Henipavirus pp 197-223 | Cite as

Immunization Strategies Against Henipaviruses

  • Christopher C. Broder
  • Thomas W. Geisbert
  • Kai Xu
  • Dimitar B. Nikolov
  • Lin-Fa Wang
  • Deborah Middleton
  • Jackie Pallister
  • Katharine N. Bossart
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 359)


Hendra virus and Nipah virus are recently discovered and closely related emerging viruses that now comprise the genus henipavirus within the sub-family Paramyxoviridae and are distinguished by their broad species tropism and in addition to bats can infect and cause fatal disease in a wide variety of mammalian hosts including humans. The high mortality associated with human and animal henipavirus infections has highlighted the importance and necessity of developing effective immunization strategies. The development of suitable animal models of henipavirus infection and pathogenesis has been critical for testing the efficacy of potential therapeutic approaches. Several henipavirus challenge models have been used and recent successes in both active and passive immunization strategies against henipaviruses have been reported which have all targeted the viral envelope glycoproteins.


  1. Aebersold P (2012) FDA experience with medical countermeasures under the animal rule. Adv Prev Med 2012:507–571Google Scholar
  2. Anonymous (2008) Hendra virus, human, equine—Australia (04), Queensland. Pro-MED-mail, International Society for Infectious Diseases, 25 July, archive no. 20080725.2260. Available at www.promedmail.org
  3. Anonymous (2009) Human, Equine—Australia (04), Queensland Fatal. Pro-MED-mail, International Society for Infectious Diseases, 3 Sep, archive no. 20090903.3098. Available at www.promedmail.org
  4. Anonymous (2011) Hendra Virus, Equine—Australia (28), Queensland, New South Wales. Pro-MED-mail International Society for Infectious Diseases, 12 Oct, archive no. 20111013.3061. Available at www.promedmail.org
  5. Anonymous (2012a) Hendra virus, equine—Australia, Queensland. Pro-MED-mail International Society for Infectious Diseases, 6 Jan, archive no. 20120106.1001359. Available at www.promedmail.org
  6. Anonymous (2012b) Nipah encephalitis, human—Bangladesh, Jipurhat. Pro-MED-mail, International Society for Infectious Diseases, 7 Feb, archive no. 20120212.1040138. Available at www.promedmail.org
  7. Balzer M (2011) Hendra vaccine success announced. Aust Vet J 89(7):N2–N3CrossRefPubMedGoogle Scholar
  8. Bishop KA, Broder CC (2008) Hendra and Nipah: lethal zoonotic paramyxoviruses. In: Scheld WM, Hammer SM, Hughes JM (eds) Emerging infections. American Society for Microbiology, Washington, pp 155–187Google Scholar
  9. Bishop KA, Stantchev TS, Hickey AC, Khetawat D, Bossart KN, Krasnoperov V, Gill P, Feng YR, Wang L, Eaton BT, Wang LF, Broder CC (2007) Identification of hendra virus G glycoprotein residues that are critical for receptor binding. J Virol 81(11):5893–5901CrossRefPubMedGoogle Scholar
  10. Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungall BA, Bishop KA, Choudhry V, Dimitrov DS, Wang LF, Eaton BT, Broder CC (2005) Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci U S A 102(30):10652–10657CrossRefPubMedGoogle Scholar
  11. Bossart KN, Crameri G, Dimitrov AS, Mungall BA, Feng YR, Patch JR, Choudhary A, Wang LF, Eaton BT, Broder CC (2005) Receptor binding, fusion inhibition and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of hendra virus. J Virol 79(11):6690–6702CrossRefPubMedGoogle Scholar
  12. Bossart KN, McEachern JA, Hickey AC, Choudhry V, Dimitrov DS, Eaton BT, Wang LF (2007) Neutralization assays for differential henipavirus serology using bio-plex protein array systems. J Virol Methods 142(1–2):29–40CrossRefPubMedGoogle Scholar
  13. Bossart KN, Tachedjian M, McEachern JA, Crameri G, Zhu Z, Dimitrov DS, Broder CC, Wang LF (2008) Functional studies of host-specific ephrin-B ligands as henipavirus receptors. Virology 372(2):357–371CrossRefPubMedGoogle Scholar
  14. Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G, Bingham J, McEachern JA, Green D, Hancock TJ, Chan YP, Hickey AC, Dimitrov DS, Wang LF, Broder CC (2009) A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. PLoS Pathog 5(10):e1000642CrossRefPubMedGoogle Scholar
  15. Bossart KN, Geisbert TW, Feldmann H, Zhu Z, Feldmann F, Geisbert JB, Yan L, Feng YR, Brining D, Scott D, Wang Y, Dimitrov AS, Callison J, Chan YP, Hickey AC, Dimitrov DS, Broder CC, and Rockx B (2011) A neutralizing human monoclonal antibody protects african green monkeys from hendra virus challenge. Sci Transl Med 3(105):103–105Google Scholar
  16. Bowden TA, Aricescu AR, Gilbert RJ, Grimes JM, Jones EY, Stuart DI (2008) Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol 15(6):567–572CrossRefPubMedGoogle Scholar
  17. Bowden TA, Crispin M, Harvey DJ, Jones EY, Stuart DI (2010) Dimeric architecture of the hendra virus attachment glycoprotein: evidence for a conserved mode of assembly. J Virol 84(12):6208–6217CrossRefPubMedGoogle Scholar
  18. Broder CC, Earl PL, Long D, Abedon ST, Moss B, Doms RW (1994) Antigenic implications of human immunodeficiency virus type 1 envelope quaternary structure: oligomer-specific and sensitive monoclonal antibodies. Proc Natl Acad Sci U S A 91(24):11699–11703CrossRefPubMedGoogle Scholar
  19. Casadevall A, Dadachova E, Pirofski LA (2004) Passive antibody therapy for infectious diseases. Nat Rev Microbiol 2(9):695–703CrossRefPubMedGoogle Scholar
  20. Chong HT, Tan CT (2003) Relapsed and late-onset Nipah encephalitis, a report of three cases. Neurol J Southeast Asia 8:109–112Google Scholar
  21. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT (1999) Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354(9186):1257–1259CrossRefPubMedGoogle Scholar
  22. Chua KB, Lek Koh C, Hooi PS, Wee KF, Khong JH, Chua BH, Chan YP, Lim ME, Lam SK (2002) Isolation of Nipah virus from Malaysian island flying-foxes. Microbes Infect 4(2):145–151CrossRefPubMedGoogle Scholar
  23. Colgrave ML, Snelling HJ, Shiell BR, Feng YR, Chan YP, Bossart KN, Xu K, Nikolov DB, Broder CC, Michalski WP (2012) Site occupancy and glycan compositional analysis of two soluble recombinant forms of the attachment glycoprotein of hendra virus. Glycobiology 22(4):572–584CrossRefPubMedGoogle Scholar
  24. Crawford LM (2002) New drug and biological drug products; evidence needed to demonstrate effectiveness of new drugs when human efficacy studies are not ethical or feasible. Office of the Federal Register, National Archives and Records Administration (NARA), Washington, pp 37988–37998Google Scholar
  25. Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, Ipsen A, Kruppa T, Muller MA, Kalko EK, Adu-Sarkodie Y, Oppong S, Drosten C (2009) Henipavirus RNA in African bats. PLoS One 4(7):e6367CrossRefPubMedGoogle Scholar
  26. Dutch RE (2010) Entry and fusion of emerging paramyxoviruses. PLoS Pathog 6(6):e1000881CrossRefPubMedGoogle Scholar
  27. Eaton BT, Broder CC, Middleton D, Wang LF (2006) Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol 4(1):23–35CrossRefPubMedGoogle Scholar
  28. Eaton BT, Mackenzie JS, Wang L-F (2007) Henipaviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1587–1600Google Scholar
  29. Field HE, Mackenzie JS, Daszak P (2007) Henipaviruses: emerging paramyxoviruses associated with fruit bats. Curr Top Microbiol Immunol 315:133–159CrossRefPubMedGoogle Scholar
  30. Field H, Schaaf K, Kung N, Simon C, Waltisbuhl D, Hobert H, Moore F, Middleton D, Crook A, Smith G, Daniels P, Glanville R, Lovell D (2010) Hendra virus outbreak with novel clinical features Australia. Emerg Infect Dis 16(2):338–340CrossRefPubMedGoogle Scholar
  31. Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230(2):151–160CrossRefPubMedGoogle Scholar
  32. Geisbert TW, Daddario-DiCaprio KM, Hickey AC, Smith MA, Chan YP, Wang LF, Mattapallil JJ, Geisbert JB, Bossart KN, Broder CC (2010) Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PLoS One 5(5):e10690CrossRefPubMedGoogle Scholar
  33. Griffin DE (1995) Immune responses during measles virus infection. Curr Top Microbiol Immunol 191:117–134CrossRefPubMedGoogle Scholar
  34. Guillaume V, Contamin H, Loth P, Georges-Courbot MC, Lefeuvre A, Marianneau P, Chua KB, Lam SK, Buckland R, Deubel V, Wild TF (2004) Nipah virus: vaccination and passive protection studies in a hamster model. J Virol 78(2):834–840CrossRefPubMedGoogle Scholar
  35. Guillaume V, Contamin H, Loth P, Grosjean I, Courbot MC, Deubel V, Buckland R, Wild TF (2006) Antibody prophylaxis and therapy against Nipah virus infection in hamsters. J Virol 80(4):1972–1978CrossRefPubMedGoogle Scholar
  36. Guillaume V, Wong KT, Looi RY, Georges-Courbot MC, Barrot L, Buckland R, Wild TF, Horvat B (2009) Acute hendra virus infection: analysis of the pathogenesis and passive antibody protection in the hamster model. Virology 387(2):459–465CrossRefPubMedGoogle Scholar
  37. Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK, Islam MR, Molla MA, Carroll DS, Ksiazek TG, Rota PA, Lowe L, Comer JA, Rollin P, Czub M, Grolla A, Feldmann H, Luby SP, Woodward JL, Breiman RF (2007) Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 13(7):1031–1037CrossRefPubMedGoogle Scholar
  38. Halpin K, Young PL, Field HE, Mackenzie JS (2000) Isolation of hendra virus from pteropid bats: a natural reservoir of hendra virus. J Gen Virol 81(Pt 8):1927–1932PubMedGoogle Scholar
  39. Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B, Bowden N, Rollin PE, Comer JA, Ksiazek TG, Hossain MJ, Gurley ES, Breiman RF, Bellini WJ, Rota PA (2005) Genetic characterization of Nipah virus, Bangladesh 2004. Emerg Infect Dis 11(10):1594–1597CrossRefPubMedGoogle Scholar
  40. Hayman DT, Suu-Ire R, Breed AC, McEachern JA, Wang L, Wood JL, Cunningham AA (2008) Evidence of henipavirus infection in west african fruit bats. PLoS ONE 3(7):e2739CrossRefPubMedGoogle Scholar
  41. Hayman DT, Wang LF, Barr J, Baker KS, Suu-Ire R, Broder CC, Cunningham AA, Wood JL (2011) Antibodies to henipavirus or henipa-like viruses in domestic pigs in Ghana, West Africa. PLoS One 6(9):e25256CrossRefPubMedGoogle Scholar
  42. Hickey AC, Bossart KN, Rockx B, Feldmann F, Geisbert JB, Yan L, Feng YR, Feldmann H, Geisbert TW, Broder CC (2011) Vaccination of nonhuman primates with a recombinant soluble henipavirus attachment G glycoprotein protects against lethal Nipah virus challenge. Am Soc Virol 40–2:195Google Scholar
  43. Homaira N, Rahman M, Hossain MJ, Epstein JH, Sultana R, Khan MS, Podder G, Nahar K, Ahmed B, Gurley ES, Daszak P, Lipkin WI, Rollin PE, Comer JA, Ksiazek TG, Luby SP (2010) Nipah virus outbreak with person-to-person transmission in a district of Bangladesh, 2007. Epidemiol Infect 138(11):1630–1636CrossRefPubMedGoogle Scholar
  44. Hooper PT, Ketterer PJ, Hyatt AD, Russell GM (1997a) Lesions of experimental equine morbillivirus pneumonia in horses. Vet Pathol 34(4):312–322CrossRefPubMedGoogle Scholar
  45. Hooper PT, Westbury HA, Russell GM (1997b) The lesions of experimental equine morbillivirus disease in cats and guinea pigs. Vet Pathol 34(4):323–329CrossRefPubMedGoogle Scholar
  46. Hooper P, Zaki S, Daniels P, Middleton D (2001) Comparative pathology of the diseases caused by hendra and Nipah viruses. Microbes Infect 3(4):315–322CrossRefPubMedGoogle Scholar
  47. Iehle C, Razafitrimo G, Razainirina J, Andriaholinirina N, Goodman SM, Faure C, Georges-Courbot MC, Rousset D, Reynes JM (2007) Henipavirus and tioman virus antibodies in pteropodid bats. Madagascar. Emerg Infect Dis 13(1):159–161CrossRefGoogle Scholar
  48. Kang AS, Jones TM, Burton DR (1991) Antibody redesign by chain shuffling from random combinatorial immunoglobulin libraries. Proc Natl Acad Sci U S A 88(24):11120–11123CrossRefPubMedGoogle Scholar
  49. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the phyre server. Nat Protoc 4(3):363–371CrossRefPubMedGoogle Scholar
  50. Lackmann M, Boyd AW (2008) Eph, a protein family coming of age: more confusion, insight, or complexity? Sci Signal 1(15): re2Google Scholar
  51. Lamb RA, Parks GD (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1449–1496Google Scholar
  52. Lamb RA, Collins PL, Kolakofsky D, Melero JA, Nagai Y, Oldstone MBA, Pringle CR, Rima BK (2005) Family Paramyxoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: the classification and nomenclature of viruses. The eighth report of the international committee in taxonomy of viruses. Elsevier Academic Press, San Diego, pp 655–668Google Scholar
  53. Lee B, Ataman ZA (2011) Modes of paramyxovirus fusion: a henipavirus perspective. Trends Microbiol 19(8):389–399CrossRefPubMedGoogle Scholar
  54. Li Y, Wang J, Hickey AC, Zhang Y, Wu Y, Zhang H, Yuan J, Han Z, McEachern J, Broder CC, Wang LF, Shi Z (2008) Antibodies to Nipah or Nipah-like viruses in bats. China. Emerg Infect Dis 14(12):1974–1976CrossRefGoogle Scholar
  55. Li M, Embury-Hyatt C, Weingartl HM (2010) Experimental inoculation study indicates swine as a potential host for hendra virus. Vet Res 41(3):33CrossRefPubMedGoogle Scholar
  56. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Homaira N, Rota PA, Rollin PE, Comer JA, Kenah E, Ksiazek TG, Rahman M (2009) Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis 15(8):1229–1235CrossRefPubMedGoogle Scholar
  57. Marianneau P, Guillaume V, Wong T, Badmanathan M, Looi RY, Murri S, Loth P, Tordo N, Wild F, Horvat B, Contamin H (2010) Experimental infection of squirrel monkeys with Nipah virus. Emerg Infect Dis 16(3):507–510CrossRefPubMedGoogle Scholar
  58. Marsh GA, Haining J, Hancock TJ, Robinson R, Foord A, Barr JA, Riddell S, Heine H, White JR, Crameri G, Field HE, Middleton D, Wang LF (2011) Experimental infection of horses with hendra virus/Australia/Horse/2008/Redlands; implications for control of transmission to people and horses. Emerg Infect Dis 17(12):2232–2238CrossRefPubMedGoogle Scholar
  59. McEachern JA, Bingham J, Crameri G, Green DJ, Hancock TJ, Middleton D, Feng YR, Broder CC, Wang LF, Bossart KN (2008) A recombinant subunit vaccine formulation protects against lethal Nipah virus challenge in cats. Vaccine 26(31):3842–3852CrossRefPubMedGoogle Scholar
  60. Middleton DJ, Westbury HA, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Hyatt AD (2002) Experimental Nipah virus infection in pigs and cats. J Comp Pathol 126(2–3):124–136CrossRefPubMedGoogle Scholar
  61. Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Westbury HA, Halpin K, Daniels PW (2007) Experimental Nipah Virus Infection in Pteropid Bats (Pteropus poliocephalus). J Comp Pathol 136(4):266–272CrossRefPubMedGoogle Scholar
  62. Mungall BA, Middleton D, Crameri G, Bingham J, Halpin K, Russell G, Green D, McEachern J, Pritchard LI, Eaton BT, Wang LF, Bossart KN, Broder CC (2006) Feline model of acute Nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J Virol 80(24):12293–12302CrossRefPubMedGoogle Scholar
  63. Mungall BA, Middleton D, Crameri G, Halpin K, Bingham J, Eaton BT, Broder CC (2007) Vertical transmission and fetal replication of Nipah virus in an experimentally infected cat. J Infect Dis 196(6):812–816CrossRefPubMedGoogle Scholar
  64. Murray K, Selleck P, Hooper P, Hyatt A, Gould A, Gleeson L, Westbury H, Hiley L, Selvey L, Rodwell B et al (1995) A morbillivirus that caused fatal disease in horses and humans. Science 268(5207):94–97CrossRefPubMedGoogle Scholar
  65. Murray K, Eaton B, Hooper P, Wang L, Williamson M, Young P (1998) Flying foxes, horses, and humans: a zoonosis caused be a new member of the Paramyxoviridae. In: Scheld WM, Armstrong D, Hughes JM (eds) Emerging infections. ASM Press, Washington, pp 43–58Google Scholar
  66. Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R, Tajyar S, Lee B (2005) EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436(7049):401–405PubMedGoogle Scholar
  67. Negrete OA, Wolf MC, Aguilar HC, Enterlein S, Wang W, Muhlberger E, Su SV, Bertolotti-Ciarlet A, Flick R, Lee B (2006) Two key residues in Ephrinb3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2(2):e7CrossRefPubMedGoogle Scholar
  68. O’Sullivan JD, Allworth AM, Paterson DL, Snow TM, Boots R, Gleeson LJ, Gould AR, Hyatt AD, Bradfield J (1997) Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet 349(9045):93–95CrossRefPubMedGoogle Scholar
  69. Pallister J, Middleton D, Crameri G, Yamada M, Klein R, Hancock TJ, Foord A, Shiell B, Michalski W, Broder CC, Wang LF (2009) Chloroquine administration does not prevent Nipah virus infection and disease in ferrets. J Virol 83(22):11979–11982CrossRefPubMedGoogle Scholar
  70. Pallister J, Middleton D, Broder CC, Wang LF (2011a) Henipavirus vaccine development. J Bioterr Biodef S1:005. doi:10.4172/2157-2526.S1-005
  71. Pallister J, Middleton D, Wang LF, Klein R, Haining J, Robinson R, Yamada M, White J, Payne J, Feng YR, Chan YP, Broder CC (2011b) A recombinant hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal hendra virus challenge. Vaccine 29(34):5623–5630CrossRefPubMedGoogle Scholar
  72. Pantaleo G, Koup RA (2004) Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat Med 10(8):806–810CrossRefPubMedGoogle Scholar
  73. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1):38–52CrossRefPubMedGoogle Scholar
  74. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10(3):165–180CrossRefPubMedGoogle Scholar
  75. Playford EG, McCall B, Smith G, Slinko V, Allen G, Smith I, Moore F, Taylor C, Kung YH, Field H (2010) Human hendra virus encephalitis associated with equine outbreak, Australia 2008. Emerg Infect Dis 16(2):219–223CrossRefPubMedGoogle Scholar
  76. Rader C, Barbas CF 3rd (1997) Phage display of combinatorial antibody libraries. Curr Opin Biotechnol 8(4):503–508CrossRefPubMedGoogle Scholar
  77. Rockx B, Bossart KN, Feldmann F, Geisbert JB, Hickey AC, Brining D, Callison J, Safronetz D, Marzi A, Kercher L, Long D, Broder CC, Feldmann H, Geisbert TW (2010) A novel model of lethal hendra virus infection in African green monkeys and the effectiveness of ribavirin treatment. J Virol 84(19):9831–9839CrossRefPubMedGoogle Scholar
  78. Rockx B, Brining D, Kramer J, Callison J, Ebihara H, Mansfield K, Feldmann H (2011) Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. J Virol 85(15):7658–7671CrossRefPubMedGoogle Scholar
  79. Rogers RJ, Douglas IC, Baldock FC, Glanville RJ, Seppanen KT, Gleeson LJ, Selleck PN, Dunn KJ (1996) Investigation of a second focus of equine morbillivirus infection in coastal Queensland. Aust Vet J 74(3):243–244CrossRefPubMedGoogle Scholar
  80. Selvey LA, Wells RM, McCormack JG, Ansford AJ, Murray K, Rogers RJ, Lavercombe PS, Selleck P, Sheridan JW (1995) Infection of humans and horses by a newly described morbillivirus. Med J Aust 162(12):642–645PubMedGoogle Scholar
  81. Sendow I, Field HE, Curran J, Darminto, Morrissy C, Meehan G, Buick T, Daniels P (2006) Henipavirus in Pteropus vampyrus bats Indonesia. Emerg Infect Dis 12(4):711–712CrossRefPubMedGoogle Scholar
  82. Sendow I, Field HE, Curran J, Darminto, Morrissy C, Daniels P (2010) Screening for Nipah virus infection in west kalimantan province Indonesia. Zoonoses Public Health 57(7–8):499–503CrossRefPubMedGoogle Scholar
  83. Smith I, Broos A, de Jong C, Zeddeman A, Smith C, Smith G, Moore F, Barr J, Crameri G, Marsh G, Tachedjian M, Yu M, Kung YH, Wang LF, Field H (2011) Identifying hendra virus diversity in pteropid bats. PLoS One 6(9):e25275CrossRefPubMedGoogle Scholar
  84. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101(16):6062–6067CrossRefPubMedGoogle Scholar
  85. Tan CT, Wong KT (2003) Nipah encephalitis outbreak in Malaysia. Ann Acad Med Singapore 32(1):112–117PubMedGoogle Scholar
  86. Tan CT, Goh KJ, Wong KT, Sarji SA, Chua KB, Chew NK, Murugasu P, Loh YL, Chong HT, Tan KS, Thayaparan T, Kumar S, Jusoh MR (2002) Relapsed and late-onset Nipah encephalitis. Ann Neurol 51(6):703–708CrossRefPubMedGoogle Scholar
  87. Wacharapluesadee S, Lumlertdacha B, Boongird K, Wanghongsa S, Chanhome L, Rollin P, Stockton P, Rupprecht CE, Ksiazek TG, Hemachudha T (2005) Bat Nipah virus Thailand. Emerg Infect Dis 11(12):1949–1951CrossRefPubMedGoogle Scholar
  88. Weingartl H, Czub S, Copps J, Berhane Y, Middleton D, Marszal P, Gren J, Smith G, Ganske S, Manning L, Czub M (2005) Invasion of the central nervous system in a porcine host by Nipah virus. J Virol 79(12):7528–7534CrossRefPubMedGoogle Scholar
  89. Weingartl HM, Berhane Y, Caswell JL, Loosmore S, Audonnet JC, Roth JA, Czub M (2006) Recombinant Nipah virus vaccines protect pigs against challenge. J Virol 80(16):7929–7938CrossRefPubMedGoogle Scholar
  90. Weingartl HM, Berhane Y, Czub M (2009) Animal models of henipavirus infection: a review. Vet J 181(3):211–220CrossRefPubMedGoogle Scholar
  91. Westbury HA, Hooper PT, Selleck PW, Murray PK (1995) Equine morbillivirus pneumonia: susceptibility of laboratory animals to the virus. Aust Vet J 72(7):278–279CrossRefPubMedGoogle Scholar
  92. Westbury HA, Hooper PT, Brouwer SL, Selleck PW (1996) Susceptibility of cats to equine morbillivirus. Aust Vet J 74(2):132–134CrossRefPubMedGoogle Scholar
  93. White JR, Boyd V, Crameri GS, Duch CJ, van Laar RK, Wang LF, Eaton BT (2005) Location of, immunogenicity of and relationships between neutralization epitopes on the attachment protein (G) of hendra virus. J Gen Virol 86(Pt 10):2839–2848CrossRefPubMedGoogle Scholar
  94. Wiley DC, Skehel JJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Ann. Rev. Biochem. 56:365–394CrossRefPubMedGoogle Scholar
  95. Williamson MM, Hooper PT, Selleck PW, Gleeson LJ, Daniels PW, Westbury HA, Murray PK (1998) Transmission studies of hendra virus (equine morbillivirus) in fruit bats, horses and cats. Aust Vet J 76(12):813–818CrossRefPubMedGoogle Scholar
  96. Wong KT (2010) Emerging epidemic viral encephalitides with a special focus on henipaviruses. Acta Neuropathol 120(3):317–325CrossRefPubMedGoogle Scholar
  97. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR (2002) Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 161(6):2153–2167CrossRefPubMedGoogle Scholar
  98. Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A, Loth P, Georges-Courbot MC, Chevallier M, Akaoka H, Marianneau P, Lam SK, Wild TF, Deubel V (2003) A golden hamster model for human acute Nipah virus infection. Am J Pathol 163(5):2127–2137CrossRefPubMedGoogle Scholar
  99. Wong KT, Robertson T, Ong BB, Chong JW, Yaiw KC, Wang LF, Ansford AJ, Tannenberg A (2009) Human hendra virus infection causes acute and relapsing encephalitis. Neuropathol Appl Neurobiol 35(3):296–305CrossRefPubMedGoogle Scholar
  100. Wright A, Shin SU, Morrison SL (1992) Genetically engineered antibodies: progress and prospects. Crit Rev Immunol 12(3–4):125–168PubMedGoogle Scholar
  101. Xu K, Rajashankar KR, Chan YP, Himanen JP, Broder CC, Nikolov DB (2008) Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc Natl Acad Sci U S A 105(29):9953–9958CrossRefPubMedGoogle Scholar
  102. Xu K, Khetawat D, Rajashankar KR, Chan YP, Kolev MV, Broder CC, Nikolov DB (2012) Crystal structures of the hendra virus G glycoprotein and its complex with ephrin-B2 reveal new insights into the virus attachment and entry process submitted (in press)Google Scholar
  103. Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, bin Adzhar A, White J, Daniels P, Jamaluddin A, Ksiazek T (2001) Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 7(3):439–441PubMedGoogle Scholar
  104. Yuan P, Swanson KA, Leser GP, Paterson RG, Lamb RA, Jardetzky TS (2011) Structure of the newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proc Natl Acad Sci U S A 108(36):14920–14925CrossRefPubMedGoogle Scholar
  105. Zhu Z, Dimitrov AS, Bossart KN, Crameri G, Bishop KA, Choudhry V, Mungall BA, Feng YR, Choudhary A, Zhang MY, Feng Y, Wang LF, Xiao X, Eaton BT, Broder CC, Dimitrov DS (2006) Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J Virol 80(2):891–899CrossRefPubMedGoogle Scholar
  106. Zhu Z, Bossart KN, Bishop KA, Crameri G, Dimitrov AS, McEachern JA, Feng Y, Middleton D, Wang LF, Broder CC, Dimitrov DS (2008) Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J Infect Dis 197(6):846–853CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christopher C. Broder
    • 1
  • Thomas W. Geisbert
    • 2
  • Kai Xu
    • 3
  • Dimitar B. Nikolov
    • 3
  • Lin-Fa Wang
    • 4
  • Deborah Middleton
    • 4
  • Jackie Pallister
    • 4
  • Katharine N. Bossart
    • 5
    • 6
  1. 1.Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaUSA
  2. 2.Galveston National Laboratory and Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  4. 4.CSIRO Livestock IndustriesAustralian Animal Health LaboratoryGeelongAustralia
  5. 5.Department of MicrobiologyBoston University School of MedicineBostonUSA
  6. 6.National Emerging Infectious Diseases Laboratories InstituteBoston University School of MedicineBostonUSA

Personalised recommendations