Advertisement

Hydrogen-Bonded Synthetic Mimics of Protein Secondary Structure as Disruptors of Protein-Protein Interactions

  • Marc J. Adler
  • Andrew G. Jamieson
  • Andrew D. Hamilton
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 348)

Abstract

Small molecules which can mimic the key structural facets of protein secondary structure, in particular the α-helix, β-strand, and β-sheet, have been shown to be potent disruptors of protein–protein interactions. Researchers have recently taken the organizational imitation of protein secondary structure to a new level by using intramolecular hydrogen bonds as stabilizing forces in these small molecule mimetics. The inclusion of these interactions invokes a conformational bias of the system, allowing for greater control of the appearance, and thus often function, of these molecules by design.

Keywords

Intramolecular Hydrogen Bond Isothermal Titration Calorimetry Protein Secondary Structure Amide Backbone Parent Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahn J-M, Han S-Y (2007) Facile synthesis of benzamides to mimic an α-helix. Tetrahedron Lett 48:3543–3547CrossRefGoogle Scholar
  2. Davis JM, Tsou LK, Hamilton AD (2007) Synthetic non-peptide mimetics of α-helices. Chem Soc Rev 36:326–334CrossRefPubMedGoogle Scholar
  3. Dou Y, Baisnée P-F, Pollastri G, Pécout Y, Nowick JS, Baldi P (2004) ICBS: a database of interactions between protein chains mediated by β-sheet formation. Bioinformatics 20:2767–2777CrossRefPubMedGoogle Scholar
  4. Ernst JT, Becerril J, Park HS, Yin H, Hamilton AD (2003) Design and application of an α-helix-mimetic scaffold based on an oligoamide-foldamer strategy: antagonism of the Bak BH3/Bcl-xL complex. Angew Chem Int Ed Engl 42:535–539CrossRefPubMedGoogle Scholar
  5. Fuller AA, Du D, Liu F, Davoren JE, Bhabha G, Kroon G, Case DA, Dyson HJ, Powers ET, Wipf P, Gruebele M, Kelly JW (2009) Evaluating β-turn mimics as β-sheet folding nucleators. Proc Natl Acad Sci USA 106:11067–11072CrossRefPubMedGoogle Scholar
  6. Glenn MP, Fairlie DP (2002) Mimetics of the peptide β-strand. Mini Rev Med Chem 2:433–445CrossRefPubMedGoogle Scholar
  7. Hebda JA, Saraogi I, Magzoub M, Hamilton AD, Miranker AD (2009) A peptidomimetic approach to targeting pre-amyloidogenic states in type II diabetes. Chem Biol 16:943–950CrossRefPubMedGoogle Scholar
  8. Hirschmann R (1991) Medicinal chemistry in the golden age of biology: lessons from steroid and peptide research. Angew Chem Int Ed Engl 30:1278–1301CrossRefGoogle Scholar
  9. Khasanova TV, Khakshoor O, Nowick JS (2008) Functionalized analogues of an unnatural amino acid that mimics a tripeptide β-strand. Org Lett 10:5293–5296CrossRefPubMedGoogle Scholar
  10. Lee KH, Olson GL, Bolin DR, Benowitz AB, Sprengeler PA, Smith AB III, Hirschmann R, Wiley DC (2000) The crystal structure of a pyrrolinone−peptide hybrid ligand bound to the human class II MHC protein HLA-DR1. J Am Chem Soc 122:8370–8375CrossRefGoogle Scholar
  11. Loughlin WA, Tyndall JD, Glenn MP, Fairlie DP (2004) Beta-strand mimetics. Chem Rev 104:6085–6117CrossRefPubMedGoogle Scholar
  12. Marimganti S, Cheemala MN, Ahn J-M (2009) Novel amphiphilic α-helix mimetics based on a bis-benzamide scaffold. Org Lett 11:4418–4421CrossRefPubMedGoogle Scholar
  13. Nesloney CL, Kelly JW (1996) Progress toward understanding β-sheet structure. Bioorg Med Chem 4:739–766CrossRefPubMedGoogle Scholar
  14. Nowick JS (2006) What I have learned by using chemical model systems to study biomolecular structure and interactions. Org Biomol Chem 4:3869–3885CrossRefPubMedGoogle Scholar
  15. Nowick JS (2008) Exploring beta-sheet structure and interactions with chemical model systems. Acc Chem Res 41:1319–1330CrossRefPubMedGoogle Scholar
  16. Nowick JS, Powell NA, Martinez EJ, Smith EM, Noronha G (1992) Molecular scaffolds I. Intramolecular hydrogen bonding in a family of di- and triureas. J Org Chem 57:3763–3765CrossRefGoogle Scholar
  17. Nowick JS, Abdi M, Bellamo KA, Love JA, Martinez EJ, Noronha G, Smith EM, Ziller JW (1995a) Molecular scaffolds. 2. Intramolecular hydrogen bonding in 1, 2-diaminoethane diureas. J Am Chem Soc 117:89–99CrossRefGoogle Scholar
  18. Nowick JS, Smith EM, Noronha G (1995b) Molecular scaffolds. 3. An artificial parallel β-sheet. J Org Chem 60:7386–7387CrossRefGoogle Scholar
  19. Nowick JS, Holmes DL, Mackin G, Noronha G, Shaka AJ, Smith EM (1996a) An artificial β-sheet comprising a molecular scaffold, a β-strand mimic, and a peptide strand. J Am Chem Soc 118:2764–2765CrossRefGoogle Scholar
  20. Nowick JS, Mahrus S, Smith EM, Ziller JW (1996b) Triurea derivatives of diethylenetriamine as potential templates for the formation of artificial β-Sheets. J Am Chem Soc 118:1066–1072CrossRefGoogle Scholar
  21. Nowick JS, Pairish M, Lee IQ, Holmes DL, Ziller JW (1997) An extended β-strand mimic for a larger artificial β-sheet. J Am Chem Soc 119:5413–5424CrossRefGoogle Scholar
  22. Nowick JS, Tsai JH, Bui Q-CD, Maitra S (1999) A chemical model of a protein β-sheet dimer. J Am Chem Soc 121:8409–8410CrossRefGoogle Scholar
  23. Nowick JS, Chung DM, Maitra K, Maitra S, Stigers KD, Sun Y (2000) An unnatural amino acid that mimics a tripeptide β-strand and form β-sheetlike hydrogen bonded dimers. J Am Chem Soc 122:7654–7661CrossRefGoogle Scholar
  24. Nowick JS, Lam KS, Khasanova TV, Kemnitzer WE, Maitra S, Mee HT, Liu R (2002) An unnatural amino acid that induces β-sheet folding and interaction in peptides. J Am Chem Soc 124:4972–4973CrossRefPubMedGoogle Scholar
  25. Plante J, Campbell F, Malkova B, Kilner C, Warriner SL, Wilson AJ (2008) Synthesis of functionalised aromatic oligamide rods. Org Biomol Chem 6:138–146CrossRefPubMedGoogle Scholar
  26. Plante JP, Burnley T, Malkova B, Webb ME, Warriner SL, Edwards TA, Wilson AJ (2009) Oligobenzamide proteomimetic inhibitors of the p53–hDM2 protein–protein interaction. Chem Commun 34:5091–5093CrossRefGoogle Scholar
  27. Rodriguez JM, Hamilton AD (2006) Intramolecular hydrogen bonding allows simple enaminones to structurally mimic the i, i+4, and i+7 residues of an α-helix. Tetrahedron Lett 47:7443–7446CrossRefGoogle Scholar
  28. Rodriguez JM, Hamilton AD (2007) Benzoylurea oligomers: synthetic foldamers that mimic extended α helices. Angew Chem Int Ed Engl 46:8614–8617CrossRefPubMedGoogle Scholar
  29. Rodriguez JM, Nevola L, Ross NT, Lee G, Hamilton AD (2009a) Synthetic inhibitors of extended helix-protein interactions based on a biphenyl 4, 4'-dicarboxamide scaffold. Chembiochem 10:829–833CrossRefPubMedGoogle Scholar
  30. Rodriguez JM, Ross NT, Katt WP, Dhar D, Lee G-i, Hamilton AD (2009b) Structure and function of benzoylurea-derived α-helix mimetics targeting the Bcl-xL/Bak binding interface. ChemMedChem 4:649–656CrossRefPubMedGoogle Scholar
  31. Ross NT, Katt WP, Hamilton AD (2010) Synthetic mimetics of protein secondary structure domains. Philos Trans R Soc Lond A 368:989–1008CrossRefGoogle Scholar
  32. Saraogi I, Hamilton AD (2008) α-helix mimetics as inhibitors of protein–protein interactions. Biochem Soc Trans 36:1414–1417CrossRefPubMedGoogle Scholar
  33. Saraogi I, Incarvito CD, Hamilton AD (2008) Controlling curvature in a family of oligoamide α-helix mimetics. Angew Chem Int Ed Engl 47:9691–9694CrossRefPubMedGoogle Scholar
  34. Saraogi I, Hebda JA, Becerril J, Estroff LA, Miranker AD, Hamilton AD (2010) Synthetic α-helix mimetics as agonists and antagonists of islet amyloid polypeptide aggregation. Angew Chem Int Ed Engl 49:736–739PubMedGoogle Scholar
  35. Schneider JP, Kelly JW (1995) Templates that induce α-helical, β-sheet, and loop conformations. Chem Rev 95:2169–2187CrossRefGoogle Scholar
  36. Shaginian A, Whitby LR, Hong S, Hwang I, Farooqi B, Searcey M, Chen J, Vogt PK, Boger DL (2009) Design, synthesis, and evaluation of an α-helix mimetic library targeting protein-protein interactions. J Am Chem Soc 131:5564–5572CrossRefPubMedGoogle Scholar
  37. Smith AB III, Keenan TP, Holcomb RC, Sprengeler PA, Guzman MC, Wood JL, Carroll PJ, Hirschmann R (1992) Design, synthesis, and crystal structure of a pyrrolinone-based peptidomimetic possessing the conformation of a β-strand: potential application to the design of novel inhibitors of proteolytic enzymes. J Am Chem Soc 114:10672–10674CrossRefGoogle Scholar
  38. Smith AB III, Guzman MC, Sprengeler PA, Keenan TP, Holcomb RC, Wood JL, Carroll PJ, Hirschmann R (1994a) De novo design, synthesis, and X-ray crystal structures of pyrrolinone-based β-strand peptidomimetics. J Am Chem Soc 116:9947–9962CrossRefGoogle Scholar
  39. Smith AB III, Hirschmann R, Pasternak A, Akaishi R, Guzman MC, Jones DR, Keenan TP, Sprengeler PA (1994b) Design and synthesis of peptidomimetic inhibitors of HIV-1 protease and renin. Evidence for improved transport. J Med Chem 37:215–218CrossRefPubMedGoogle Scholar
  40. Smith AB III, Akaishi R, Jones DR, Keenan TP, Guzman MC, Holcomb RC, Sprengeler PA, Wood JL, Hirschmann R, Holloway MK (1995a) Design and synthesis of nonpeptide peptidomimetic inhibitors of renin. Biopolymers (Peptide Science) 37:29–53CrossRefGoogle Scholar
  41. Smith AB III, Hirschmann R, Pasternak A, Guzman MC, Yokoyama A, Sprengeler PA, Darke PL, Emini EA, Schleif WA (1995b) Pyrrolinone-based HIV protease inhibitors. Design, synthesis, and antiviral activity: evidence for improved transport. J Am Chem Soc 117:11113–11123CrossRefGoogle Scholar
  42. Smith EM, Holmes DL, Shaka NG, Nowick JS (1997a) An artificial antiparallel β-sheet containing a new peptidomimetic template. J Org Chem 62:7906–7907CrossRefPubMedGoogle Scholar
  43. Smith AB III, Hirschmann R, Pasternak A, Yao W, Sprengeler PA, Holloway MK, Kuo LC, Chen Z, Darke PL, Schleif WA (1997b) An orally bioavailable pyrrolinone inhibitor of HIV-1 protease: computational analysis and X-ray crystal structure of the enzyme complex. J Med Chem 40:2440–2444CrossRefPubMedGoogle Scholar
  44. Smith AB III, Favor DA, Sprengeler PA, Guzman MC, Carroll PJ, Furst GT, Hirschmann R (1999a) Molecular modeling, synthesis, and structures of N-methylated 3, 5-linked pyrrolin-4-ones toward the creation of a privileged nonpeptide scaffold. Bioorg Med Chem 7:9–22CrossRefPubMedGoogle Scholar
  45. Smith AB III, Benowitz AB, Sprengeler PA, Barbosa J, Guzman MC, Hirschmann R, Schweiger EJ, Bolin DR, Nagy Z, Campbell RM, Cox DC, Olson GL (1999b) Design and synthesis of a competent pyrrolinone−peptide hybrid ligand for the class II major histocompatibility complex protein HLA-DR1. J Am Chem Soc 121:9286–9298CrossRefGoogle Scholar
  46. Tsai JH, Waldman AS, Nowick JS (1999) Two new β-strand mimics. Bioorg Med Chem 7:29–38CrossRefPubMedGoogle Scholar
  47. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848CrossRefPubMedGoogle Scholar
  48. Wilson AJ (2009) Inhibition of protein-protein interactions using designed molecules. Chem Soc Rev 38:3289–3300CrossRefPubMedGoogle Scholar
  49. Woods RJ, Brower JO, Castellanos E, Hashemzadeh M, Khakshoor O, Russu WA, Nowick JS (2007) Cyclic modular β-sheets. J Am Chem Soc 129:2548–2558CrossRefPubMedGoogle Scholar
  50. Wyrembak PN, Hamilton AD (2009) Alkyne-linked 2, 2-disubstituted-indolin-3-one oligomers as extended β-strand mimetics. J Am Chem Soc 131:4566–4567CrossRefPubMedGoogle Scholar
  51. Yin H, Hamilton AD (2004) Terephthalamide derivatives as mimetics of the helical region of Bak peptide target Bcl-xL protein. Bioorg Med Chem Lett 14:1375–1379CrossRefPubMedGoogle Scholar
  52. Yin H, G-i L, Sedey KA, Rodriguez JM, Wang H-G, Sebti SM, Hamilton AD (2005) Terephthalamide derivatives as mimetics of helical peptides: disruption of the Bcl-x(L)/Bak interaction. J Am Chem Soc 127:5463–5468CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marc J. Adler
    • 1
  • Andrew G. Jamieson
    • 1
  • Andrew D. Hamilton
    • 1
  1. 1.Chemistry Research LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations