2008) A two-step process for thymic regulatory T cell development. Immunity 28:100–111

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W (2008) A critical function for TGF-beta signaling in the development of natural CD4+ CD25+ Foxp3+ regulatory T cells. Nat Immunol 9:632–640

    Article  PubMed  CAS  Google Scholar 

  • Marie JC, Liggitt D, Rudensky AY (2006) Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25(3):441–454. doi:10.1016/j.immuni.2006.07.012, S1074-7613(06)00388-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • McCaughtry TM, Wilken MS, Hogquist KA (2007) Thymic emigration revisited. J Exp Med 204(11):2513–2520. doi:10.1084/jem.20070601, S1074-7613(06)00388-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • McNeil LK, Starr TK, Hogquist KA (2005) A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proc Natl Acad Sci USA 102(38):13574–13579. doi:10.1073/pnas.0505110102, 0505110102 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Metzger TC, Anderson MS (2011) Control of central and peripheral tolerance by Aire. Immunol Rev 241:89–103

    Article  PubMed  CAS  Google Scholar 

  • Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J, Hogquist KA (2011) T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 208:1279–1289

    Article  PubMed  CAS  Google Scholar 

  • Mouri Y, Yano M, Shinzawa M, Shimo Y, Hirota F, Nishikawa Y, Nii T, Kiyonari H, Abe T, Uehara H, Izumi K, Tamada K, Chen L, Penninger JM, Inoue J-I, Akiyama T, Matsumoto M (2011) Lymphotoxin signal promotes thymic organogenesis by eliciting RANK expression in the embryonic thymic stroma. J Immunol 186:5047–5057

    Article  PubMed  CAS  Google Scholar 

  • Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316(5829):1349–1353. doi:10.1126/science.1141915, 316/5829/1349 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Murphy KM, Heimberger AB, Loh DY (1990) Induction by antigen of intrathymic apoptosis of CD4+ CD8+ TCRlo thymocytes in vivo. Science 250(4988):1720–1723

    Article  PubMed  CAS  Google Scholar 

  • Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455:396–400

    Article  PubMed  CAS  Google Scholar 

  • Nika K, Soldani C, Salek M, Paster W, Gray A, Etzensperger R, Fugger L, Polzella P, Cerundolo V, Dushek O, Hofer T, Viola A, Acuto O (2010) Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32(6):766–777. doi:10.1016/j.immuni.2010.05.011, S1074-7613(10)00203-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y, Sakakura T (1969) Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166(3906):753–755

    Article  PubMed  CAS  Google Scholar 

  • Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248(4962):1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Org T, Chignola F, Hetenyi C, Gaetani M, Rebane A, Liiv I, Maran U, Mollica L, Bottomley MJ, Musco G, Peterson P (2008) The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep 9(4):370–376. doi:10.1038/sj.embor.2008.11 embor200811 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ouyang W, Beckett O, Ma Q, Li MO (2010) Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32: 642–653

    Google Scholar 

  • Oven I, Brdickova N, Kohoutek J, Vaupotic T, Narat M, Peterlin BM (2007) AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol Cell Biol 27(24):8815–8823. doi:10.1128/MCB.01085-07, MCB.01085-07 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L (2006) Origin and T cell receptor diversity of Foxp3+ CD4+ CD25+ T cells. Immunity 25:249–259

    Article  PubMed  CAS  Google Scholar 

  • Proietto AI, van Dommelen S, Zhou P, Rizzitelli A, D’Amico A, Steptoe RJ, Naik SH, Lahoud MH, Liu Y, Zheng P, Shortman K, Wu L (2008) Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc Natl Acad Sci USA 105:19869–19874

    Article  PubMed  CAS  Google Scholar 

  • Rossi SW, Kim M-Y, Leibbrandt A, Parnell SM, Jenkinson WE, Glanville SH, McConnell FM, Scott HS, Penninger JM, Jenkinson EJ, Lane PJL, Anderson G (2007) RANK signals from CD4(+)3(−) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med 204:1267–1272

    Article  PubMed  CAS  Google Scholar 

  • Sadlack B, Merz H, Schorle H, Schorle H, Schimpl A, Feller AC, Horak I (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75(2):253–261, 0092-8674(93)80067-O [pii]

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  • Sakaguchi S, Takahashi T, Nishizuka Y (1982) Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J Exp Med 156:1577–1586

    Article  PubMed  CAS  Google Scholar 

  • Schatz DG, Oettinger MA, Baltimore D (1989) The V(D)J recombination activating gene, RAG-1. Cell 59(6):1035–1048. 0092-8674(89)90760-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I (1991) Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352(6336):621–624. doi:10.1038/352621a0

    Article  PubMed  CAS  Google Scholar 

  • Shum AK, DeVoss J, Tan CL, Hou Y, Johannes K, O’Gorman CS, Jones KD, Sochett EB, Fong L, Anderson MS (2009) Identification of an autoantigen demonstrates a link between interstitial lung disease and a defect in central tolerance. Sci Transl Med 1(9):9ra20. doi:10.1126/scitranslmed.3000284, 1/9/9ra20 [pii]

    Article  PubMed  Google Scholar 

  • Smith KM, Olson DC, Hirose R, Hanahan D (1997) Pancreatic gene expression in rare cells of thymic medulla: evidence for functional contribution to T cell tolerance. Int Immunol 9(9):1355–1365

    Article  PubMed  CAS  Google Scholar 

  • Sohn SJ, Thompson J, Winoto A (2007) Apoptosis during negative selection of autoreactive thymocytes. Curr Opin Immunol 19(5):510–515. doi:10.1016/j.coi.2007.06.001, S0952-7915(07)00104-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Spence PJ, Green EA (2008) Foxp3+ regulatory T cells promiscuously accept thymic signals critical for their development. Proc Natl Acad Sci USA 105:973–978

    Article  PubMed  CAS  Google Scholar 

  • Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176. doi:10.1146/annurev.immunol.21.120601.141107, 120601.141107 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Su MA, Giang K, Zumer K, Jiang H, Oven I, Rinn JL, DeVoss JJ, Johannes KPA, Lu W, Gardner J, Chang A, Bubulya P, Chang HY, Peterlin BM, Anderson MS (2008) Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. J Clin Invest 118:1712–1726

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Kundig TM, Furlonger C, Wakeham A, Timms E, Matsuyama T, Schmits R, Simard JJ, Ohashi PS, Griesser H (1995) Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268(5216):1472–1476

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi RT, DeVoss JJ, Moon JJ, Sidney J, Sette A, Jenkins MK, Anderson MS (2012) Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. Proc Natl Acad Sci USA 109:7847–7852

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Winoto A (2008) During negative selection, Nur77 family proteins translocate to mitochondria where they associate with Bcl-2 and expose its proapoptotic BH3 domain. J Exp Med 205(5):1029–1036. doi:10.1084/jem.20080101, jem.20080101 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ueno T, Saito F, Gray DH, Kuse S, Hieshima K, Nakano H, Kakiuchi T, Lipp M, Boyd RL, Takahama Y (2004) CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 200(4):493–505. doi:10.1084/jem.20040643 jem.20040643 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Venanzi ES, Gray DH, Benoist C, Mathis D (2007) Lymphotoxin pathway and Aire influences on thymic medullary epithelial cells are unconnected. J Immunol 179(9):5693–5700, 179/9/5693 [pii]

    PubMed  CAS  Google Scholar 

  • Villasenor J, Besse W, Benoist C, Mathis D (2008) Ectopic expression of peripheral-tissue antigens in the thymic epithelium: probabilistic, monoallelic, misinitiated. Proc Natl Acad Sci USA 105(41):15854–15859. doi:10.1073/pnas.0808069105, 0808069105 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Wang Y-H, Lee HK, Ito T, Wang Y-H, Cao W, Liu Y-J (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+ CD25+ regulatory T cells in human thymus. Nature 436:1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20

    Article  PubMed  CAS  Google Scholar 

  • Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW (1995) Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3(4):521–530, 1074-7613(95)90180-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Obst R, Correia-Neves M, Losyev G, Mathis D, Benoist C (2007) Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol 178:7032–7041

    PubMed  CAS  Google Scholar 

  • Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, Laurence A, Robinson GW, Shevach EM, Moriggl R, Hennighausen L, Wu C, O’Shea JJ (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109:4368–4375

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Ladi E, Chan SW, Li O, Killeen N, Kappes DJ, Robey EA (2007) CCR7 expression in developing thymocytes is linked to the CD4 versus CD8 lineage decision. J Immunol 179(11):7358–7364, 179/11/7358 [pii]

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH, The Helmsley Charitable Trust, and The Burroughs Wellcome Fund. The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mouchess, M.L., Anderson, M. (2013). Central Tolerance Induction. In: Boehm, T., Takahama, Y. (eds) Thymic Development and Selection of T Lymphocytes. Current Topics in Microbiology and Immunology, vol 373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2013_321

Download citation

Publish with us

Policies and ethics