Epigenetics and Regeneration

  • Nobuyasu Maki
  • Hironobu Kimura
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 367)


During newt lens regeneration a unique transdifferentiation event occurs. In this process, dorsal iris pigmented epithelial cells transdifferentiate into lens cells. This system should provide a new insight into cellular plasticity in basic and applied research. Recently, a series of approaches to study epigenetic reprogramming during transdifferentiation have been performed. In this review, we introduce the regulation of dynamic regulation of core-histone modifications and the emergence of an oocyte-type linker histone during transdifferentiation. Finally, we show supporting evidence that there are common strategies of reprogramming between newt somatic cell in transdifferentiation and oocytes after somatic cell nuclear transfer.


Embryonic Stem Cell Histone Modification Stem Cell Factor Somatic Cell Nuclear Transfer Linker Histone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Kiyoe Ura for critical reading and suggestions, and Rinako Maki for making illustrations.


  1. Abe S, Eguchi G (1977) An analysis of differentiative capacity of pigmented epithelial cells of adult newt iris in clonal cell culture. Dev Growth Differ 19:309–317CrossRefGoogle Scholar
  2. Agata K, Kobayashi H, Itoh Y, Mochii M, Sawada K, Eguchi G (1993) Genetic characterization of the multipotent dedifferentiated state of pigmented epithelial cells in vitro. Development 118:1025–1030PubMedGoogle Scholar
  3. Anderson RM, Bosch JA, Goll MG, Hesselson D, Dong PD, Shin D, Chi NC, Shin CH, Schlegel A, Halpern M, Stainier DY (2009) Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev Biol 334:213–223CrossRefPubMedGoogle Scholar
  4. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538CrossRefPubMedGoogle Scholar
  5. Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89:1235–1249CrossRefPubMedGoogle Scholar
  6. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837CrossRefPubMedGoogle Scholar
  7. Becker M, Becker A, Miyara F, Han Z, Kihara M, Brown DT, Hager GL, Latham K, Adashi EY, Misteli T (2005) Differential in vivo binding dynamics of somatic and oocyte-specific linker histones in oocytes and during ES cell nuclear transfer. Mol Biol Cell 16:3887–3895CrossRefPubMedGoogle Scholar
  8. Beekman C, Nichane M, De Clercq S, Maetens M, Floss T, Wurst W, Bellefroid E, Marine JC (2006) Evolutionarily conserved role of nucleostemin: controlling proliferation of stem/progenitor cells during early vertebrate development. Mol Cell Biol 26:9291–9301CrossRefPubMedGoogle Scholar
  9. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326CrossRefPubMedGoogle Scholar
  10. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20:1123–1136CrossRefPubMedGoogle Scholar
  11. Cho H, Wolffe AP (1994) Xenopus laevis B4, an intron-containing oocyte-specific linker histone-encoding gene. Gene 143:233–238CrossRefPubMedGoogle Scholar
  12. Coulombre AJ (1965) The eye. In: DeHaan RL, Ursprung H (ed) Organogenesis. New Yolk: Holt, Rinehart and Winston, pp 219–251Google Scholar
  13. Cowan CA, Atienza J, Melton DA, Eggan K (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373CrossRefPubMedGoogle Scholar
  14. Dai MS, Sun XX, Lu H (2008) Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol Cell Biol 28:4365–4376CrossRefPubMedGoogle Scholar
  15. Eguchi G (1980) Lens regeneration: transdifferentiation of tissue cells. Iwanami shoten, TokyoGoogle Scholar
  16. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefPubMedGoogle Scholar
  17. Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183CrossRefPubMedGoogle Scholar
  18. Gao S, Chung YG, Parseghian MH, King GJ, Adashi EY, Latham KE (2004) Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice. Dev Biol 266:62–75CrossRefPubMedGoogle Scholar
  19. Grant PA, Eberharter A, John S, Cook RG, Turner BM, Workman JL (1999) Expanded lysine acetylation specificity of Gcn5 in native complexes. J Biol Chem 274:5895–5900CrossRefPubMedGoogle Scholar
  20. Grogg MW, Call MK, Okamoto M, Vergara MN, Del Rio-Tsonis K, Tsonis PA (2005) BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature 438:858–862CrossRefPubMedGoogle Scholar
  21. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88CrossRefPubMedGoogle Scholar
  22. Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:64–65CrossRefPubMedGoogle Scholar
  23. Hayashi T, Mizuno N, Takada R, Takada S, Kondoh H (2006) Determinative role of Wnt signals in dorsal iris-derived lens regeneration in newt eye. Mech Dev 123:793–800CrossRefPubMedGoogle Scholar
  24. Hayashi T, Mizuno N, Ueda Y, Okamoto M, Kondoh H (2004) FGF2 triggers iris-derived lens regeneration in newt eye. Mech Dev 121:519–526CrossRefPubMedGoogle Scholar
  25. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–609CrossRefPubMedGoogle Scholar
  26. Jullien J, Astrand C, Halley-Stott RP, Garrett N, Gurdon JB (2010) Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc Natl Acad Sci U S A 107:5483–5488CrossRefPubMedGoogle Scholar
  27. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871CrossRefPubMedGoogle Scholar
  28. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705CrossRefPubMedGoogle Scholar
  29. Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23:4207–4218CrossRefPubMedGoogle Scholar
  30. Kuo MH, Brownell JE, Sobel RE, Ranalli TA, Cook RG, Edmondson DG, Roth SY, Allis CD (1996) Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383:269–272CrossRefPubMedGoogle Scholar
  31. Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124CrossRefPubMedGoogle Scholar
  32. Li J, Moazed D, Gygi SP (2002) Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J Biol Chem 277:49383–49388CrossRefPubMedGoogle Scholar
  33. Maki N, Suetsugu-Maki R, Sano S, Nakamura K, Nishimura O, Tarui H, Del Rio-Tsonis K, Ohsumi K, Agata K, Tsonis PA (2010a) Oocyte-type linker histone B4 is required for transdifferentiation of somatic cells in vivo. FASEB J 24:3462–3467CrossRefPubMedGoogle Scholar
  34. Maki N, Suetsugu-Maki R, Tarui H, Agata K, Del Rio-Tsonis K, Tsonis PA (2009) Expression of stem cell pluripotency factors during regeneration in newts. Dev Dyn 238:1613–1616CrossRefPubMedGoogle Scholar
  35. Maki N, Takechi K, Sano S, Tarui H, Sasai Y, Agata K (2007) Rapid accumulation of nucleostemin in nucleolus during newt regeneration. Dev Dyn 236:941–950CrossRefPubMedGoogle Scholar
  36. Maki N, Tsonis PA, Agata K (2010b) Changes in global histone modifications during dedifferentiation in newt lens regeneration. Mol Vis 16:1893–1897PubMedGoogle Scholar
  37. Mandl B, Brandt WF, Superti-Furga G, Graninger PG, Birnstiel ML, Busslinger M (1997) The five cleavage-stage (CS) histones of the sea urchin are encoded by a maternally expressed family of replacement histone genes: functional equivalence of the CS H1 and frog H1 M (B4) proteins. Mol Cell Biol 17:1189–1200PubMedGoogle Scholar
  38. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. In: Proceedings of the national academy of sciences of the United States of America, vol 78. pp 7634–7638Google Scholar
  39. McGraw S, Vigneault C, Tremblay K, Sirard MA (2006) Characterization of linker histone H1FOO during bovine in vitro embryo development. Mol Reprod Dev 73:692–699CrossRefPubMedGoogle Scholar
  40. Mendenhall EM, Bernstein BE (2008) Chromatin state maps: new technologies, new insights. Curr Opin Genet Dev 18:109–115CrossRefPubMedGoogle Scholar
  41. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560CrossRefPubMedGoogle Scholar
  42. Nikpour P, Mowla SJ, Jafarnejad SM, Fischer U, Schulz WA (2009) Differential effects of Nucleostemin suppression on cell cycle arrest and apoptosis in the bladder cancer cell lines 5637 and SW1710. Cell Prolif 42:762–769CrossRefPubMedGoogle Scholar
  43. Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, Reinberg D (2002) Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 16:479–489CrossRefPubMedGoogle Scholar
  44. Ohmura M, Naka K, Hoshii T, Muraguchi T, Shugo H, Tamase A, Uema N, Ooshio T, Arai F, Takubo K, Nagamatsu G, Hamaguchi I, Takagi M, Ishihara M, Sakurada K, Miyaji H, Suda T, Hirao A (2008) Identification of stem cells during prepubertal spermatogenesis via monitoring of nucleostemin promoter activity. Stem cells 26:3237–3246CrossRefPubMedGoogle Scholar
  45. Ohsumi K, Katagiri C (1991) Occurrence of H1 subtypes specific to pronuclei and cleavage-stage cell nuclei of anuran amphibians. Dev Biol 147:110–120CrossRefPubMedGoogle Scholar
  46. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317CrossRefPubMedGoogle Scholar
  47. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1:299–312CrossRefPubMedGoogle Scholar
  48. Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12:1577–1589CrossRefPubMedGoogle Scholar
  49. Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12:1591–1598CrossRefPubMedGoogle Scholar
  50. Romanova L, Grand A, Zhang L, Rayner S, Katoku-Kikyo N, Kellner S, Kikyo N (2009) Critical role of nucleostemin in pre-rRNA processing. J Biol Chem 284:4968–4977CrossRefPubMedGoogle Scholar
  51. Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M (1996) HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci USA 93:14503–14508CrossRefPubMedGoogle Scholar
  52. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994CrossRefPubMedGoogle Scholar
  53. Sadler KC, Krahn KN, Gaur NA, Ukomadu C (2007) Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. In: Proceedings of the national academy of sciences of the United States of America, vol 104. pp 1570–1575Google Scholar
  54. Saeki H, Ohsumi K, Aihara H, Ito T, Hirose S, Ura K, Kaneda Y (2005) Linker histone variants control chromatin dynamics during early embryogenesis. Proc Natl Acad Sci USA 102:5697–5702CrossRefPubMedGoogle Scholar
  55. Schaft D, Roguev A, Kotovic KM, Shevchenko A, Sarov M, Neugebauer KM, Stewart AF (2003) The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res 31:2475–2482CrossRefPubMedGoogle Scholar
  56. Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y (1999) Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 274:1189–1192CrossRefPubMedGoogle Scholar
  57. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262CrossRefPubMedGoogle Scholar
  58. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100CrossRefPubMedGoogle Scholar
  59. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198CrossRefPubMedGoogle Scholar
  60. Stewart S, Tsun ZY, Belmote JC (2009) A histone demethylase is necessary for regeneration in zebrafish. Proc Natl Acad Sci U S A 106:19889–19894Google Scholar
  61. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol: CB 11:1553–1558CrossRefPubMedGoogle Scholar
  62. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefPubMedGoogle Scholar
  63. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  64. Tanaka M, Hennebold JD, Macfarlane J, Adashi EY (2001) A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1 M histone of the frog. Development 128:655–664PubMedGoogle Scholar
  65. Tanaka Y, Kato S, Tanaka M, Kuji N, Yoshimura Y (2003) Structure and expression of the human oocyte-specific histone H1 gene elucidated by direct RT-nested PCR of a single oocyte. Biochem Biophys Res Commun 304:351–357CrossRefPubMedGoogle Scholar
  66. Teranishi T, Tanaka M, Kimoto S, Ono Y, Miyakoshi K, Kono T, Yoshimura Y (2004) Rapid replacement of somatic linker histones with the oocyte-specific linker histone H1foo in nuclear transfer. Dev Biol 266:76–86CrossRefPubMedGoogle Scholar
  67. Tsai RY, McKay RD (2002) A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev 16:2991–3003CrossRefPubMedGoogle Scholar
  68. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374CrossRefPubMedGoogle Scholar
  69. Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, Zhang Y (2001) Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 8:1207–1217CrossRefPubMedGoogle Scholar
  70. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903CrossRefPubMedGoogle Scholar
  71. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324CrossRefPubMedGoogle Scholar
  72. Wibrand K, Olsen LC (2002) Linker histone H1 M transcripts mark the developing germ line in zebrafish. Mech Dev 117:249–252CrossRefPubMedGoogle Scholar
  73. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813CrossRefPubMedGoogle Scholar
  74. Yakushiji N, Suzuki M, Satoh A, Sagai T, Shiroishi T, Kobayashi H, Sasaki H, Ide H, Tamura K (2007) Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Dev Biol 312:171–182CrossRefPubMedGoogle Scholar
  75. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920CrossRefPubMedGoogle Scholar
  76. Zhao XD, Han X, Chew JL, Liu J, Chiu KP, Choo A, Orlov YL, Sung WK, Shahab A, Kuznetsov VA, Bourque G, Oh S, Ruan Y, Ng HH, Wei CL (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1:286–298CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Protein ResearchOsaka UniversitySuita-ShiJapan
  2. 2.PRESTO, Japan Science and Technology AgencyKawaguchiJapan

Personalised recommendations