Neural Regeneration

  • Melissa M. Steward
  • Akshayalakshmi Sridhar
  • Jason S. Meyer
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 367)

Abstract

Regeneration of the nervous system requires either the repair or replacement of nerve cells that have been damaged by injury or disease. While lower organisms possess extensive capacity for neural regeneration, evolutionarily higher organisms including humans are limited in their ability to regenerate nerve cells, posing significant issues for the treatment of injury and disease of the nervous system. This chapter focuses on current approaches for neural regeneration, with a discussion of traditional methods to enhance neural regeneration as well as emerging concepts within the field such as stem cells and cellular reprogramming. Stem cells are defined by their ability to self-renew as well as their ability to differentiate into multiple cell types, and hence can serve as a source for cell replacement of damaged neurons. Traditionally, adult stem cells isolated from the hippocampus and subventricular zone have served as a source of neural stem cells for replacement purposes. With the advancement of pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs), new and exciting approaches for neural cell replacement are being developed. Furthermore, with increased understanding of the human genome and epigenetics, scientists have been successful in the direct genetic reprogramming of somatic cells to a neuronal fate, bypassing the intermediary pluripotent stage. Such breakthroughs have accelerated the timing of production of mature neuronal cell types from a patient-specific somatic cell source such as skin fibroblasts or mononuclear blood cells. While extensive hurdles remain to the translational application of such stem cell and reprogramming strategies, these approaches have revolutionized the field of regenerative biology and have provided innovative approaches for the potential regeneration of the nervous system.

Abbreviations

6-OHDA

6-Hydroxydopamine

ALS

Amyotrophic lateral sclerosis

AMD

Age-related macular degeneration

BAM

Brn-2, Ascl1 and Myt1l

BDNF

Brain-derived neurotrophic factor

bHLH

Basic helix loop helix

CNTF

Ciliary neurotrophic factor

DA

Dopaminergic

EGF

Epidermal growth factor

ESCs

Embryonic stem cells

FAD

Familial Alzheimer’s disease

FALS

Familial ALS

FGF2

Fibroblast growth factor 2

FGF8

Fibroblast growth factor 8

GDNF

Glial-derived neurotrophic factor

hESCs

Human embryonic stem cells

hPSCs

Human pluripotent stem cells

iDA

Induced dopaminergic

IGF-1

Insulin-like growth factor

iMN

Induced motor neuron

iN

Induced neuronal

iNPCs

Induced neural progenitor cells

iPSCs

Induced pluripotent stem cells

L-DOPA

L-3, 4-dihydroxyphenylalanine

MEF

Mouse embryonic fibroblasts

miRNA

Microribonucleic acid

mRNA

Messenger ribonucleic acid

NCAMs

Neural cell adhesion molecules

NPCs

Neural progenitor cells

PB

Piggyback

PD

Parkinson’s disease

RCS

Royal College of Surgeon’s

RPE

Retinal pigmented epithelium

SCNT

Somatic cell nuclear transfer

SHH

Sonic hedgehog

SMA

Spinal muscular atrophy

SMN1/SMN2

Survival of motor neuron gene 1/2

SOD1

Superoxide dismutase

TGF

Transforming growth factor

TH

Tyrosine hydroxylase

References

  1. Akerud P, Canals JM, Snyder EY, Arenas E (2001) Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease. J Neurosci 21:8108–8118PubMedGoogle Scholar
  2. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9:113–118PubMedGoogle Scholar
  3. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP (2003) Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48:257–293PubMedGoogle Scholar
  4. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376–388PubMedGoogle Scholar
  5. Armstrong RJ, Tyers P, Jain M, Richards A, Dunnett SB, Rosser AE, Barker RA (2003) Transplantation of expanded neural precursor cells from the developing pig ventral mesencephalon in a rat model of Parkinson’s disease. Exp Brain Res 151:204–217PubMedGoogle Scholar
  6. Bahr M, Bonhoeffer F (1994) Perspectives on axonal regeneration in the mammalian CNS. Trends Neurosci 17:473–479PubMedGoogle Scholar
  7. Bailey SB, Eichler ME, Villadiego A, Rich KM (1993) The influence of fibronectin and laminin during Schwann cell migration and peripheral nerve regeneration through silicon chambers. J Neurocytol 22:176–184PubMedGoogle Scholar
  8. Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M, Francz PI (1988) Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci U S A 85:5112–5116PubMedGoogle Scholar
  9. Behrstock S, Ebert A, McHugh J, Vosberg S, Moore J, Schneider B, Capowski E, Hei D, Kordower J, Aebischer P et al (2006) Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates. Gene Ther 13:379–388PubMedGoogle Scholar
  10. Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, Reubinoff BE (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 22:1246–1255PubMedGoogle Scholar
  11. Bharti K, Miller SS, Arnheiter H (2011) The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res 24:21–34PubMedGoogle Scholar
  12. Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59PubMedGoogle Scholar
  13. Bressler NM, Bressler SB, Fine SL (1988) Age-related macular degeneration. Surv Ophthalmol 32:375–413PubMedGoogle Scholar
  14. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated Frogs’ eggs. Proc Natl Acad Sci U S A 38:455–463PubMedGoogle Scholar
  15. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO (2009) Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27:2427–2434PubMedGoogle Scholar
  16. Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227PubMedGoogle Scholar
  17. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66PubMedGoogle Scholar
  18. Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJ et al (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE 4:e8152PubMedGoogle Scholar
  19. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280PubMedGoogle Scholar
  20. Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH et al (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 105:3392–3397PubMedGoogle Scholar
  21. Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7:1144–1150PubMedGoogle Scholar
  22. Cooper O, Hargus G, Deleidi M, Blak A, Osborn T, Marlow E, Lee K, Levy A, Perez-Torres E, Yow A et al (2010) Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Mol Cell Neurosci 45:258–266PubMedGoogle Scholar
  23. Craveiro LM, Hakkoum D, Weinmann O, Montani L, Stoppini L, Schwab ME (2008) Neutralization of the membrane protein Nogo-A enhances growth and reactive sprouting in established organotypic hippocampal slice cultures. Eur J Neurosci 28:1808–1824PubMedGoogle Scholar
  24. Cronin S, Hardiman O, Traynor BJ (2007) Ethnic variation in the incidence of ALS: a systematic review. Neurology 68:1002–1007PubMedGoogle Scholar
  25. Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127PubMedGoogle Scholar
  26. Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390:680–683PubMedGoogle Scholar
  27. Davies SJ, Goucher DR, Doller C, Silver J (1999) Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 19:5810–5822PubMedGoogle Scholar
  28. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000PubMedGoogle Scholar
  29. Del Priore LV, Kuo YH, Tezel TH (2002) Age-related changes in human RPE cell density and apoptosis proportion in situ. Invest Ophthalmol Vis Sci 43:3312–3318PubMedGoogle Scholar
  30. Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10:608–614PubMedGoogle Scholar
  31. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221PubMedGoogle Scholar
  32. Dowling JE (1970) Organization of vertebrate retinas. Invest Ophthalmol 9:655–680PubMedGoogle Scholar
  33. Dowling JE, Werblin FS (1971) Synaptic organization of the vertebrate retina. Vis Res Suppl 3:1–15Google Scholar
  34. Du H, Lim SL, Grob S, Zhang K (2011) Induced pluripotent stem cell therapies for geographic atrophy of age-related macular degeneration. Semin Ophthalmol 26:216–224PubMedGoogle Scholar
  35. Ebert AD, Svendsen CN (2010) Stem cell model of spinal muscular atrophy. Arch Neurol 67:665–669PubMedGoogle Scholar
  36. Ebert AD, Beres AJ, Barber AE, Svendsen CN (2008) Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp Neurol 209:213–223PubMedGoogle Scholar
  37. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280PubMedGoogle Scholar
  38. Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, Adachi F, Kondo T, Okita K, Asaka et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4 145ra104Google Scholar
  39. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedGoogle Scholar
  40. Fawcett JW (2006) Overcoming inhibition in the damaged spinal cord. J Neurotrauma 23:371–383PubMedGoogle Scholar
  41. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391PubMedGoogle Scholar
  42. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719PubMedGoogle Scholar
  43. Frostick SP, Yin Q, Kemp GJ (1998) Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18:397–405PubMedGoogle Scholar
  44. Gehrs KM, Anderson DH, Johnson LV, Hageman GS (2006) Age-related macular degeneration–emerging pathogenetic and therapeutic concepts. Ann Med 38:450–471PubMedGoogle Scholar
  45. Gouras P, Algvere P (1996) Retinal cell transplantation in the macula: new techniques. Vis Res 36:4121–4125PubMedGoogle Scholar
  46. Grandpre T, Strittmatter SM (2001) Nogo: a molecular determinant of axonal growth and regeneration. Neuroscientist 7:377–386PubMedGoogle Scholar
  47. Gurdon JB, Uehlinger V (1966) “Fertile” intestine nuclei. Nature 210:1240–1241PubMedGoogle Scholar
  48. Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:64–65PubMedGoogle Scholar
  49. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732PubMedGoogle Scholar
  50. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ et al (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107:15921–15926PubMedGoogle Scholar
  51. Harrower TP, Tyers P, Hooks Y, Barker RA (2006) Long-term survival and integration of porcine expanded neural precursor cell grafts in a rat model of Parkinson’s disease. Exp Neurol 197:56–69PubMedGoogle Scholar
  52. Hawryluk GW, Rowland J, Kwon BK, Fehlings MG (2008) Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 25:E14PubMedGoogle Scholar
  53. Hefferan MP, Galik J, Kakinohana O, Sekerkova G, Santucci C, Marsala S, Navarro R, Hruska-Plochan M, Johe K, Feldman E et al (2012) Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation. PLoS ONE 7:e42614PubMedGoogle Scholar
  54. Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N, Takahashi M (2009) Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458:126–131PubMedGoogle Scholar
  55. Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407:963–970PubMedGoogle Scholar
  56. Horner PJ, Gage FH (2002) Regeneration in the adult and aging brain. Arch Neurol 59:1717–1720PubMedGoogle Scholar
  57. Hu BY, Zhang SC (2009) Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4:1295–1304PubMedGoogle Scholar
  58. Hu BY, Du ZW, Zhang SC (2009) Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc 4:1614–1622PubMedGoogle Scholar
  59. Huang S (2009) Reprogramming cell fates: reconciling rarity with robustness. BioEssays 31:546–560PubMedGoogle Scholar
  60. Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475:386–389PubMedGoogle Scholar
  61. Huebner EA, Strittmatter SM (2009) Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ 48:339–351PubMedGoogle Scholar
  62. Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M et al (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408PubMedGoogle Scholar
  63. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386PubMedGoogle Scholar
  64. Jordan PM, Ojeda LD, Thonhoff JR, Gao J, Boehning D, Yu Y, Wu P (2009) Generation of spinal motor neurons from human fetal brain-derived neural stem cells: role of basic fibroblast growth factor. J Neurosci Res 87:318–332PubMedGoogle Scholar
  65. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775PubMedGoogle Scholar
  66. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S (2011a) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108:7838–7843PubMedGoogle Scholar
  67. Kim J, Su SC, Wang H, Cheng AW, Cassady JP, Lodato MA, Lengner CJ, Chung CY, Dawlaty MM, Tsai LH et al (2011b) Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 9:413–419PubMedGoogle Scholar
  68. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16:509–521PubMedGoogle Scholar
  69. Kokkinaki M, Sahibzada N, Golestaneh N (2011) Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells 29:825–835PubMedGoogle Scholar
  70. Kolb H, Nelson R, Ahnelt P, Cuenca N (2001) Cellular organization of the vertebrate retina. Prog Brain Res 131:3–26PubMedGoogle Scholar
  71. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551PubMedGoogle Scholar
  72. Laabs T, Carulli D, Geller HM, Fawcett JW (2005) Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol 15:116–120PubMedGoogle Scholar
  73. Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103:12769–12774PubMedGoogle Scholar
  74. Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS ONE 5:e8763PubMedGoogle Scholar
  75. Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, Socci ND, Tabar V, Studer L (2007) Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 25:1931–1939PubMedGoogle Scholar
  76. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165PubMedGoogle Scholar
  77. Lepore AC, O’Donnell J, Kim AS, Williams T, Tuteja A, Rao MS, Kelley LL, Campanelli JT, Maragakis NJ (2011) Human glial-restricted progenitor transplantation into cervical spinal cord of the SOD1 mouse model of ALS. PLoS ONE 6:e25968PubMedGoogle Scholar
  78. Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215–221PubMedGoogle Scholar
  79. Lindvall O, Bjorklund A (2011) Cell therapeutics in Parkinson’s disease. Neurotherapeutics 8:539–548PubMedGoogle Scholar
  80. Lindvall O, Barker RA, Brustle O, Isacson O, Svendsen CN (2012) Clinical translation of stem cells in neurodegenerative disorders. Cell Stem Cell 10:151–155PubMedGoogle Scholar
  81. Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96:6307–6311PubMedGoogle Scholar
  82. Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R (2009) Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27:2126–2135PubMedGoogle Scholar
  83. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N, Sauve Y, Lanza R (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8:189–199PubMedGoogle Scholar
  84. Marro S, Pang ZP, Yang N, Tsai MC, Qu K, Chang HY, Sudhof TC, Wernig M (2011) Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell 9:374–382PubMedGoogle Scholar
  85. McGrath J, Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220:1300–1302PubMedGoogle Scholar
  86. Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DH, Lako M (2012) Efficient stage specific differentiation of human pluripotent stem cells towards retinal photoreceptor cells. Stem Cells 30:673–686. Google Scholar
  87. Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106:16698–16703PubMedGoogle Scholar
  88. Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, Pinilla I, Martin JM, Tian S, Stewart R et al (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29:1206–1218PubMedGoogle Scholar
  89. Montani L, Gerrits B, Gehrig P, Kempf A, Dimou L, Wollscheid B, Schwab ME (2009) Neuronal Nogo-A modulates growth cone motility via Rho-GTP/LIMK1/cofilin in the unlesioned adult nervous system. J Biol Chem 284:10793–10807PubMedGoogle Scholar
  90. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622PubMedGoogle Scholar
  91. Noggle S, Fung HL, Gore A, Martinez H, Satriani KC, Prosser R, Oum K, Paull D, Druckenmiller S, Freeby M et al (2011) Human oocytes reprogram somatic cells to a pluripotent state. Nature 478:70–75PubMedGoogle Scholar
  92. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J et al (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414PubMedGoogle Scholar
  93. Osakada F, Ikeda H, Sasai Y, Takahashi M (2009a) Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 4:811–824PubMedGoogle Scholar
  94. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009b) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122:3169–3179PubMedGoogle Scholar
  95. Osakada F, Hirami Y, Takahashi M (2010) Stem cell biology and cell transplantation therapy in the retina. Biotechnol Genet Eng Rev 26:297–334PubMedGoogle Scholar
  96. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223PubMedGoogle Scholar
  97. Pankratz MT, Li XJ, Lavaute TM, Lyons EA, Chen X, Zhang SC (2007) Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25:1511–1520PubMedGoogle Scholar
  98. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886PubMedGoogle Scholar
  99. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101:12543–12548PubMedGoogle Scholar
  100. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343–10348PubMedGoogle Scholar
  101. Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H et al (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2:1137–1140PubMedGoogle Scholar
  102. Prather RS, First NL (1990) Nuclear transfer in mammalian embryos. Int Rev Cytol 120:169–190PubMedGoogle Scholar
  103. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia AS, McNamara JO, White LE (2008) Neuroscience, 4th edn. Sunderland, SinauerGoogle Scholar
  104. Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Aubry L, Vanti WB et al (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 146:359–371PubMedGoogle Scholar
  105. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62PubMedGoogle Scholar
  106. Rowland TJ, Blaschke AJ, Buchholz DE, Hikita ST, Johnson LV, Clegg DO (2012a) Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined conditions using purified extracellular matrix proteins. J Tissue Eng Regen Med. doi: 10.1002/term.1458
  107. Rowland TJ, Buchholz DE, Clegg DO (2012b) Pluripotent human stem cells for the treatment of retinal disease. J Cell Physiol 227:457–466PubMedGoogle Scholar
  108. Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12:1259–1268PubMedGoogle Scholar
  109. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720PubMedGoogle Scholar
  110. Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475:390–393PubMedGoogle Scholar
  111. Shaw BF, Valentine JS (2007) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem Sci 32:78–85PubMedGoogle Scholar
  112. Shin S, Dalton S, Stice SL (2005) Human motor neuron differentiation from human embryonic stem cells. Stem Cells Dev 14:266–269PubMedGoogle Scholar
  113. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156PubMedGoogle Scholar
  114. Smith-Thomas LC, Stevens J, Fok-Seang J, Faissner A, Rogers JH, Fawcett JW (1995) Increased axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors. J Cell Sci 108(Pt 3):1307–1315PubMedGoogle Scholar
  115. So KF, Aguayo AJ (1985) Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Res 328:349–354PubMedGoogle Scholar
  116. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977PubMedGoogle Scholar
  117. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:205–218PubMedGoogle Scholar
  118. Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R, Isacson O (2007) Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25:411–418PubMedGoogle Scholar
  119. Springer JE (2002) Apoptotic cell death following traumatic injury to the central nervous system. J Biochem Mol Biol 35:94–105PubMedGoogle Scholar
  120. Strauss O (1995) The retinal pigment epithelium. Invest Ophthalmol Vis Sci 36:2327–2331Google Scholar
  121. Suzuki M, McHugh J, Tork C, Shelley B, Klein SM, Aebischer P, Svendsen CN (2007) GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS ONE 2:e689PubMedGoogle Scholar
  122. Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, Zeng X (2010) Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 28:1893–1904PubMedGoogle Scholar
  123. Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468:521–526PubMedGoogle Scholar
  124. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedGoogle Scholar
  125. Terenghi G (1999) Peripheral nerve regeneration and neurotrophic factors. J Anat 194(Pt 1):1–14PubMedGoogle Scholar
  126. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedGoogle Scholar
  127. Thornton MR, Mantovani C, Birchall MA, Terenghi G (2005) Quantification of N-CAM and N-cadherin expression in axotomized and crushed rat sciatic nerve. J Anat 206:69–78PubMedGoogle Scholar
  128. Tsui A, Isacson O (2011) Functions of the nigrostriatal dopaminergic synapse and the use of neurotransplantation in Parkinson’s disease. J Neurol 258:1393–1405PubMedGoogle Scholar
  129. Tursun B, Patel T, Kratsios P, Hobert O (2011) Direct conversion of C. elegans germ cells into specific neuron types. Science 331:304–308PubMedGoogle Scholar
  130. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041PubMedGoogle Scholar
  131. von Lewinski F, Keller BU (2005) Ca2 + , mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci 28:494–500Google Scholar
  132. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630PubMedGoogle Scholar
  133. Wijeyekoon R, Barker RA (2009) Cell replacement therapy for Parkinson’s disease. Biochim Biophys Acta 1792:688–702PubMedGoogle Scholar
  134. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M et al (2009) Piggybac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770PubMedGoogle Scholar
  135. Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, Pearce RA, Thomson JA, Zhang SC (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23:781–790PubMedGoogle Scholar
  136. Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC (2008) Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in Parkinsonian rats. Stem Cells 26:55–63PubMedGoogle Scholar
  137. Yang N, Ng YH, Pang ZP, Sudhof TC, Wernig M (2011) Induced neuronal cells: how to make and define a neuron. Cell Stem Cell 9:517–525PubMedGoogle Scholar
  138. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627PubMedGoogle Scholar
  139. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231PubMedGoogle Scholar
  140. Zhou JX, Huang S (2011) Understanding gene circuits at cell-fate branch points for rational cell reprogramming. Trends Genet 27:55–62PubMedGoogle Scholar
  141. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632PubMedGoogle Scholar
  142. Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, Kim J, Zhang K, Ding S (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7:651–655PubMedGoogle Scholar
  143. Zorner B, Schwab ME (2010) Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci 1198(Suppl 1):E22–E34PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Melissa M. Steward
    • 1
  • Akshayalakshmi Sridhar
    • 1
  • Jason S. Meyer
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of BiologyIndiana University Purdue UniversityIndianapolisUSA
  2. 2.Indiana University Center for Regenerative Biology and MedicineIndianapolisUSA
  3. 3.Department of Medical and Molecular GeneticsIndiana UniversityIndianapolisUSA
  4. 4.Stark Neurosciences Research InstituteIndiana UniversityIndianapolisUSA

Personalised recommendations