The Importance of Understanding the Human–Animal Interface

From Early Hominins to Global Citizens
  • Leslie A. Reperant
  • Giuseppe Cornaglia
  • Albert D. M. E. Osterhaus
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 365)

Abstract

The complex relationships between the human and animal species have never ceased to evolve since the emergence of the human species and have resulted in a human–animal interface that has promoted the cross-species transmission, emergence and eventual evolution of a plethora of infectious pathogens. Remarkably, most of the characteristics of the human–animal interface—as we know it today—have been established long before the end of our species pre-historical development took place, to be relentlessly shaped throughout the history of our species. More recently, changes affecting the modern human population worldwide as well as their dramatic impact on the global environment have taken domestication, agriculture, urbanization, industrialization, and colonization to unprecedented levels. This has created a unique global multi-faceted human–animal interface, associated with a major epidemiological transition that is accompanied by an unexpected rise of new and emerging infectious diseases. Importantly, these developments are largely paralleled by medical, technological, and scientific progress, continuously spurred by our never-ending combat against pathogens. The human–animal interface has most likely contributed significantly to the evolutionary shaping and historical development of our species. Investment in a better understanding of this human–animal interface will offer humankind a future head-start in the never-ending battle against infectious diseases.

Keywords

Severe Acute Respiratory Syndrome Avian Influenza Virus Severe Acute Respiratory Syndrome Swine Influenza Virus Much Recent Common Ancestor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acemoglu D, Robinson J, Johnson S (2003) Disease and development in historical perspective. J Eur Econ Assoc 1:397–405Google Scholar
  2. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A et al (2005) Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A 102:12891–12896PubMedGoogle Scholar
  3. Alroy J (2001) A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292:1893–1896PubMedGoogle Scholar
  4. Ayyadurai S, Sebbane F, Raoult D, Drancourt M (2010) Body lice, Yersinia pestis orientalis, and black death. Emerg Infect Dis 16:892–893PubMedGoogle Scholar
  5. Barrett R, Kuzawa CW, McDade T, Armelagos GJ (1998) Emerging and re-emerging infectious diseases: the third epidemiologic transition. Annu Rev Anthropol 27:247–271Google Scholar
  6. Bar-Yosef O, Belfer-Cohen A (2001) From Africa to Eurasia—early dispersals. Quat Int 75:19–28Google Scholar
  7. Blancou J (2002) History of the control of foot and mouth disease. Comp Immunol Microbiol Infect Dis 25:283–296PubMedGoogle Scholar
  8. Brown P, Will RG, Bradley R, Asher DM, Detwiler L (2001) Bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease: background, evolution, and current concerns. Emerg Infect Dis 7:6–16PubMedGoogle Scholar
  9. Brunet M, Guy F, Pilbeam D, Mackaye HT, Likius A et al (2002) A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418:145–151PubMedGoogle Scholar
  10. Burnham BR, Atchley DH, DeFusco RP, Ferris KE, Zicarelli JC et al (1998) Prevalence of fecal shedding of Salmonella organisms among captive green iguanas and potential public health implications. J Am Vet Med Assoc 213:48–50PubMedGoogle Scholar
  11. CDC (2012) Notes from the field: infections with Salmonella I 4,[5],12:i:- linked to exposure to feeder rodents—United States, August 2011–February 2012. MMWR Morb Mortal Wkly Rep 61:277Google Scholar
  12. Charrel RN, de Lamballerie X (2003) Arenaviruses other than Lassa virus. Antivir Res 57:89–100PubMedGoogle Scholar
  13. Chatters JC (1987) Hunter–gatherer adaptations and assemblage structure. J Anthropol Archaeol 6:336–375Google Scholar
  14. Cheung CL, Vijaykrishna D, Smith GJ, Fan XH, Zhang JX et al (2007) Establishment of influenza A virus (H6N1) in minor poultry species in southern China. J Virol 81:10402–10412PubMedGoogle Scholar
  15. Choi YK, Ozaki H, Webby RJ, Webster RG, Peiris JS et al (2004) Continuing evolution of H9N2 influenza viruses in Southeastern China. J Virol 78:8609–8614PubMedGoogle Scholar
  16. Chomel BB, Belotto A, Meslin FX (2007) Wildlife, exotic pets, and emerging zoonoses. Emerg Infect Dis 13:6–11PubMedGoogle Scholar
  17. Cockburn TA (1971) Infectious diseases in ancient populations. Curr Anthropol 12:45–62PubMedGoogle Scholar
  18. Comas I, Gagneux S (2009) The past and future of tuberculosis research. PLoS Pathog 5:e1000600PubMedGoogle Scholar
  19. Curtin PD (1968) Epidemiology and the slave trade. Polit Sci Q 83:190–216PubMedGoogle Scholar
  20. de Graaf M, Osterhaus AD, Fouchier RA, Holmes EC (2008) Evolutionary dynamics of human and avian metapneumoviruses. J Gen Virol 89:2933–2942PubMedGoogle Scholar
  21. de Jong JC, Claas EC, Osterhaus AD, Webster RG, Lim WL (1997) A pandemic warning? Nature 389:554PubMedGoogle Scholar
  22. de Swart RL, Duprex WP, Osterhaus ADME (2012) Rinderpest eradication: lessons for measles eradication? Curr Opin Virol 2(3):330–334Google Scholar
  23. de The G (2007) Microbial genomes to write our history. J Infect Dis 196:499–501PubMedGoogle Scholar
  24. Deplazes P (2006) Ecology and epidemiology of Echinococcus multilocularis in Europe. Parassitologia 48:37–39PubMedGoogle Scholar
  25. Deplazes P, Hegglin D, Gloor S, Romig T (2004) Wilderness in the city: the urbanization of Echinococcus multilocularis. Trends Parasitol 20:77–84PubMedGoogle Scholar
  26. Despres L, Imbert-Establet D, Combes C, Bonhomme F (1992) Molecular evidence linking hominid evolution to recent radiation of schistosomes (Platyhelminthes: Trematoda). Mol Phylogenet Evol 1:295–304PubMedGoogle Scholar
  27. Di Giulio DB, Eckburg PB (2004) Human monkeypox: an emerging zoonosis. Lancet Infect Dis 4:15–25PubMedGoogle Scholar
  28. Diamond J (1977) Guns, germs and steel. W. W. Norton & Company, New YorkGoogle Scholar
  29. Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707PubMedGoogle Scholar
  30. Dobson AP, Carper ER (1996) Infectious diseases and human population history. Bioscience 46:115–126Google Scholar
  31. Emerman M, Malik HS (2010) Paleovirology—modern consequences of ancient viruses. PLoS Biol 8:e1000301PubMedGoogle Scholar
  32. Fenner F (1977) The eradication of smallpox. Prog Med Virol 23:1–21PubMedGoogle Scholar
  33. Field H, Young P, Yob JM, Mills J, Hall L et al (2001) The natural history of Hendra and Nipah viruses. Microbes Infect 3:307–314PubMedGoogle Scholar
  34. Gagneux S (2012) Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci 367:850–859PubMedGoogle Scholar
  35. Galvani AP (2003) Epidemiology meets evolutionary ecology. Trends Ecol Evol 18:132–139Google Scholar
  36. Gibbens JC, Sharpe CE, Wilesmith JW, Mansley LM, Michalopoulou E et al (2001) Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months. Vet Rec 149:729–743PubMedGoogle Scholar
  37. Gibbons A (2009) Ardipithecus ramidus. A new kind of ancestor: Ardipithecus unveiled. Science 326:36–40PubMedGoogle Scholar
  38. Gifford R, Tristem M (2003) The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26:291–315PubMedGoogle Scholar
  39. Graveland H, Duim B, van Duijkeren E, Heederik D, Wagenaar JA (2011) Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int J Med Microbiol 301:630–634PubMedGoogle Scholar
  40. Grenfell BT, Bjornstad ON, Kappey J (2001) Travelling waves and spatial hierarchies in measles epidemics. Nature 414:716–723PubMedGoogle Scholar
  41. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B et al (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1:e5PubMedGoogle Scholar
  42. Haile-Selassie Y, Suwa G, White TD (2004) Late Miocene teeth from Middle Awash, Ethiopia, and early hominid dental evolution. Science 303:1503–1505PubMedGoogle Scholar
  43. Halliday S (2007) The great filth. Sutton Publishing, ChalfordGoogle Scholar
  44. Hare R (1967) The antiquity of diseases caused by bacteria and viruses: a review of the problem from a bacteriologist’s point of view. In: Brothwell D, Sandison AT (eds) Diseases in antiquity. Charles C. Thomas Publisher, SpringfieldGoogle Scholar
  45. Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke, DF, Smith DJ, Rimmelzwaan GF, Osterhaus AD and Fouchier RA (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336(6088):1534–1541 Google Scholar
  46. Hoberg EP, Alkire NL, de Queiroz A, Jones A (2001) Out of Africa: origins of the Taenia tapeworms in humans. Proc Biol Sci 268:781–787PubMedGoogle Scholar
  47. Hopkins D (1980) Ramses V: earliest known victim. World Health 5:22Google Scholar
  48. Hubalek Z, Halouzka J (1999) West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650PubMedGoogle Scholar
  49. Kapoor A, Simmonds P, Gerold G, Qaisar N, Jain K et al (2011) Characterization of a canine homolog of hepatitis C virus. Proc Natl Acad Sci U S A 108:11608–11613PubMedGoogle Scholar
  50. King AA, Shrestha S, Harvill ET, Bjornstad ON (2009) Evolution of acute infections and the invasion-persistence trade-off. Am Nat 173:446–455PubMedGoogle Scholar
  51. Kraut AM (1994) Silent travelers: germs, genes and the “immigrant menace”. The John Hopkins University Press, BaltimoreGoogle Scholar
  52. Kuijt I, Goring-Morris N (2002) Foraging, farming, and social complexity in the pre-pottery Neolithic of the Southern Levant: a review and synthesis. J World Prehist 16:361–440Google Scholar
  53. Larsen CS (2006) The agricultural revolution as environmental catastrophe: implications for health and lifestyle in the Holocene. Quat Int 150:12–20Google Scholar
  54. Li W, Shi Z, Yu M, Ren W, Smith C et al (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679PubMedGoogle Scholar
  55. Linz B, Balloux F, Moodley Y, Manica A, Liu H et al (2007) An African origin for the intimate association between humans and Helicobacter pylori. Nature 445:915–918PubMedGoogle Scholar
  56. McCormick M (2003) Rats, communications, and plague: toward an ecological history. J Interdiscip Hist 34:1–25Google Scholar
  57. McGeoch DJ, Dolan A, Ralph AC (2000) Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 74:10401–10406PubMedGoogle Scholar
  58. McGeoch DJ, Rixon FJ, Davison AJ (2006) Topics in herpesvirus genomics and evolution. Virus Res 117:90–104PubMedGoogle Scholar
  59. McKeown T (1986) Food, infection, and population. J Interdiscip Hist 14:227–247Google Scholar
  60. McLysaght A, Baldi PF, Gaut BS (2003) Extensive gene gain associated with adaptive evolution of poxviruses. Proc Natl Acad Sci U S A 100:15655–15660PubMedGoogle Scholar
  61. McPherron SP, Alemseged Z, Marean CW, Wynn JG, Reed D et al (2010) Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature 466:857–860PubMedGoogle Scholar
  62. Mira A, Pushker R, Rodriguez-Valera F (2006) The Neolithic revolution of bacterial genomes. Trends Microbiol 14:200–206PubMedGoogle Scholar
  63. Monath TP (1999) Ecology of Marburg and Ebola viruses: speculations and directions for future research. J Infect Dis 179:S127–S138PubMedGoogle Scholar
  64. Nelson MI, Lemey P, Tan Y, Vincent A, Lam TT et al (2011) Spatial dynamics of human-origin H1 influenza A virus in North American swine. PLoS Pathog 7:e1002077PubMedGoogle Scholar
  65. Nikiforuk A (1991) The fourth horseman. Penguin Books, TorontoGoogle Scholar
  66. Normile D (2008) Rinderpest. Driven to extinction. Science 319:1606–1609PubMedGoogle Scholar
  67. Ollomo B, Durand P, Prugnolle F, Douzery E, Arnathau C et al (2009) A new malaria agent in African hominids. PLoS Pathog 5:e1000446PubMedGoogle Scholar
  68. Oppenheimer S (2012) Out-of-Africa, the peopling of continents and islands: tracing uniparental gene trees across the map. Philos Trans R Soc Lond B Biol Sci 367:770–784PubMedGoogle Scholar
  69. Papagrigorakis MJ, Yapijakis C, Synodinos PN (2008) Typhoid fever epidemic in ancient Athens. In: Raoult D, Drancourt M (eds) Paleomicrobiology. Springer, BerlinGoogle Scholar
  70. Peiris JS, Yuen KY, Osterhaus AD, Stohr K (2003) The severe acute respiratory syndrome. N Engl J Med 349:2431–2441PubMedGoogle Scholar
  71. Perry RD, Fetherston JD (1997) Yersinia pestis–etiologic agent of plague. Clin Microbiol Rev 10:35–66PubMedGoogle Scholar
  72. Prescott GW, Williams DR, Balmford A, Green RE, Manica A (2012) Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proc Natl Acad Sci U S A 109:4527–4531PubMedGoogle Scholar
  73. Reperant LA, Osterhaus ADME (2012) Chapter 4: Avian and animal influenza. In: Van-Tam J, Sellwood C (eds), Introduction to pandemic influenza, 2nd edn. CABIGoogle Scholar
  74. Reperant LA, Rimmelzwaan GF, Kuiken T (2009) Avian influenza viruses in mammals. Rev Sci Tech 28:137–159PubMedGoogle Scholar
  75. Roca AL, Pecon-Slattery J, O’Brien SJ (2004) Genomically intact endogenous feline leukemia viruses of recent origin. J Virol 78:4370–4375PubMedGoogle Scholar
  76. Rosenthal BM (2009) How has agriculture influenced the geography and genetics of animal parasites? Trends Parasitol 25:67–70PubMedGoogle Scholar
  77. Senut B, Pickford M, Gommery D, Mein P, Cheboi K et al (2001) First hominid from the Miocene (Lukeino formation, Kenya). Comptes Rendus de l’Academie des Sciences 332:137–144Google Scholar
  78. Skowronski DM, Astell C, Brunham RC, Low DE, Petric M et al (2005) Severe acute respiratory syndrome (SARS): a year in review. Annu Rev Med 56:357–381PubMedGoogle Scholar
  79. Slattery JP, Franchini G, Gessain A (1999) Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses. Genome Res 9:525–540PubMedGoogle Scholar
  80. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M et al (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1125PubMedGoogle Scholar
  81. Song HD, Tu CC, Zhang GW, Wang SY, Zheng K et al (2005) Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A 102:2430–2435PubMedGoogle Scholar
  82. Stevens JR, Gibson W (1999) The molecular evolution of trypanosomes. Parasitol Today 15:432–437PubMedGoogle Scholar
  83. Stevens JR, Noyes HA, Dover GA, Gibson WC (1999) The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118(Pt 1):107–116PubMedGoogle Scholar
  84. Stittelaar KJ, Osterhaus ADME (2001) MVA: a cuckoo in the vaccine nest? Vaccine 19:V–VIGoogle Scholar
  85. Taubenberger JK, Morens DM (2006) 1918 influenza: the mother of all pandemics. Emerg Infect Dis 12:15–22PubMedGoogle Scholar
  86. Taylor LH, Latham SM, Woolhouse MEJ (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356:983–989PubMedGoogle Scholar
  87. Templeton A (2002) Out of Africa again and again. Nature 416:45–51PubMedGoogle Scholar
  88. Thompson D, Muriel P, Russell D, Osborne P, Bromley A et al (2002) Economic costs of the foot and mouth disease outbreak in the United Kingdom in 2001. Rev Sci Tech 21:675–687PubMedGoogle Scholar
  89. Timen A, Koopmans MP, Vossen AC, van Doornum GJ, Gunther S et al (2009) Response to imported case of Marburg hemorrhagic fever, the Netherland. Emerg Infect Dis 15:1171–1175PubMedGoogle Scholar
  90. Tognotti E (1966) La Malaria in Sardegna. Franco Angeli, MilanGoogle Scholar
  91. Tully DC, Fares MA (2008) The tale of a modern animal plague: tracing the evolutionary history and determining the time-scale for foot and mouth disease virus. Virology 382:250–256PubMedGoogle Scholar
  92. Van Blerkom LM (2003) Role of viruses in human evolution. Am J Phys Anthropol Suppl 37:14–46Google Scholar
  93. van den Bogaard AE, Stobberingh EE (2000) Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents 14:327–335PubMedGoogle Scholar
  94. Van Heuverswyn F, Li Y, Neel C, Bailes E, Keele BF et al (2006) Human immunodeficiency viruses: SIV infection in wild gorillas. Nature 444:164PubMedGoogle Scholar
  95. van Thiel PPAM, van den Hoek JAR, Eftimov F, Tepaske R, Zaaijer HJ et al (2007) Fatal case of human rabies (Duvenhage virus) from a bat in Kenya: the Netherlands, December 2007. Euro Surveill 13:118Google Scholar
  96. Vandamme AM, Bertazzoni U, Salemi M (2000) Evolutionary strategies of human T-cell lymphotropic virus type II. Gene 261:171–180PubMedGoogle Scholar
  97. Verdonck K, Gonzalez E, Van Dooren S, Vandamme AM, Vanham G et al (2007) Human T-lymphotropic virus 1: recent knowledge about an ancient infection. Lancet Infect Dis 7:266–281PubMedGoogle Scholar
  98. Vila C, Savolainen P, Maldonado JE, Amorim IR, Rice JE et al (1997) Multiple and ancient origins of the domestic dog. Science 276:1687–1689PubMedGoogle Scholar
  99. Wang N, Baldi PF, Gaut BS (2007) Phylogenetic analysis, genome evolution and the rate of gene gain in the Herpesviridae. Mol Phylogenet Evol 43:1066–1075PubMedGoogle Scholar
  100. Weiss RA (2009) Apes, lice and prehistory. J Biol 8:20PubMedGoogle Scholar
  101. Weldon C, du Preez LH, Hyatt AD, Muller R, Spears R (2004) Origin of the amphibian chytrid fungus. Emerg Infect Dis 10:2100–2105PubMedGoogle Scholar
  102. Wheelis M (2002) Biological warfare at the 1346 siege of Caffa. Emerg Infect Dis 8:971–975PubMedGoogle Scholar
  103. WHO (2012) Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO. 15 April 2010 ed. WHO, GenevaGoogle Scholar
  104. Wolfe ND, Daszak P, Kilpatrick AM, Burke DS (2005) Bushmeat hunting, deforestation, and prediction of zoonoses emergence. Emerg Infect Dis 11:1822–1827Google Scholar
  105. Wolfe ND, Dunavan CP, Diamond J (2007) Origins of major human infectious diseases. Nature 447:279–283PubMedGoogle Scholar
  106. Woolhouse MEJ, Gowtage-Sequeria S (2005) Host range and emerging and reemerging pathogens. Emerg Infect Dis 11:1842–1847PubMedGoogle Scholar
  107. Zeier M, Handermann M, Bahr U, Rensch B, Muller S et al (2005) New ecological aspects of hantavirus infection: a change of a paradigm and a challenge of prevention—a review. Virus Genes 30:157–180PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Leslie A. Reperant
    • 1
  • Giuseppe Cornaglia
    • 2
  • Albert D. M. E. Osterhaus
    • 1
    • 3
  1. 1.Department of VirologyErasmus Medical CentreRotterdamThe Netherlands
  2. 2.Faculty of Medicine and Surgery, Department of Pathology and DiagnosticsUniversity of VeronaVeronaItaly
  3. 3.Artemis, Research Institute for Wildlife Health in EuropeUtrechtThe Netherlands

Personalised recommendations