Modeling Cholera Outbreaks

  • Dennis L. ChaoEmail author
  • Ira M. LonginiJr.
  • J. Glenn MorrisJr.
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 379)


Mathematical modeling can be a valuable tool for studying infectious disease outbreak dynamics and simulating the effects of possible interventions. Here, we describe approaches to modeling cholera outbreaks and how models have been applied to explore intervention strategies, particularly in Haiti. Mathematical models can play an important role in formulating and evaluating complex cholera outbreak response options. Major challenges to cholera modeling are insufficient data for calibrating models and the need to tailor models for different outbreak scenarios.


Infectious Individual Cholera Outbreak Environmental Reservoir Cholera Vaccine Reactive Vaccination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrams JY, Copeland JR, Tauxe RV, Date KA, Belay ED, Mody RK, Mintz ED (2012) Real-time modelling used for outbreak management during a cholera epidemic, Haiti, 2010–2011. Epidemiol Infect, pp 1–10 (in press)Google Scholar
  2. Albert MJ, Neira M, Motarjemi Y (1997) The role of food in the epidemiology of cholera. World Health Stat Q 50(1–2):111–118PubMedGoogle Scholar
  3. Ali M, Emch M, von Seidlein L, Yunus M, Sack DA, Rao M, Holmgren J, Clemens JD (2005) Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis. Lancet 366(9479):44–49PubMedCrossRefGoogle Scholar
  4. Ali M, Emch M, Yunus M, Sack D, Lopez AL, Holmgren J, Clemens J (2008) Vaccine protection of Bangladeshi infants and young children against cholera: implications for vaccine deployment and person-to-person transmission. Pediatr Infect Dis J 27(1):33–37PubMedCrossRefGoogle Scholar
  5. Andrews JR, Basu S (2011) Transmission dynamics and control of cholera in Haiti: an epidemic model. Lancet 377(9773):1248–1255. doi: 10.1016/S0140-6736(11)60273-0 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Arifuzzaman M, Rashu R, Leung DT, Hosen MI, Bhuiyan TR, Bhuiyan MS, Rahman MA, Khanam F, Saha A, Charles RC, Larocque RC, Weil AA, Clements JD, Holmes RK, Calderwood SB, Harris JB, Ryan ET, Qadri F (2012) Antigen-specific memory T cell responses after vaccination with an oral killed cholera vaccine in Bangladeshi children and comparison to responses in patients with naturally acquired cholera. Clin Vaccine Immunol 19(8):1304–1311. doi: 10.1128/CVI.00196-12 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Azman AS, Luquero FJ, Rodrigues A, Palma PP, Grais RF, Banga CN, Grenfell BT, Lessler J (2012) Urban cholera transmission hotspots and their implications for reactive vaccination: Evidence from Bissau City, Guinea Bissau.. PLoS Negl Trop Dis 6(11):e1901. doi: 10.1371/journal.pntd.0001901 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bengtsson L, Lu X, Thorson A, Garfield R, von Schreeb J (2011) Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in Haiti. PLoS Med 8(8):e1001,083. doi: 10.1371/journal.pmed.1001083
  9. Bertuzzo E, Casagrandi R, Gatto M, Rodriguez-Iturbe I, Rinaldo A (2010) On spatially explicit models of cholera epidemics. J R Soc Interf 7(43):321–333. doi: 10.1098/rsif.2009.0204 CrossRefGoogle Scholar
  10. Bertuzzo E, Mari L, Righetto L, Gatto M, Casagrandi R, Blokesch M, Rodriguez-Iturbe I, Rinaldo A (2011) Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak. Geophys Res Lett 38:L06,403Google Scholar
  11. Black RE, Levine MM, Clements ML, Young CR, Svennerholm AM, Holmgren J (1987) Protective efficacy in humans of killed whole-vibrio oral cholera vaccine with and without the B subunit of cholera toxin. Infect Immun 55(5):1116–1120PubMedCentralPubMedGoogle Scholar
  12. Brisson M, Edmunds WJ (2003) Economic evaluation of vaccination programs: the impact of herd-immunity. Med Decis Making 23(1):76–82PubMedCrossRefGoogle Scholar
  13. Calain P, Chaine JP, Johnson E, Hawley ML, O’Leary MJ, Oshitani H, Chaignat CL (2004) Can oral cholera vaccination play a role in controlling a cholera outbreak? Vaccine 22(19):2444–2451PubMedCrossRefGoogle Scholar
  14. Cash RA, Music SI, Libonati JP, Snyder MJ, Wenzel RP, Hornick RB (1974) Response of man to infection with Vibrio cholerae. I. clinical, serologic, and bacteriologic responses to a known inoculum. J Infect Dis 129(1):45–52PubMedCrossRefGoogle Scholar
  15. Centers for Disease Control and Prevention (CDC) (2010) Update: cholera outbreak—Haiti, 2010. MMWR Morb Mortal Wkly Rep 59(45):1473–1479Google Scholar
  16. Chaignat CL, Monti V (2007) Use of oral cholera vaccine in complex emergencies: what next? Summary report of an expert meeting and recommendations of WHO. J Health Popul Nutr 25(2):244–261PubMedCentralPubMedGoogle Scholar
  17. Chao DL, Halloran ME, Longini IM Jr (2011) Vaccination strategies for epidemic cholera in Haiti with implications for the developing world. Proc Natl Acad Sci U S A 108(17):7081–7085. doi: 10.1073/pnas.1102149108 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Chunara R, Andrews JR, Brownstein JS (2012) Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. Am J Trop Med Hyg 86(1):39–45. doi: 10.4269/ajtmh.2012.11-0597 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Clemens JD (2011) Vaccines in the time of cholera. Proc Natl Acad Sci U S A 108(21):8529–8530. doi: 10.1073/pnas.1105807108 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Codeço CT (2001) Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect Dis 1:1Google Scholar
  21. Connolly, MA (eds) (2005) Communicable disease control in emergencies: a field manual. World Health Organization, GenevaGoogle Scholar
  22. Cook J, Jeuland M, Maskery B, Lauria D, Sur D, Clemens J, Whittington D (2009) Using private demand studies to calculate socially optimal vaccine subsidies in developing countries. J Policy Anal Manage 28(1):6–28PubMedCrossRefGoogle Scholar
  23. Cravioto A, Lanta CF, Lantagne DS, Nair GB (2011) Final report of the independent panel of experts on the cholera outbreak in Haiti. United Nations, New YorkGoogle Scholar
  24. Farmer P, Almazor CP, Bahnsen ET, Barry D, Bazile J, Bloom BR, Bose N, Brewer T, Calderwood SB, Clemens JD, Cravioto A, Eustache E, Jérôme G, Gupta N, Harris JB, Hiatt HH, Holstein C, Hotez PJ, Ivers LC, Kerry VB, Koenig SP, LaRocque RC, Léandre F, Lambert W, Lyon E, Mekalanos JJ, Mukherjee JS, Oswald C, Pape JW, Gretchko Prosper A, Rabinovich R, Raymonville M, Réjouit JR, Ronan LJ, Rosenberg ML, Ryan ET, Sachs JD, Sack DA, Surena C, Suri AA, Ternier R, Waldor MK, Walton D, Weigel JL (2011) Meeting cholera’s challenge to Haiti and the world: A joint statement on cholera prevention and care. PLoS Negl Trop Dis 5(5):e1145. doi: 10.1371/journal.pntd.0001145 Google Scholar
  25. Fox JP, Elveback L, Scott W, Gatewood L, Ackerman E (1971) Herd immunity: basic concept and relevance to public health immunization practices. Am J Epidemiol 94(3):179–189PubMedGoogle Scholar
  26. Franco AA, Fix AD, Prada A, Paredes E, Palomino JC, Wright AC, Johnson JA, McCarter R, Guerra H, Morris JG Jr (1997) Cholera in Lima, Peru, correlates with prior isolation of Vibrio cholerae from the environment. Am J Epidemiol 146(12):1067–1075PubMedCrossRefGoogle Scholar
  27. Garnett GP, Cousens S, Hallett TB, Steketee R, Walker N (2011) Mathematical models in the evaluation of health programmes. Lancet 378(9790):515–525. doi: 10.1016/S0140-6736(10)61505-X PubMedCrossRefGoogle Scholar
  28. Global Task Force on Cholera Control (2010) Oral cholera vaccines in mass immunization campaigns: Guidance for planning and use. World Health Organization, Geneva,
  29. Grad YH, Miller JC, Lipsitch M (2012) Cholera modeling: challenges to quantitative analysis and predicting the impact of interventions. Epidemiology 23(4):523–530PubMedCentralPubMedCrossRefGoogle Scholar
  30. Halloran ME, Longini IM Jr, Struchiner CJ (1999) Design and interpretation of vaccine field studies. Epidemiol Rev 21(1):73–88PubMedCrossRefGoogle Scholar
  31. Harris JB, LaRocque RC, Chowdhury F, Khan AI, Logvinenko T, Faruque ASG, Ryan ET, Qadri F, Calderwood SB (2008) Susceptibility to Vibrio cholerae infection in a cohort of household contacts of patients with cholera in Bangladesh. PLoS Negl Trop Dis 2(4):e221PubMedCentralPubMedCrossRefGoogle Scholar
  32. Hartley DM, Morris JG Jr, Smith DL (2006) Hyperinfectivity: a critical element in the ability of V cholerae to cause epidemics. PLoS Med 3(1):e7PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653CrossRefGoogle Scholar
  34. Hill AN, Longini IM Jr (2003) The critical vaccination fraction for heterogeneous epidemic models. Mathematical Biosciences 181:85–106PubMedCrossRefGoogle Scholar
  35. Holmgren J (2012) A case for control of cholera in Africa by vaccination. Lancet Infect Dis 12(11):818–819. doi: 10.1016/S1473-3099(12)70204-9 PubMedCrossRefGoogle Scholar
  36. Hutubessy R, Henao AM, Namgyal P, Moorthy V, Hombach J (2011) Results from evaluations of models and cost-effectiveness tools to support introduction decisions for new vaccines need critical appraisal. BMC Med 9:55. doi: 10.1186/1741-7015-9-55 PubMedCentralPubMedCrossRefGoogle Scholar
  37. International Vaccine Institute (2012) An investment case for the accelerated introduction of oral cholera vaccines. International Vaccine Institute, Seoul.
  38. Ivers LC, Farmer P, Almazor CP, Léandre F (2010) Five complementary interventions to slow cholera: Haiti. Lancet 376(9758):2048–2051. doi: 10.1016/S0140-6736(10)62243-X PubMedCrossRefGoogle Scholar
  39. Jeuland M, Cook J, Poulos C, Clemens J, Whittington D (2009) Cost-effectiveness of new-generation oral cholera vaccines: a multisite analysis. Value Health 12(6):899–908PubMedCrossRefGoogle Scholar
  40. Kendall EA, Chowdhury F, Begum Y, Khan AI, Li S, Thierer JH, Bailey J, Kreisel K, Tacket CO, LaRocque RC, Harris JB, Ryan ET, Qadri F, Calderwood SB, Stine OC (2010) Relatedness of Vibrio cholerae O1/O139 isolates from patients and their household contacts, determined by multilocus variable-number tandem-repeat analysis. J Bacteriol 192(17):4367–4376. doi: 10.1128/JB.00698-10 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc Roy Soc Lon Ser A 115:700–721CrossRefGoogle Scholar
  42. Khan K, McNabb SJ, Memish ZA, Eckhardt R, Hu W, Kossowsky D, Sears J, Arino J, Johansson A, Barbeschi M, McCloskey B, Henry B, Cetron M, Brownstein JS (2012) Infectious disease surveillance and modelling across geographic frontiers and scientific specialties. Lancet Infect Dis 12(3):222–230PubMedCrossRefGoogle Scholar
  43. Kim SY, Choi Y, Mason PR, Rusakaniko S, Goldie SJ (2011) Potential impact of reactive vaccination in controlling cholera outbreaks: an exploratory analysis using a Zimbabwean experience. S Afr Med J 101(9):659–664PubMedGoogle Scholar
  44. King AA, Ionides EL, Pascual M, Bouma MJ (2008) Inapparent infections and cholera dynamics. Nature 454(7206):877–880PubMedCrossRefGoogle Scholar
  45. Koch R (1886) Further researches on cholera. Br Med J 1(1306):62–66PubMedCentralPubMedCrossRefGoogle Scholar
  46. Koch R (1893) Ueber den augenblicklichen Stand der bakteriologischen Choleradiagnose. Medical Microbiology and Immunology 14:319–338Google Scholar
  47. Koelle K, Pascual M (2004) Disentangling extrinsic from intrinsic factors in disease dynamics: a nonlinear time series approach with an application to cholera. Am Nat 163(6):901–913PubMedCrossRefGoogle Scholar
  48. Koelle K, Rodó X, Pascual M, Yunus M, Mostafa G (2005) Refractory periods and climate forcing in cholera dynamics. Nature 436(7051):696–700PubMedCrossRefGoogle Scholar
  49. Legros D, Paquet C, Perea W, Marty I, Mugisha NK, Royer H, Neira M, Ivanoff B (1999) Mass vaccination with a two-dose oral cholera vaccine in a refugee camp. Bull World Health Organ 77(10):837–842PubMedCentralPubMedGoogle Scholar
  50. Leung DT, Rahman MA, Mohasin M, Patel SM, Aktar A, Khanam F, Uddin T, Riyadh MA, Saha A, Alam MM, Chowdhury F, Khan AI, Charles R, Larocque R, Harris JB, Calderwood SB, Qadri F, Ryan ET (2012) Memory B cell and other immune responses in children receiving two doses of an oral killed cholera vaccine compared to responses following natural cholera infection in Bangladesh. Clin Vaccine Immunol 19(5):690–698. doi: 10.1128/CVI.05615-11 Google Scholar
  51. Levine MM, Nalin DR, Rennels MB, Hornick RB, Sotman S, Van Blerk G, Hughes TP, O’Donnell S, Barua D (1979) Genetic susceptibility to cholera. Ann Hum Biol 6(4):369–374PubMedCrossRefGoogle Scholar
  52. Longini IM Jr, Nizam A, Ali M, Yunus M, Shenvi N, Clemens JD (2007) Controlling endemic cholera with oral vaccines. PLoS Med 4(11):e336PubMedCentralPubMedCrossRefGoogle Scholar
  53. Mari L, Bertuzzo E, Righetto L, Casagrandi R, Gatto M, Rodriguez-Iturbe I, Rinaldo A (2012) Modelling cholera epidemics: the role of waterways, human mobility and sanitation. J R Soc Interf 9(67):376–388. doi: 10.1098/rsif.2011.0304 CrossRefGoogle Scholar
  54. Martin S, Costa A, Perea W (2012) Stockpiling oral cholera vaccine. Bull World Health Organ 90(10):714PubMedCentralPubMedCrossRefGoogle Scholar
  55. McCormack WM, Chowdhury AM, Jahangir N, Ahmed AB, Mosley WH (1968) Tetracycline prophylaxis in families of cholera patients. Bull World Health Organ 38(5):787–792PubMedCentralPubMedGoogle Scholar
  56. Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A (2002) Host-induced epidemic spread of the cholera bacterium. Nature 417(6889):642–645PubMedCentralPubMedCrossRefGoogle Scholar
  57. Miller Neilan RL, Schaefer E, Gaff H, Fister KR, Lenhart S (2010) Modeling optimal intervention strategies for cholera. Bull Math Biol 72(8):2004–2018. doi: 10.1007/s11538-010-9521-8 PubMedCrossRefGoogle Scholar
  58. Morris JG Jr (2011) Cholera-modern pandemic disease of ancient lineage. Emerg Infect Dis 17(11):2099–2104. doi: 10.3201/eid1711.111109 PubMedCentralPubMedGoogle Scholar
  59. Mosley WH, Alvero MG, Joseph PR, Tamayo JF, Gomez CZ, Montague T, Dizon JJ, Henderson DA (1965) Studies of cholera El Tor in the Philippines. 4. Transmission of infection among neighbourhood and community contacts of cholera patients. Bull World Health Organ 33(5):651–660PubMedCentralPubMedGoogle Scholar
  60. Mosley WH, Ahmad S, Benenson AS, Ahmed A (1968) The relationship of vibriocidal antibody titre to susceptibility to cholera in family contacts of cholera patients. Bull World Health Organ 38(5):777–785PubMedCentralPubMedGoogle Scholar
  61. Mukandavire Z, Liao S, Wang J, Gaff H, Smith DL, Morris JG Jr (2011) Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proc Natl Acad Sci U S A 108(21):8767–8772. doi: 10.1073/pnas.1019712108 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Naficy A, Rao MR, Paquet C, Antona D, Sorkin A, Clemens JD (1998) Treatment and vaccination strategies to control cholera in sub-Saharan refugee settings: a cost-effectiveness analysis. JAMA 279(7):521–525PubMedCrossRefGoogle Scholar
  63. Nelson EJ, Harris JB, Morris JG Jr, Calderwood SB, Camilli A (2009) Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 7(10):693–702PubMedCrossRefGoogle Scholar
  64. Palit A, Batabyal P, Kanungo S, Sur D (2012) In-house contamination of potable water in urban slum of Kolkata, India: a possible transmission route of diarrhea. Water Sci Technol 66(2):299–303. doi: 10.2166/wst.2012.177 PubMedCrossRefGoogle Scholar
  65. Pascual M, Koelle K, Dobson AP (2006) Hyperinfectivity in cholera: a new mechanism for an old epidemiological model. PLoS Med 3(6):e280PubMedCentralPubMedCrossRefGoogle Scholar
  66. Rabbani GH, Greenough WB 3rd (1999) Food as a vehicle of transmission of cholera. J Diarrhoeal Dis Res 17(1):1–9PubMedGoogle Scholar
  67. Reyburn R, Deen JL, Grais RF, Bhattacharya SK, Sur D, Lopez AL, Jiddawi MS, Clemens JD, von Seidlein L (2011) The case for reactive mass oral cholera vaccinations. PLoS Negl Trop Dis 5(1):e952. doi: 10.1371/journal.pntd.0000952 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Rinaldo A, Bertuzzo E, Mari L, Righetto L, Blokesch M, Gatto M, Casagrandi R, Murray M, Vesenbeckh SM, Rodriguez-Iturbe I (2012) Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proc Natl Acad Sci U S A 109(17):6602–6607. doi: 10.1073/pnas.1203333109
  69. Roberts L, Chartier Y, Chartier O, Malenga G, Toole M, Rodka H (2001) Keeping clean water clean in a Malawi refugee camp: a randomized intervention trial. Bull World Health Organ 79(4):280–287PubMedCentralPubMedGoogle Scholar
  70. Ruiz-Moreno D, Pascual M, Emch M, Yunus M (2010) Spatial clustering in the spatio-temporal dynamics of endemic cholera. BMC Infect Dis 10:51PubMedCentralPubMedCrossRefGoogle Scholar
  71. Sack DA (2003) When should cholera vaccine be used in cholera-endemic areas. J Health Popul Nutr 21(4):299–303PubMedGoogle Scholar
  72. Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet 363(9404):223–233PubMedCrossRefGoogle Scholar
  73. Snow J (1855) On the mode of communication of cholera. John Churchill, LondonGoogle Scholar
  74. Sommer A, Mosley WH (1973) Ineffectiveness of cholera vaccination as an epidemic control measure. Lancet 1(7814):1232–1235PubMedCrossRefGoogle Scholar
  75. St Louis ME, Porter JD, Helal A, Drame K, Hargrett-Bean N, Wells JG, Tauxe RV (1990) Epidemic cholera in West Africa: the role of food handling and high-risk foods. Am J Epidemiol 131(4):719–728PubMedGoogle Scholar
  76. Stine OC, Alam M, Tang L, Nair GB, Siddique AK, Faruque SM, Huq A, Colwell R, Sack RB, Morris JG Jr (2008) Seasonal cholera from multiple small outbreaks, rural Bangladesh. Emerg Infect Dis 14(5):831–833PubMedCentralPubMedCrossRefGoogle Scholar
  77. Suntharasamai P, Migasena S, Vongsthongsri U, Supanaranond W, Pitisuttitham P, Supeeranan L, Chantra A, Naksrisook S (1992) Clinical and bacteriological studies of El Tor cholera after ingestion of known inocula in Thai volunteers. Vaccine 10(8):502–505PubMedCrossRefGoogle Scholar
  78. Tamayo JF, Mosley WH, Alvero MG, Joseph PR, Gomez CZ, Montague T, Dizon JJ, Henderson DA (1965) Studies of cholera El Tor in the Philippines. Transmission of infection among household contacts of cholera patients. Bull World Health Organ 33(5):645–649PubMedCentralPubMedGoogle Scholar
  79. Tien JH, Earn DJD (2010) Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull Math Biol 72(6):1506–1533. doi: 10.1007/s11538-010-9507-6 Google Scholar
  80. Tuite AR, Tien J, Eisenberg M, Earn DJD, Ma J, Fisman DN (2011) Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions. Ann Intern Med 154(9):593–601. doi: 10.1059/0003-4819-154-9-201105030-00334
  81. Waldor MK, Hotez PJ, Clemens JD (2010) A national cholera vaccine stockpile—a new humanitarian and diplomatic resource. N Engl J Med 363(24):2279–2282. doi: 10.1056/NEJMp1012300 PubMedCentralPubMedCrossRefGoogle Scholar
  82. Walton DA, Ivers LC (2011) Responding to cholera in post-earthquake Haiti. N Engl J Med 364(1):3–5. doi: 10.1056/NEJMp1012997 PubMedCrossRefGoogle Scholar
  83. Weil AA, Khan AI, Chowdhury F, Larocque RC, Faruque ASG, Ryan ET, Calderwood SB, Qadri F, Harris JB (2009) Clinical outcomes in household contacts of patients with cholera in Bangladesh. Clin Infect Dis 49(10):1473–1479. doi: 10.1086/644779 PubMedCentralPubMedCrossRefGoogle Scholar
  84. World Health Organization (2010) Cholera vaccines: WHO position paper. Wkly Epidemiol Rec 85(13):117–128Google Scholar
  85. World Health Organization (2012) Meeting report of the WHO Technical Working Group on creation of an oral cholera vaccine stockpile. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dennis L. Chao
    • 1
    Email author
  • Ira M. LonginiJr.
    • 2
  • J. Glenn MorrisJr.
    • 3
  1. 1.Center for Statistics and Quantitative Infectious Diseases, Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Department of Biostatistics, Colleges of Public Health and Health Professions, and Medicine, and Emerging Pathogens Institute University of FloridaGainesvilleUSA
  3. 3. Emerging Pathogens Institute University of FloridaGainesvilleUSA

Personalised recommendations