Advertisement

Henipavirus pp 179-196 | Cite as

Diagnosis of Henipavirus Infection: Current Capabilities and Future Directions

  • Lin-Fa WangEmail author
  • Peter Daniels
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 359)

Abstract

Since the last major review on diagnosis of henipavirus infection about a decade ago, significant progress has been made in many different areas of test development, especially in the development of molecular tests using real-time PCR and many novel serological test platforms. In addition to provide an updated review of the current test capabilities, this review also identifies key future challenges in henipavirus diagnosis.

Keywords

Nipah Virus Pseudotyped Virus Case Fatality Ratio Hendra Virus Serum Neutralization Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anonymous (2007) International Health Regulations (2005) 2nd edn. WHO, Geneva, p 82 http://whqlibdoc.who.int/publications/2008/9789241580410_eng.pdf. Accessed 18 Oct 2011
  2. Anonymous (2011) Manual of diagnostic tests and vaccines for terrestrial animals (2011). OIE, Paris. http://www.oie.int/en/international-standard-setting/terrestrial-manual/access-online/. Accessed 18 Oct 2011
  3. Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungall BA, Bishop KA, Choudhry V, Dimitrov DS, Wang LF, Eaton BT, Broder CC (2005) Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci U S A 102:10652–10657CrossRefPubMedGoogle Scholar
  4. Bossart KN, Crameri G, Dimitrov AS, Mungall BA, Feng YR, Patch JR, Choudhary A, Wang LF, Eaton BT, Broder CC (2005) Receptor binding, fusion inhibition and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus. J Virol 79:6690–6702CrossRefPubMedGoogle Scholar
  5. Bossart KN, McEachern JA, Hickey AC, Choudhry V, Dimitrov DS, Eaton BT, Wang LF (2007) Neutralization assays for differential henipavirus serology using Bio-Plex protein array systems. J Virol Methods 142:29–40CrossRefPubMedGoogle Scholar
  6. Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, Ksiazek TG, Mishra A (2006) Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 12:235–240CrossRefPubMedGoogle Scholar
  7. Chang LY, Ali AR, Hassan SS, AbuBakar S (2006) Quantitative estimation of Nipah virus replication kinetics in vitro. Virol J 3:47CrossRefPubMedGoogle Scholar
  8. Chen JM, Yaiw KC, Yu M, Wang LF, Wang QH, Crameri G, Wang ZL (2007) Expression of truncated phosphoproteins of Nipah virus and Hendra virus in Escherichia coli for the differentiation of henipavirus infections. Biotechnol Lett 29:871–875CrossRefPubMedGoogle Scholar
  9. Chen JM, Yu M, Morrissy C, Zhao YG, Meehan G, Sun YX, Wang QH, Zhang W, Wang LF, Wang ZL (2006) A comparative indirect ELISA for the detection of henipavirus antibodies based on a recombinant nucleocapsid protein expressed in Escherichia coli. J Virol Methods 136:273–276CrossRefPubMedGoogle Scholar
  10. Chiang CF, Lo MK, Rota PA, Spiropoulou CF, Rollin PE (2010) Use of monoclonal antibodies against Hendra and Nipah viruses in an antigen capture ELISA. Virol J 7:115CrossRefPubMedGoogle Scholar
  11. Chua KB (2003) Nipah virus outbreak in Malaysia. J Clin Virol 26:265–275CrossRefPubMedGoogle Scholar
  12. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh W, Goldsmith CS, Gubler DJ, Roehrig JT, Eaton B, Gould AR, Olson J, Field H, Daniels P, Ling AE, Peters CJ, Anderson LJ, Mahy BW (2000) Nipah virus: a recently emergent deadly paramyxovirus. Science 288:1432–1435CrossRefPubMedGoogle Scholar
  13. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT (1999) Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:1257–1259CrossRefPubMedGoogle Scholar
  14. Crameri G, Todd S, Grimley S, McEachern JA, Marsh GA, Smith C, Tachedjian M, De Jong C, Virtue ER, Yu M, Bulach D, Liu JP, Michalski WP, Middleton D, Field HE, Wang LF (2009) Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS ONE 4:e8266CrossRefPubMedGoogle Scholar
  15. Crameri G, Wang LF, Morrissy C, White J, Eaton BT (2002) A rapid immune plaque assay for the detection of Hendra and Nipah viruses and anti-virus antibodies. J Virol Methods 99:41–51CrossRefPubMedGoogle Scholar
  16. Daniels P, Ksiazek T, Eaton BT (2001) Laboratory diagnosis of Nipah and Hendra virus infections. Microbes Infect 3:289–295CrossRefPubMedGoogle Scholar
  17. Daniels PW, Halpin K, Hyatt A, Middleton D (2007) Infection and disease in reservoir and spillover hosts: determinants of pathogen emergence. Curr Top Microbiol Immunol 315:113–131CrossRefPubMedGoogle Scholar
  18. Daniels PW, Shahirudin S, Aziz J, Ong BL (2004) Nipah virus disease. In: Coetzer JAW, Tustin RC (eds) Infectious diseases of livestock, 2nd edn. Oxford University Press, Oxford, pp 692–697Google Scholar
  19. Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, Ipsen A, Kruppa T, Muller MA, Kalko EK, Adu-Sarkodie Y, Oppong S, Drosten C (2009) Henipavirus RNA in African bats. PLoS ONE 4:e6367CrossRefPubMedGoogle Scholar
  20. Eaton BT, Mackenzie JS, Wang L-F (2007) Henipaviruses. In: Knipe DM, Griffin DE, Lamb RA et al (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1587–1600Google Scholar
  21. Epstein JH, Field HE, Luby S, Pulliam JR, Daszak P (2006) Nipah virus: impact, origins, and causes of emergence. Curr Infect Dis Rep 8:59–65CrossRefPubMedGoogle Scholar
  22. Eshaghi M, Tan WS, Chin WK, Yusoff K (2005a) Purification of the extra-cellular domain of Nipah virus glycoprotein produced in Escherichia coli and possible application in diagnosis. J Biotechnol 116:221–226CrossRefPubMedGoogle Scholar
  23. Eshaghi M, Tan WS, Mohidin TB, Yusoff K (2004) Nipah virus glycoprotein: production in baculovirus and application in diagnosis. Virus Res 106:71–76CrossRefPubMedGoogle Scholar
  24. Eshaghi M, Tan WS, Ong ST, Yusoff K (2005b) Purification and characterization of Nipah virus nucleocapsid protein produced in insect cells. J Clin Microbiol 43:3172–3177CrossRefPubMedGoogle Scholar
  25. Feldman KS, Foord A, Heine HG, Smith IL, Boyd V, Marsh GA, Wood JL, Cunningham AA, Wang LF (2009) Design and evaluation of consensus PCR assays for henipaviruses. J Virol Methods 161:52–57CrossRefPubMedGoogle Scholar
  26. Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J (2001) The natural history of Hendra and Nipah viruses. Microbes Infect 3:307–314CrossRefPubMedGoogle Scholar
  27. Field HE, Mackenzie JS, Daszak P (2007) Henipaviruses: emerging paramyxoviruses associated with fruit bats. Curr Top Microbiol Immunol 315:133–159CrossRefPubMedGoogle Scholar
  28. Guillaume V, Contamin H, Loth P, Georges-Courbot MC, Lefeuvre A, Marianneau P, Chua KB, Lam SK, Buckland R, Deubel V, Wild TF (2004a) Nipah virus: vaccination and passive protection studies in a hamster model. J Virol 78:834–840CrossRefPubMedGoogle Scholar
  29. Guillaume V, Lefeuvre A, Faure C, Marianneau P, Buckland R, Lam SK, Wild TF, Deubel V (2004b) Specific detection of Nipah virus using real-time RT-PCR (TaqMan). J Virol Methods 120:229–237CrossRefPubMedGoogle Scholar
  30. Hayman DT, Suu-Ire R, Breed AC, McEachern JA, Wang L, Wood JL, Cunningham AA (2008) Evidence of henipavirus infection in West African fruit bats. PLoS ONE 3:e2739CrossRefPubMedGoogle Scholar
  31. Hooper P, Zaki S, Daniels P, Middleton D (2001) Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect 3:315–322CrossRefPubMedGoogle Scholar
  32. Hooper PT, Gould AR, Hyatt AD, Braun MA, Kattenbelt JA, Hengstberger SG, Westbury HA (2000) Identification and molecular characterization of Hendra virus in a horse in Queensland. Aust Vet J 78:281–282CrossRefPubMedGoogle Scholar
  33. Hooper PT, Gould AR, Russell GM, Kattenbelt JA, Mitchell G (1996) The retrospective diagnosis of a second outbreak of equine morbillivirus infection. Aust Vet J 74:244–245CrossRefPubMedGoogle Scholar
  34. Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG, Kuzmin I, Niezgoda M, Rupprecht C, Bresee J, Breiman RF (2004) Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 10:2082–2087CrossRefPubMedGoogle Scholar
  35. Hyatt AD, Zaki SR, Goldsmith CS, Wise TG, Hengstberger SG (2001) Ultrastructure of Hendra virus and Nipah virus within cultured cells and host animals. Microbes Infect 3:297–306CrossRefPubMedGoogle Scholar
  36. Imada T, Abdul Rahman MA, Kashiwazaki Y, Tanimura N, Syed Hassan S, Jamaluddin A (2004) Production and characterization of monoclonal antibodies against formalin-inactivated Nipah virus isolated from the lungs of a pig. J Vet Med Sci 66:81–83CrossRefPubMedGoogle Scholar
  37. Kaku Y, Noguchi A, Marsh GA, Barr JA, Okutani A, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A, Inoue S, Wang LF (2012) Second generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: sensitive and high-throughput analysis utilizing secreted alkaline phosphatase. J Virol Methods 179:226–232Google Scholar
  38. Kaku Y, Noguchi A, Marsh GA, McEachern JA, Okutani A, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A, Inoue S, Wang LF (2009) A neutralization test for specific detection of Nipah virus antibodies using pseudotyped vesicular stomatitis virus expressing green fluorescent protein. J Virol Methods 160:7–13CrossRefPubMedGoogle Scholar
  39. Khetawat D, Broder CC (2010) A functional henipavirus envelope glycoprotein pseudotyped lentivirus assay system. Virol J 7:312CrossRefPubMedGoogle Scholar
  40. Kutyavin IV, Afonina IA, Mills A, Gorn VV, Lukhtanov EA, Belousov ES, Singer MJ, Walburger DK, Lokhov SG, Gall AA, Dempcy R, Reed MW, Meyer RB, Hedgpeth J (2000) 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 28:655–661CrossRefPubMedGoogle Scholar
  41. Lehle C, Razafitrimo G, Razainirina J, Andriaholinirina N, Goodman SM, Faure C, Georges-Courbot MC, Rousset D, Reynes JM (2007) Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar. Emerg Infect Dis 13:159–161CrossRefGoogle Scholar
  42. Lewandrowski K, Gregory K, Macmillan D (2011) Assuring quality in point-of-care testing: evolution of technologies, informatics, and program management. Arch Pathol Lab Med 135:1405–1414CrossRefPubMedGoogle Scholar
  43. Li Y, Wang J, Hickey AC, Zhang Y, Li Y, Wu Y, Zhang H, Yuan J, Han Z, McEachern J, Broder CC, Wang LF, Shi Z (2008) Antibodies to Nipah or Nipah-like viruses in bats, China. Emerg Infect Dis 14:1974–1976CrossRefPubMedGoogle Scholar
  44. Lo MK, Lowe L, Hummel KB, Sazzad HMS, Gurley ES, Hossain MJ, Luby SP, Miller DB, Comer JA, Rollin PE, Bellini WJ, Rota PA (2012) Characterization of Nipah virus from outbreaks in Bangladesh, 2008–2010. Emerg Infect Dis. doi: 10.3201/eid1802.111492 Google Scholar
  45. Luby SP, Gurley ES, Hossain MJ (2009a) Transmission of human infection with Nipah virus. Clin Infect Dis 49:1743–1748CrossRefPubMedGoogle Scholar
  46. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Homaira N, Rota PA, Rollin PE, Comer JA, Kenah E, Ksiazek TG, Rahman M (2009b) Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis 15:1229–1235CrossRefPubMedGoogle Scholar
  47. Marsh GA, Haining J, Hancock TJ, Robinson R, Foord AJ, Barr JA, Riddell S, Heine HG, White JR, Crameri G, Field HE, Wang LF, Middleton D (2011) Experimental infection of horses with hendra virus/australia/horse/2008/redlands. Emerg Infect Dis 17:2232–2238CrossRefPubMedGoogle Scholar
  48. Marsh GA, Todd S, Foord A, Hansson E, Davies K, Wright L, Morrissy C, Halpin K, Middleton D, Field HE, Daniels P, Wang LF (2010) Genome sequence conservation of Hendra virus isolates during spillover to horses, Australia. Emerg Infect Dis 16:1767–1769CrossRefPubMedGoogle Scholar
  49. McEachern JA, Bingham J, Crameri G, Green DJ, Hancock TJ, Middleton D, Feng YR, Broder CC, Wang LF, Bossart KN (2008) A recombinant subunit vaccine formulation protects against lethal Nipah virus challenge in cats. Vaccine 26:3842–3852CrossRefPubMedGoogle Scholar
  50. Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Westbury HA, Halpin K, Daniels PW (2007) Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J Comp Pathol 136:266–272CrossRefPubMedGoogle Scholar
  51. Mungall BA, Middleton D, Crameri G, Bingham J, Halpin K, Russell G, Green D, McEachern J, Pritchard LI, Eaton BT, Wang LF, Bossart KN, Broder CC (2006) Feline model of acute Nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J Virol 80:12293–12302CrossRefPubMedGoogle Scholar
  52. Murray K, Selleck P, Hooper P, Hyatt A, Gould A, Gleeson L, Westbury H, Hiley L, Selvey L, Rodwell B et al (1995) A morbillivirus that caused fatal disease in horses and humans. Science 268:94–97CrossRefPubMedGoogle Scholar
  53. Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R, Tajyar S, Lee B (2005) EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436:401–405PubMedGoogle Scholar
  54. Pallister J, Middleton D, Broder CC, Wang L-F (2011a) Henipavirus vaccine development. J Bioterr Biodef S1:005Google Scholar
  55. Pallister J, Middleton D, Wang LF, Klein R, Haining J, Robinson R, Yamada M, White J, Payne J, Feng YR, Chan YP, Broder CC (2011b) A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge. Vaccine 29:5623–5630CrossRefPubMedGoogle Scholar
  56. Playford EG, McCall B, Smith G, Slinko V, Allen G, Smith I, Moore F, Taylor C, Kung YH, Field H (2010) Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008. Emerg Infect Dis 16:219–223CrossRefPubMedGoogle Scholar
  57. Promed (2011a) 20110525.1589 Hendra virus––Australia (06), VaccineGoogle Scholar
  58. Promed (2011b) 20110727.2257 Hendra virus, equine––Australia (18), Queensland, CanineGoogle Scholar
  59. Promed (2011c) 20111013.3061 Hendra virus, equine––Australia (28), Queensland, NSGoogle Scholar
  60. Rollin PE, Rota PA, Zaki S, Ksiazek TG (2012) Chapter 92. Hendra and Nipah viruses. In: Versalovic J (ed) Manual of clinical microbiology, 10th edn, vol 2. ASM Press, pp 1479–1487Google Scholar
  61. Rota PA, Mungall B, Halpin K (2010) Ch 49. Nipah virus. Molecular detection of human viral pathogens. In: Liu D (ed) Molecular detection of human viral pathogens. CRC Press, pp 543–555Google Scholar
  62. Smith I, Broos A, De Jong C, Zeddeman A, Smith C, Smith G, Moore F, Barr J, Crameri G, Marsh GA, Tachedjian M, Yu M, Wang L-F, Field H (2011) Identifying Hendra virus diversity in Pteropid bats. Emerg Infect Dis 6(9):e25275Google Scholar
  63. Smith IL, Halpin K, Warrilow D, Smith GA (2001) Development of a fluorogenic RT-PCR assay (TaqMan) for the detection of Hendra virus. J Virol Methods 98:33–40CrossRefPubMedGoogle Scholar
  64. Tamin A, Harcourt BH, Lo MK, Roth JA, Wolf MC, Lee B, Weingartl H, Audonnet JC, Bellini WJ, Rota PA (2009) Development of a neutralization assay for Nipah virus using pseudotype particles. J Virol Methods 160:1–6CrossRefPubMedGoogle Scholar
  65. Tanimura N, Imada T, Kashiwazaki Y, Shahirudin S, Sharifah SH, Aziz AJ (2004a) Monoclonal antibody-based immunohistochemical diagnosis of Malaysian Nipah virus infection in pigs. J Comp Pathol 131:199–206CrossRefPubMedGoogle Scholar
  66. Tanimura N, Imada T, Kashiwazaki Y, Shamusudin S, Syed Hassan S, Jamaluddin A, Russell G, White J (2004b) Reactivity of anti-Nipah virus monoclonal antibodies to formalin-fixed, paraffin-embedded lung tissues from experimental Nipah and Hendra virus infections. J Vet Med Sci 66:1263–1266CrossRefPubMedGoogle Scholar
  67. Vignali DA (2000) Multiplexed particle-based flow cytometric assays. J Immunol Methods 243:243–255CrossRefPubMedGoogle Scholar
  68. Wang LF, Michalski WP, Yu M, Pritchard LI, Crameri G, Shiell B, Eaton BT (1998) A novel P/V/C gene in a new member of the Paramyxoviridae family, which causes lethal infection in humans, horses, and other animals. J Virol 72:1482–1490PubMedGoogle Scholar
  69. Weingartl HM, Berhane Y, Caswell JL, Loosmore S, Audonnet JC, Roth JA, Czub M (2006) Recombinant Nipah virus vaccines protect pigs against challenge. J Virol 80:7929–7938CrossRefPubMedGoogle Scholar
  70. White JR, Boyd V, Crameri GS, Duch CJ, van Laar RK, Wang LF, Eaton BT (2005) Location of, immunogenicity of and relationships between neutralization epitopes on the attachment protein (G) of Hendra virus. J Gen Virol 86:2839–2848CrossRefPubMedGoogle Scholar
  71. Williamson MM, Hooper PT, Selleck PW, Gleeson LJ, Daniels PW, Westbury HA, Murray PK (1998) Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats. Aust Vet J 76:813–818CrossRefPubMedGoogle Scholar
  72. Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, bin Adzhar A, White J, Daniels P, Jamaluddin A, Ksiazek T (2001) Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 7:439–441PubMedGoogle Scholar
  73. Young PL, Halpin K, Selleck PW, Field H, Gravel JL, Kelly MA, Mackenzie JS (1996) Serologic evidence for the presence in Pteropus bats of a paramyxovirus related to equine morbillivirus. Emerg Infect Dis 2:239–240CrossRefPubMedGoogle Scholar
  74. Yu F, Khairullah NS, Inoue S, Balasubramaniam V, Berendam SJ, Teh LK, Ibrahim NS, Abdul Rahman S, Hassan SS, Hasebe F, Sinniah M, Morita K (2006) Serodiagnosis using recombinant nipah virus nucleocapsid protein expressed in Escherichia coli. J Clin Microbiol 44:3134–3138CrossRefPubMedGoogle Scholar
  75. Zhu Z, Bossart KN, Bishop KA, Crameri G, Dimitrov AS, McEachern JA, Feng Y, Middleton D, Wang LF, Broder CC, Dimitrov DS (2008) Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J Infect Dis 197:846–853CrossRefPubMedGoogle Scholar
  76. Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32:e103CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CSRIO Livestock IndustriesAustralian Animal Health LaboratoryGeelongAustralia

Personalised recommendations