Henipavirus pp 79-94 | Cite as

Henipavirus Membrane Fusion and Viral Entry

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 359)


Nipah (NiV) and Hendra (HeV) viruses cause cell–cell fusion (syncytia) in brain, lung, heart, and kidney tissues, leading to encephalitis, pneumonia, and often death. Membrane fusion is essential to both viral entry and virus-induced cell–cell fusion, a hallmark of henipavirus infections. Elucidiation of the mechanism(s) of membrane fusion is critical to understanding henipavirus pathobiology and has the potential to identify novel strategies for the development of antiviral therapeutic agents. Henipavirus membrane fusion requires the coordinated actions of the viral attachment (G) and fusion (F) glycoproteins. Current henipavirus fusion models posit that attachment of NiV or HeV G to its cell surface receptors releases F from its metastable pre-fusion conformation to mediate membrane fusion. The identification of ephrinB2 and ephrinB3 as henipavirus receptors has paved the way for recent advances in our understanding of henipavirus membrane fusion. These advances highlight mechanistic similarities and differences between membrane fusion for the henipavirus and other genera within the Paramyxoviridae family. Here, we review these mechanisms and the current gaps in our knowledge in the field.


  1. Aguilar HC, Anderson WF, Cannon PM (2003) Cytoplasmic tail of Moloney murine leukemia virus envelope protein influences the conformation of the extracellular domain: implications for mechanism of action of the R Peptide. J Virol 77:1281–1291PubMedCrossRefGoogle Scholar
  2. Aguilar HC, Matreyek KA, Filone CM, Hashimi ST, Levroney EL, Negrete OA, Bertolotti-Ciarlet A, Choi DY, McHardy I, Fulcher JA, Su SV, Wolf MC, Kohatsu L, Baum LG, Lee B (2006) N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. J Virol 80:4878–4889PubMedCrossRefGoogle Scholar
  3. Aguilar HC, Matreyek KA, Choi DY, Filone CM, Young S, Lee B (2007) Polybasic KKR motif in the cytoplasmic tail of Nipah virus fusion protein modulates membrane fusion by inside-out signaling. J Virol 81:4520–4532PubMedCrossRefGoogle Scholar
  4. Aguilar HC, Ataman ZA, Aspericueta V, Fang AQ, Stroud M, Negrete OA, Kammerer RA, Lee B (2009) A novel receptor-induced activation site in the nipah virus attachment glycoprotein (G) involved in triggering the fusion glycoprotein (F). J Biol Chem 284:1628–1635PubMedCrossRefGoogle Scholar
  5. Aguilar HC, Aspericueta V, Robinson LR Aanensen KE, Lee B (2010) A quantitative and kinetic fusion protein-triggering assay can discern distinct steps in the nipah virus membrane fusion cascade. J Virol 84:8033–8041. doi:10.1128/JVI.00469-10, JVI.00469-10 [pii]Google Scholar
  6. Aguilar HC, Lee B (2011) Emerging paramyxoviruses: molecular mechanisms and antiviral strategies. Expert Rev Mol Med 13:e6. doi:10.1017/S1462399410001754,S1462399410001754 [pii]
  7. Baker KA, Dutch RE, Lamb RA, Jardetzky TS (1999) Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell 3:309–319PubMedCrossRefGoogle Scholar
  8. Begona Ruiz-Arguello M, Gonzalez-Reyes L, Calder LJ, Palomo C, Martin D, Saiz MJ, Garcia-Barreno B, Skehel JJ, Melero JA (2002) Effect of proteolytic processing at two distinct sites on shape and aggregation of an anchorless fusion protein of human respiratory syncytial virus and fate of the intervening segment. Virology 298:317–326. S0042682202914972, [pii]Google Scholar
  9. Bishop KA, Stantchev TS, Hickey AC, Khetawat D, Bossart KN, Krasnoperov V, Gill P, Feng YR, Wang L, Eaton BT, Wang LF, Broder CC (2007) Identification of Hendra virus G glycoprotein residues that are critical for receptor binding. J Virol 81:5893–5901PubMedCrossRefGoogle Scholar
  10. Bishop KA, Hickey AC, Khetawat D, Patch JR, Bossart KN, Zhu Z, Wang LF, Dimitrov DS, Broder CC (2008) Residues in the stalk domain of the Hendra virus G glycoprotein modulate conformational changes associated with receptor binding. J Virol 82:11398–11409PubMedCrossRefGoogle Scholar
  11. Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungall BA, Bishop KA, Choudhry V, Dimitrov DS, Wang LF, Eaton BT, Broder CC (2005) From the cover: ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci U S A 102:10652–10657PubMedCrossRefGoogle Scholar
  12. Bose S, Welch BD, Kors CA, Yuan P, Jardetzky TS, Lamb RA (2011) Structure and mutagenesis of the parainfluenza virus 5 hemagglutinin-neuraminidase stalk domain reveals a four-helix bundle and the role of the stalk in fusion promotion. J Virol 85:12855–12866. doi:10.1128/JVI.06350-11 PubMedCrossRefGoogle Scholar
  13. Bossart KN, Wang LF, Eaton BT, Broder CC (2001) Functional expression and membrane fusion tropism of the envelope glycoproteins of Hendra virus. Virology 290:121–135PubMedCrossRefGoogle Scholar
  14. Bossart KN, Wang LF, Flora MN, Chua KB, Lam SK, Eaton BT, Broder CC (2002) Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J Virol 76:11186–11198PubMedCrossRefGoogle Scholar
  15. Bossart KN, Mungall BA, Crameri G, Wang LF, Eaton BT, Broder CC (2005) Inhibition of Henipavirus fusion and infection by heptad-derived peptides of the Nipah virus fusion glycoprotein. Virol J 2:57PubMedCrossRefGoogle Scholar
  16. Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G, Bingham J, McEachern JA, Green D, Hancock TJ, Chan YP, Hickey AC, Dimitrov DS, Wang LF, Broder CC (2009) A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathog 5:e1000642. doi:10.1371/journal.ppat.1000642 PubMedCrossRefGoogle Scholar
  17. Bossart KN, Geisbert TW, Feldmann H, Zhu Z, Feldmann F, Geisbert JB, Yan L, Feng YR, Brining D, Scott D, Wang Y, Dimitrov AS, Callison J, Chan YP, Hickey AC, Dimitrov DS, Border CC, Rockx B (2011) A neutralizing human monoclonal antibody protects african green monkeys from hendra virus challenge. Sci Transl Med 3:105ra103. doi: 10.1126/scitranslmed.3002901
  18. Bowden TA, Aricescu AR, Gilbert RJ, Grimes JM, Jones EY, Stuart DI (2008a) Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol 15:567–572CrossRefGoogle Scholar
  19. Bowden TA, Crispin M, Harvey DJ, Aricescu AR, Grimes JM, Jones EY, Stuart DI (2008b) Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design. J Virol 82:11628–11636CrossRefGoogle Scholar
  20. Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137R-157R. doi:10.1093/glycob/cwl025, cwl025 [pii]
  21. Carr CM, Kim PS (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–832PubMedCrossRefGoogle Scholar
  22. Carter JR, Pager CT, Fowler SD, Dutch RE (2005) Role of N-linked glycosylation of the Hendra virus fusion protein. J Virol 79:7922–7925PubMedCrossRefGoogle Scholar
  23. Corey EA, Iorio RM (2007) Mutations in the stalk of the measles virus hemagglutinin protein decrease fusion but do not interfere with virus-specific interaction with the homologous fusion protein. J Virol 81:9900–9910PubMedCrossRefGoogle Scholar
  24. Diederich S, Moll M, Klenk HD, Maisner A (2005) The Nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem 280:29899–29903PubMedCrossRefGoogle Scholar
  25. Diederich S, Thiel L, Maisner A (2008) Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. Virology 375:391–400PubMedCrossRefGoogle Scholar
  26. Dorig RE, Marcil A, Chopra A, Richardson CD (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305PubMedCrossRefGoogle Scholar
  27. Dutch RE (2010) Entry and fusion of emerging paramyxoviruses. PLoS Pathog 6:e1000881. doi:10.1371/journal.ppat.1000881 PubMedCrossRefGoogle Scholar
  28. Fass D, Harrison SC, Kim PS (1996) Retrovirus envelope domain at 1.7 Angstrom resolution. Nat Struct Biol 3:465–469PubMedCrossRefGoogle Scholar
  29. Gardner AE, Dutch RE (2007) A conserved region in the F(2) subunit of paramyxovirus fusion proteins is involved in fusion regulation. J Virol 81:8303–8314. doi: 10.1128/JVI.00366-07, JVI.00366-07 [pii]Google Scholar
  30. Gardner AE, Martin KL, Dutch RE (2007) A conserved region between the heptad repeats of paramyxovirus fusion proteins is critical for proper F protein folding. Biochemistry 46:5094–5105. doi:10.1021/bi6025648 PubMedCrossRefGoogle Scholar
  31. Garner OB, Aguilar HC, Fulcher JA, Levroney EL, Harrison R, Wright L, Robinson LR, Aspericueta V, Panico M, Haslam SM, Morris HR, Dell A, Lee B, Baum LG (2010) Endothelial galectin-1 binds to specific glycans on nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation. PLoS Pathog 6:e1000993. doi:10.1371/journal.ppat.1000993 PubMedCrossRefGoogle Scholar
  32. Garten W, Hallenberger S, Ortmann D, Schafer W, Vey M, Angliker H, Shaw E, Klenk HD (1994) Processing of viral glycoproteins by the subtilisin-like endoprotease furin and its inhibition by specific peptidylchloroalkylketones. Biochimie 76: 217–25. 0300-9084(94)90149-X [pii]Google Scholar
  33. Gonzalez-Reyes L, Ruiz-Arguello MB, Garcia-Barreno B, Calder L, Lopez JA, Albar JP, Skehel JJ, Wiley DC, Melero JA (2001) Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc Natl Acad Sci U S A 98:9859–9864. doi:10.1073/pnas.151098198, 151098198 [pii]Google Scholar
  34. Gravel KA, Morrison TG (2003) Interacting domains of the HN and F proteins of newcastle disease virus. J Virol 77:11040–11049PubMedCrossRefGoogle Scholar
  35. Guillaume V, Contamin H, Loth P, Grosjean I, Courbot MC, Deubel V, Buckland R, Wild TF (2006) Antibody prophylaxis and therapy against Nipah virus infection in hamsters. J Virol 80:1972–1978. doi:10.1128/JVI.80.4.1972-1978.2006, 80/4/1972 [pii]Google Scholar
  36. Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J, Maenaka K, Yanagi Y (2011) Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat struct mol biol 18:135–141. doi:10.1038/nsmb.1969 PubMedCrossRefGoogle Scholar
  37. He Y, Xiao Y, Song H, Liang Q, Ju D, Chen X, Lu H, Jing W, Jiang S, Zhang L (2008) Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor. J Biol Chem 283:11126–11134. doi: 10.1074/jbc.M800200200, M800200200 [pii]Google Scholar
  38. Herfst S, Mas V, Ver LS, Wierda RJ, Osterhaus AD, Fouchier RA, Melero JA (2008) Low-pH-induced membrane fusion mediated by human metapneumovirus F protein is a rare, strain-dependent phenomenon. J Virol 82:8891–8895. doi:10.1128/JVI.00472-08 PubMedCrossRefGoogle Scholar
  39. Hu A, Cathomen T, Cattaneo R, Norrby E (1995) Influence of N-linked oligosaccharide chains on the processing, cell surface expression and function of the measles virus fusion protein. J Gen Virol 76(Pt 3):705–710PubMedCrossRefGoogle Scholar
  40. Iida A, Ozaki K, Tanaka T, Nakamura Y (2005) Fine-scale SNP map of an 11-kb genomic region at 22q13.1 containing the galectin-1 gene. J Hum Genet 50:42–45. doi:10.1007/s10038-004-0218-4 PubMedCrossRefGoogle Scholar
  41. Iorio RM, Mahon PJ (2008) Paramyxoviruses: different receptors—different mechanisms of fusion. Trends Microbiol 16:135–137PubMedCrossRefGoogle Scholar
  42. Iorio RM, Melanson VR, Mahon PJ (2009) Glycoprotein interactions in paramyxovirus fusion. Future Virol 4:335–351. doi:10.2217/fvl.09.17 PubMedCrossRefGoogle Scholar
  43. Kahn JS, Schnell MJ, Buonocore L, Rose JK (1999) Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology 254:81–91. doi:10.1006/viro.1998.9535 PubMedCrossRefGoogle Scholar
  44. Lamb RA, Paterson RG, Jardetzky TS (2006) Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Virology 344:30–37PubMedCrossRefGoogle Scholar
  45. Lamb RA, Jardetzky TS (2007) Structural basis of viral invasion: lessons from paramyxovirus F. Curr Opin Struct Biol 17:427–436PubMedCrossRefGoogle Scholar
  46. Lamb RA, Parks GD (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn, vol 1. Lippincott Williams & Wilkins, Philadelphia, pp 1449–1496Google Scholar
  47. Lambert DM, Barney S, Lambert AL, Guthrie K, Medinas R, Davis DE, Bucy T, Erickson J, Merutka G, Petteway SR Jr (1996) Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proc Natl Acad Sci U S A 93:2186–2191PubMedCrossRefGoogle Scholar
  48. Lee B, Ataman ZA, Jin L (2008a) Evil versus ‘eph-ective’ use of ephrin-B2. Nat Struct Mol Biol 15:540–542CrossRefGoogle Scholar
  49. Lee JK, Prussia A, Paal T, White LK, Snyder JP, Plemper RK (2008b) Functional interaction between paramyxovirus fusion and attachment proteins. J Biol Chem 283:16561–16572CrossRefGoogle Scholar
  50. Levroney EL, Aguilar HC, Fulcher JA, Kohatsu L, Pace KE, Pang M, Gurney KB, Baum LG, Lee B (2005) Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J Immunol 175:413–420PubMedGoogle Scholar
  51. Lou Z, Xu Y, Xiang K, Su N, Qin L, Li X, Gao GF, Bartlam M, Rao Z (2006) Crystal structures of Nipah and Hendra virus fusion core proteins. FEBS J 273:4538–4547PubMedCrossRefGoogle Scholar
  52. Mahon PJ, Mirza AM, Iorio RM (2011) Role of the two sialic acid binding sites on the newcastle disease virus HN protein in triggering the interaction with the F protein required for the promotion of fusion. J Virol 85:12079–12082. doi:10.1128/JVI.05679-11 PubMedCrossRefGoogle Scholar
  53. Makinson A, Reynes J (2009) The fusion inhibitor enfuvirtide in recent antiretroviral strategies. Curr Opin HIV AIDS 4:150–158. doi:10.1097/COH.0b013e32832498d8, 01222929-200903000-00013 [pii]Google Scholar
  54. McGinnes L, Sergel T, Reitter J, Morrison T (2001) Carbohydrate modifications of the NDV fusion protein heptad repeat domains influence maturation and fusion activity. Virology 283:332–342PubMedCrossRefGoogle Scholar
  55. McKinnell JA, Saag MS (2009) Novel drug classes: entry inhibitors [enfuvirtide, chemokine (C–C motif) receptor 5 antagonists]. Curr Opin HIV AIDS 4: 513–517. doi:10.1097/COH.0b013e328331d3d0, 01222929-200911000-00010 [pii]
  56. Melanson VR, Iorio RM (2004) Amino acid substitutions in the F-specific domain in the stalk of the newcastle disease virus HN protein modulate fusion and interfere with its interaction with the F protein. J Virol 78:13053–13061PubMedCrossRefGoogle Scholar
  57. Melanson VR, Iorio RM (2006) Addition of N-glycans in the stalk of the Newcastle disease virus HN protein blocks its interaction with the F protein and prevents fusion. J Virol 80:623–633PubMedCrossRefGoogle Scholar
  58. Meulendyke KA, Wurth MA, McCann RO, Dutch RE (2005) Endocytosis plays a critical role in proteolytic processing of the Hendra virus fusion protein. J Virol 79:12643–12649PubMedCrossRefGoogle Scholar
  59. Mirza AM, Aguilar HC, Zhu Q, Mahon PJ, Rota PA, Lee B, Iorio RM (2011) Triggering of the newcastle disease virus fusion protein by a chimeric attachment protein that binds to Nipah virus receptors. J Biol Chem 286:17851–17860. doi:10.1074/jbc.M111.233965 PubMedCrossRefGoogle Scholar
  60. Miyauchi K, Kozlov MM, Melikyan GB (2009) Early steps of HIV-1 fusion define the sensitivity to inhibitory peptides that block 6-helix bundle formation. PLoS Pathog 5:e1000585. doi:10.1371/journal.ppat.1000585 PubMedCrossRefGoogle Scholar
  61. Moll M, Kaufmann A, Maisner A (2004) Influence of N-glycans on processing and biological activity of the nipah virus fusion protein. J Virol 78:7274–7278PubMedCrossRefGoogle Scholar
  62. Muhlebach MD, Mateo M, Sinn PL, Prufer S, Uhlig KM, Leonard VH, Navaratnarajah CK, Frenzke M, Wong XX, Sawatsky B, Ramachandran S, McCray PB, Cichutek K, von Messling V, Lopez M, Cattaneo R (2011) Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 480(7378):530. doi:10.1038/nature10639 PubMedGoogle Scholar
  63. Murakami M, Towatari T, Ohuchi M, Shiota M, Akao M, Okumura Y, Parry MA, Kido H (2001) Mini-plasmin found in the epithelial cells of bronchioles triggers infection by broad-spectrum influenza A viruses and Sendai virus. Eur J Biochem 268:2847–55. ejb2166 [pii]Google Scholar
  64. Murineddu G, Murruzzu C, Pinna GA (2010) An overview on different classes of viral entry and respiratory syncitial virus (RSV) fusion inhibitors. Curr Med Chem 17:1067–1091. BSP/CMC/E-Pub/067 [pii]Google Scholar
  65. Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R, Tajyar S, Lee B (2005) EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436:401–405PubMedGoogle Scholar
  66. Negrete OA, Wolf MC, Aguilar HC, Enterlein S, Wang W, Muhlberger E, Su SV, Bertolotti-Ciarlet A, Flick R, Lee B (2006) Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2:e7PubMedCrossRefGoogle Scholar
  67. Negrete OA, Chu D, Aguilar HC, Lee B (2007) Single amino acid changes in the Nipah and Hendra virus attachment glycoproteins distinguish ephrinB2 from ephrinB3 usage. J Virol 81:10804–10814PubMedCrossRefGoogle Scholar
  68. Noyce RS, Bondre DG, Ha MN, Lin LT, Sisson G, Tsao MS, Richardson CD (2011) Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS pathogens 7:e1002240. doi:10.1371/journal.ppat.1002240 PubMedCrossRefGoogle Scholar
  69. Ortmann D, Ohuchi M, Angliker H, Shaw E, Garten W, Klenk HD (1994) Proteolytic cleavage of wild type and mutants of the F protein of human parainfluenza virus type 3 by two subtilisin-like endoproteases, furin and Kex2. J Virol 68:2772–2776PubMedGoogle Scholar
  70. Paal T, Brindley MA, St Clair C, Prussia A, Guas D, Krumm SA, Synder JP, Plemper RK (2009) Probing the spatial organization of measles virus fusion complexes. J Virol 83: 10480-93. doi:10.1128/JVI.01195-09, JVI.01195-09 [pii]
  71. Pager CT, Dutch RE (2005) Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J Virol 79:12714–12720PubMedCrossRefGoogle Scholar
  72. Pager CT, Craft WW Jr, Patch J, Dutch RE (2006) A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 346:251–257PubMedCrossRefGoogle Scholar
  73. Porotto M, Doctor L, Carta P, Fornabaio M, Greengard O, Kellogg GE, Moscona A (2006) Inhibition of hendra virus fusion. J Virol 80:9837–9849PubMedCrossRefGoogle Scholar
  74. Porotto M, Carta P, Deng Y, Kellogg GE, Whitt M, Lu M, Mungall BA, Moscona A (2007) Molecular determinants of antiviral potency of paramyxovirus entry inhibitors. J Virol 81:10567–10574. doi:10.1128/JVI.01181-07, JVI.01181-07 [pii]Google Scholar
  75. Porotto M, Yokoyama CC, Orefice G, Kim HS, Aljofan M, Mungall BA, Moscona A (2009) Kinetic dependence of paramyxovirus entry inhibition. J Virol 83:6947–6951. doi:10.1128/JVI.00416-09, JVI.00416-09 [pii]Google Scholar
  76. Porotto M, Rockx B, Yokoyama CC, Talekar A, Devito I, Palermo LM, Liu J, Cortese R, Lu M, Feldmann H, Pessi A, Moscona A (2010) Inhibition of Nipah Virus Infection In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry. PLoS Pathog 6:e1001168. doi:10.1371/journal.ppat.1001168 PubMedCrossRefGoogle Scholar
  77. Porotto M, Devito I, Palmer SG, Jurgens EM, Yee JL, Yokoyama CC, Pessi A, Moscona A (2011) Spring-loaded model revisited: Paramyxovirus fusion requires engagement of a receptor binding protein beyond initial triggering of the fusion protein. J Virol. doi:10.1128/JVI.05873-11 Google Scholar
  78. Poveda E, Briz V, Soriano V (2005) Enfuvirtide, the first fusion inhibitor to treat HIV infection. AIDS Rev 7:139–147PubMedGoogle Scholar
  79. Rawling J, Garcia-Barreno B, Melero JA (2008) Insertion of the two cleavage sites of the respiratory syncytial virus fusion protein in Sendai virus fusion protein leads to enhanced cell–cell fusion and a decreased dependency on the HN attachment protein for activity. J Virol 82:5986–5998. doi:10.1128/JVI.00078-08 PubMedCrossRefGoogle Scholar
  80. Russell CJ, Jardetzky TS, Lamb RA (2001) Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. EMBO J 20:4024–4034PubMedCrossRefGoogle Scholar
  81. Russell CJ, Jardetzky TS, Lamb RA (2004) Conserved glycine residues in the fusion peptide of the paramyxovirus fusion protein regulate activation of the native state. J Virol 78:13727–13742. doi:10.1128/JVI.78.24.13727-13742.2004 PubMedCrossRefGoogle Scholar
  82. Schowalter RM, Smith SE, Dutch RE (2006a) Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low pH. J Virol 80:10931–10941PubMedCrossRefGoogle Scholar
  83. Schowalter RM, Wurth MA, Aguilar HC, Lee B, Moncman CL, McCann RO, Dutch RE (2006b) Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell–cell fusion. Virology 350:323–334PubMedCrossRefGoogle Scholar
  84. Segawa H, Yamashita T, Kawakita M, Taira H (2000) Functional analysis of the individual oligosaccharide chains of sendai virus fusion protein. J Biochem 128:65–72PubMedCrossRefGoogle Scholar
  85. Spies CP, Ritter GD Jr, Mulligan MJ, Compans RW (1994) Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein alters the conformation of the external domain. J Virol 68:585–591PubMedGoogle Scholar
  86. Stone-Hulslander J, Morrison TG (1999) Mutational analysis of heptad repeats in the membrane-proximal region of Newcastle disease virus HN protein. J Virol 73:3630–3637PubMedGoogle Scholar
  87. Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897. doi:10.1038/35022579 PubMedCrossRefGoogle Scholar
  88. van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, Osterhaus AD (2001) A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 7:719–724. doi: 10.1038/89098, 89098 [pii]Google Scholar
  89. von Messling V, Cattaneo R (2003) N-linked glycans with similar location in the fusion protein head modulate paramyxovirus fusion. J Virol 77:10202–10212CrossRefGoogle Scholar
  90. Waning DL, Russell CJ, Jardetzky TS, Lamb RA (2004) Activation of a paramyxovirus fusion protein is modulated by inside-out signaling from the cytoplasmic tail. Proc Natl Acad Sci U S A 101:9217–9222PubMedCrossRefGoogle Scholar
  91. Watanabe M, Hirano A, Stenglein S, Nelson J, Thomas G, Wong TC (1995) Engineered serine protease inhibitor prevents furin-catalyzed activation of the fusion glycoprotein and production of infectious measles virus. J Virol 69:3206–3210PubMedGoogle Scholar
  92. White JM, Delos SE, Brecher M, Schornberg K (2008) Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43:189–219PubMedCrossRefGoogle Scholar
  93. Whitman SD, Smith EC, Dutch RE (2009) Differential rates of protein folding and cellular trafficking for the Hendra virus F and G proteins: implications for F-G complex formation. J Virol 83:8998–9001. doi:10.1128/JVI.00414-09, JVI.00414-09 [pii]Google Scholar
  94. Wyss S, Dimitrov AS, Baribaud F, Edwards TG, Blumenthal R, Hoxie JA (2005) Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail. J Virol 79:12231–12241PubMedCrossRefGoogle Scholar
  95. Xu K, Rajashankar KR, Chan YP, Himanen JP, Broder CC, Nikolov DB (2008) Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc Natl Acad Sci U S A 105:9953–9958PubMedCrossRefGoogle Scholar
  96. Xu Y, Lou Z, Liu Y, Cole DK, Su N, Qin L, Li X, Bai Z, Rao Z, Gao GF (2004) Crystallization and preliminary crystallographic analysis of the fusion core from two new zoonotic paramyxoviruses, Nipah virus and Hendra virus. Acta Crystallogr D Biol Crystallogr 60:1161–1164. doi:10.1107/S0907444904009515 PubMedCrossRefGoogle Scholar
  97. Yin HS, Paterson RG, Wen X, Lamb RA, Jardetzky TS (2005) Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci U S A 102:9288–9293PubMedCrossRefGoogle Scholar
  98. Yin HS, Wen X, Paterson RG, Lamb RA, Jardetzky TS (2006) Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 439:38–44PubMedCrossRefGoogle Scholar
  99. Yuan P, Swanson KA, Leser GP, Paterson RG, Lamb RA, Jardetzky TS (2011) Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proc Natl Acad Sci U S A 108:14920–14925. doi:10.1073/pnas.1111691108 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal HealthCollege of Veterinary Medicine, Washington State UniversityPullmanUSA
  2. 2.Department of Microbiology and Physiological SystemsUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations