Advertisement

Insights into Proteomic Immune Cell Signaling and Communication via Data-Driven Modeling

  • Kelly F. Benedict
  • Douglas A. LauffenburgerEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 363)

Abstract

Over the past decade, studies applying data-driven modeling approaches have demonstrated significant contributions toward the integrative understanding of multivariate cell regulatory system operation. Here we review applications of several of these approaches, including principal component analysis, partial least squares regression, partial least squares discriminant analysis, decision trees, and Bayesian networks, and describe the advances they have offered in systems-level understanding of immune cell signaling and communication. We show how these approaches generate novel insights from high-throughput proteomic data, from classification to association to influence to mechanisms. Looking forward, new experimental technologies involving single-cell measurements of cytokine expression beckon extension of these modeling techniques to inference of immune cell–cell communication networks, with a goal of aiding development of improved vaccine therapeutics.

Keywords

Partial Little Square Regression Mean Fluorescent Intensity Partial Little Square Discriminant Analysis Signaling Node Decision Tree Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Many thanks to Gregory Szeto, Brian Joughin, and Alexandra Hill for assistance in editing the manuscript. This work was partially supported by the Ragon Institute of MGH, MIT, and Harvard, NIH grant U19 AI 089992, and NIH grant TR01- EB010246.

References

  1. Benedict KF, Mac Gabhann F, Amanfu RK, Chavali AK, Gianchandani EP, Glaw LS, Oberhardt MA, Thorne BC, Yang JH, Papin JA, Peirce SM, Saucerman JJ, Skalak TC (2011) Systems analysis of small signaling modules relevant to eight human diseases. Ann Biomed Eng 39:621–635PubMedCrossRefGoogle Scholar
  2. Busse D, de la Rosa M, Hobiger K, Thurley K, Flossdorf M, Scheffold A, Hofer T (2010) Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc Natl Acad Sci U S A 107:3058–3063PubMedCrossRefGoogle Scholar
  3. Chavali AK, Gianchandani EP, Tung KS, Lawrence MB, Peirce SM, Papin JA (2008) Characterizing emergent properties of immunological systems with multi-cellular rule-based computational modeling. Trends Immunol 29:589–599PubMedCrossRefGoogle Scholar
  4. Colwell LJ, Brenner MP, Ribbeck K (2010) Charge as a selection criterion for translocation through the nuclear pore complex. PLoS Comput Biol 6:e1000747PubMedCrossRefGoogle Scholar
  5. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7:601–620PubMedCrossRefGoogle Scholar
  6. Geurts P, Irrthum A, Wehenkel L (2009) Supervised learning with decision tree-based methods in computational and systems biology. Mol BioSyst 5:1593–1605PubMedCrossRefGoogle Scholar
  7. Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC (2012) Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A 109:1607–1612PubMedCrossRefGoogle Scholar
  8. Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298:1241–1245PubMedCrossRefGoogle Scholar
  9. Hosseini I, Gabhann FM (2012) Multi-scale modeling of HIV infection in vitro and APOBEC3G-based anti-retroviral therapy. PLoS Comput Biol 8:e1002371PubMedCrossRefGoogle Scholar
  10. Hua F, Cornejo MG, Cardone MH, Stokes CL, Lauffenburger DA (2005) Effects of Bcl-2 levels on Fas signaling-induced caspase-3 activation: molecular genetic tests of computational model predictions. J Immunol 175:985–995PubMedGoogle Scholar
  11. Hua F, Hautaniemi S, Yokoo R, Lauffenburger DA (2006) Integrated mechanistic and data-driven modelling for multivariate analysis of signalling pathways. J R Soc Interface 3:515–526PubMedCrossRefGoogle Scholar
  12. Huang SS, Fraenkel E (2009) Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks. Sci Signal 2:40Google Scholar
  13. Janes KA, Yaffe MB (2006) Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol 7:820–828PubMedCrossRefGoogle Scholar
  14. Janes KA, Gaudet S, Albeck JG, Nielsen UB, Lauffenburger DA, Sorger PK (2006) The response of human epithelial cells to TNF involves an inducible autocrine cascade. Cell 124:1225–1239PubMedCrossRefGoogle Scholar
  15. Kingsford C, Salzberg SL (2008) What are decision trees? Nat Biotechnol 26:1011–1013PubMedCrossRefGoogle Scholar
  16. Kirouac DC, Saez-Rodriguez J, Swantek J, Burke JM, Lauffenburger DA, Sorger PK (2012) Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks. BMC Syst Biol 6:29PubMedCrossRefGoogle Scholar
  17. Lan A, Smoly IY, Rapaport G, Lindquist S, Fraenkel E, Yeger-Lotem E (2011) ResponseNet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data. Nucleic Acids Res 39:W424–W429PubMedCrossRefGoogle Scholar
  18. Lau KS, Juchheim AM, Cavaliere KR, Philips SR, Lauffenburger DA, Haigis KM (2011) In vivo systems analysis identifies spatial and temporal aspects of the modulation of TNF-alpha-induced apoptosis and proliferation by MAPKs. Sci Signal 4:ra16Google Scholar
  19. Lauffenburger DA (2012) The multiple dimensions of Integrative Biology. Integr Biol (Camb) 4:9CrossRefGoogle Scholar
  20. Longo DM, Louie B, Putta S, Evensen E, Ptacek J, Cordeiro J, Wang E, Pos Z, Hawtin RE, Marincola FM, Cesano A (2012) Single-cell network profiling of peripheral blood mononuclear cells from healthy donors reveals age- and race-associated differences in immune signaling pathway activation. J Immunol 188:1717–1725PubMedCrossRefGoogle Scholar
  21. Martens H, Martens M (2001) Multivariate analysis of quality: an introduction. Wiley, ChichesterGoogle Scholar
  22. Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN, Means AR, Kasturi SP, Khan N, Li GM, McCausland M, Kanchan V, Kokko KE, Li S, Elbein R, Mehta AK, Aderem A, Subbarao K, Ahmed R, Pulendran B (2011) Systems biology of vaccination for seasonal influenza in humans. Nat Immunol 12:786–795PubMedCrossRefGoogle Scholar
  23. Ndhlovu ZM, Proudfoot J, Cesa K, Alvino DM, McMullen A, Vine S, Stampouloglou E, Piechocka-Trocha A, Walker BD, Pereyra F (2012) Elite controllers with low to absent effector CD8+ T cell responses maintain highly functional, broadly directed central memory responses. J VirolGoogle Scholar
  24. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36:142–152PubMedCrossRefGoogle Scholar
  25. Palmer MJ, Mahajan VS, Trajman LC, Irvine DJ, Lauffenburger DA, Chen J (2008) Interleukin-7 receptor signaling network: an integrated systems perspective. Cell Mol Immunol 5:79–89PubMedCrossRefGoogle Scholar
  26. Pe’er D (2005) Bayesian network analysis of signaling networks: a primer. Sci STKE 2005:l4Google Scholar
  27. Prilutsky D, Shneider E, Shefer A, Rogachev B, Lobel L, Last M, Marks RS (2011) Differentiation between viral and bacterial acute infections using chemiluminescent signatures of circulating phagocytes. Anal Chem 83:4258–4265PubMedCrossRefGoogle Scholar
  28. Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, Kennedy K, Wu H, Bennouna S, Oluoch H, Miller J, Vencio RZ, Mulligan M, Aderem A, Ahmed R, Pulendran B (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10:116–125PubMedCrossRefGoogle Scholar
  29. Rivet CA, Hill AS, Lu H, Kemp ML (2011) Predicting cytotoxic T-cell age from multivariate analysis of static and dynamic biomarkers. Mol Cell Proteomics 10:M110 003921Google Scholar
  30. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529PubMedCrossRefGoogle Scholar
  31. Simon S, Guthke R, Kamradt T, Frey O (2012) Multivariate analysis of flow cytometric data using decision trees. Front Microbiol 3:114PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations