Cell Entry by Non-Enveloped Viruses pp 43-89

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 343)

Picornaviruses

  • Tobias J. Tuthill
  • Elisabetta Groppelli
  • James M. Hogle
  • David J. Rowlands
Chapter

Abstract

The picornavirus family consists of a large number of small RNA viruses, many of which are significant pathogens of humans and livestock. They are amongst the simplest of vertebrate viruses comprising a single stranded positive sense RNA genome within a T = 1 (quasi T = 3) icosahedral protein capsid of approximately 30 nm diameter. The structures of a number of picornaviruses have been determined at close to atomic resolution by X-ray crystallography. The structures of cell entry intermediate particles and complexes of virus particles with receptor molecules or antibodies have also been obtained by X-ray crystallography or at a lower resolution by cryo-electron microscopy. Many of the receptors used by different picornaviruses have been identified, and it is becoming increasingly apparent that many use co-receptors and alternative receptors to bind to and infect cells. However, the mechanisms by which these viruses release their genomes and transport them across a cellular membrane to gain access to the cytoplasm are still poorly understood. Indeed, detailed studies of cell entry mechanisms have been made only on a few members of the family, and it is yet to be established how broadly the results of these are applicable across the full spectrum of picornaviruses. Working models of the cell entry process are being developed for the best studied picornaviruses, the enteroviruses. These viruses maintain particle integrity throughout the infection process and function as genome delivery modules. However, there is currently no model to explain how viruses such as cardio- and aphthoviruses that appear to simply dissociate into subunits during uncoating deliver their genomes into the cytoplasm.

References

  1. Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F (1989) The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature 337:709–716PubMedCrossRefGoogle Scholar
  2. Akiyama SK (1996) Integrins in cell adhesion and signaling. Hum Cell 9:181–186PubMedGoogle Scholar
  3. Andries K, Dewindt B, Snoeks J, Wouters L, Moereels H, Lewi PJ, Janssen PA (1990) Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity. J Virol 64:1117–1123PubMedGoogle Scholar
  4. Aniento F, Emans N, Griffiths G, Gruenberg J (1993) Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J Cell Biol 123:1373–1387PubMedCrossRefGoogle Scholar
  5. Arnold E, Luo M, Vriend G, Rossmann MG, Palmenberg AC, Parks GD, Nicklin MJ, Wimmer E (1987) Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci USA 84:21–25PubMedCrossRefGoogle Scholar
  6. Baranowski E, Ruiz-Jarabo CM, Sevilla N, Andreu D, Beck E, Domingo E (2000) Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol 74:1641–1647PubMedCrossRefGoogle Scholar
  7. Basavappa R, Syed R, Flore O, Icenogle JP, Filman DJ, Hogle JM (1994) Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci 3:1651–1669PubMedCrossRefGoogle Scholar
  8. Baxt B (1987) Effect of lysosomotropic compounds on early events in foot-and-mouth disease virus replication. Virus Res 7:257–271PubMedCrossRefGoogle Scholar
  9. Bayer N, Schober D, Prchla E, Murphy RF, Blaas D, Fuchs R (1998) Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. J Virol 72:9645–9655PubMedGoogle Scholar
  10. Bayer N, Schober D, Huttinger M, Blaas D, Fuchs R (2001) Inhibition of clathrin-dependent endocytosis has multiple effects on human rhinovirus serotype 2 cell entry. J Biol Chem 276:3952–3962PubMedCrossRefGoogle Scholar
  11. Belnap DM, Filman DJ, Trus BL, Cheng N, Booy FP, Conway JF, Curry S, Hiremath CN, Tsang SK, Steven AC, Hogle JM (2000a) Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J Virol 74:1342–1354PubMedCrossRefGoogle Scholar
  12. Belnap DM, McDermott BM Jr, Filman DJ, Cheng N, Trus BL, Zuccola HJ, Racaniello VR, Hogle JM, Steven AC (2000b) Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc Natl Acad Sci USA 97:73–78PubMedCrossRefGoogle Scholar
  13. Bergelson JM, Shepley MP, Chan BM, Hemler ME, Finberg RW (1992) Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255:1718–1720PubMedCrossRefGoogle Scholar
  14. Berka U, Khan A, Blaas D, Fuchs R (2009) Human rhinovirus type 2 uncoating at the plasma membrane is not affected by a pH gradient but is affected by the membrane potential. J Virol 83:3778–3787PubMedCrossRefGoogle Scholar
  15. Berryman S, Clark S, Monaghan P, Jackson T (2005) Early events in integrin {alpha}v{beta}6-mediated cell entry of foot-and-mouth disease virus. J Virol 79:8519–8534PubMedCrossRefGoogle Scholar
  16. Bishop NE (1998) Examination of potential inhibitors of hepatitis A virus uncoating. Intervirology 41:261–271PubMedCrossRefGoogle Scholar
  17. Boonyakiat Y, Hughes PJ, Ghazi F, Stanway G (2001) Arginine-glycine-aspartic acid motif is critical for human parechovirus 1 entry. J Virol 75:10000–10004PubMedCrossRefGoogle Scholar
  18. Brabec M, Baravalle G, Blaas D, Fuchs R (2003) Conformational changes, plasma membrane penetration, and infection by human rhinovirus type 2: role of receptors and low pH. J Virol 77:5370–5377PubMedCrossRefGoogle Scholar
  19. Brabec M, Schober D, Wagner E, Bayer N, Murphy RF, Blaas D, Fuchs R (2005) Opening of size-selective pores in endosomes during human rhinovirus serotype 2 in vivo uncoating monitored by single-organelle flow analysis. J Virol 79:1008–1016PubMedCrossRefGoogle Scholar
  20. Brabec M, Blaas D, Fuchs R (2006) Wortmannin delays transfer of human rhinovirus serotype 2 to late endocytic compartments. Biochem Biophys Res Commun 348:741–749PubMedCrossRefGoogle Scholar
  21. Brandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, Hogle JM (2007) Imaging poliovirus entry in live cells. PLoS Biol 5:e183PubMedCrossRefGoogle Scholar
  22. Broo K, Wei J, Marshall D, Brown F, Smith TJ, Johnson JE, Schneemann A, Siuzdak G (2001) Viral capsid mobility: a dynamic conduit for inactivation. Proc Natl Acad Sci USA 98:2274–2277PubMedCrossRefGoogle Scholar
  23. Brown F, Cartwright B (1961) Dissociation of foot-and-mouth disease virus into its nucleic acid and protein components. Nature 192:1163–1164PubMedCrossRefGoogle Scholar
  24. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136PubMedCrossRefGoogle Scholar
  25. Bubeck D, Filman DJ, Cheng N, Steven AC, Hogle JM, Belnap DM (2005a) The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J Virol 79:7745–7755PubMedCrossRefGoogle Scholar
  26. Bubeck D, Filman DJ, Hogle JM (2005b) Cryo-electron microscopy reconstruction of a poliovirus-receptor-membrane complex. Nat Struct Mol Biol 12:615–618PubMedCrossRefGoogle Scholar
  27. Burroughs JN, Rowlands DJ, Sangar DV, Talbot P, Brown F (1971) Further evidence for multiple proteins in the foot-and-mouth disease virus particle. J Gen Virol 13:73–84PubMedCrossRefGoogle Scholar
  28. Casasnovas JM, Springer TA (1994) Pathway of rhinovirus disruption by soluble intercellular adhesion molecule 1 (ICAM-1): an intermediate in which ICAM-1 is bound and RNA is released. J Virol 68:5882–5889PubMedGoogle Scholar
  29. Casasnovas JM, Springer TA (1995) Kinetics and thermodynamics of virus binding to receptor. Studies with rhinovirus, intercellular adhesion molecule-1 (ICAM-1), and surface plasmon resonance. J Biol Chem 270:13216–13224PubMedCrossRefGoogle Scholar
  30. Casasnovas JM, Stehle T, Liu JH, Wang JH, Springer TA (1998) A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. Proc Natl Acad Sci USA 95:4134–4139PubMedCrossRefGoogle Scholar
  31. Chen ZG, Stauffacher C, Li Y, Schmidt T, Bomu W, Kamer G, Shanks M, Lomonossoff G, Johnson JE (1989) Protein-RNA interactions in an icosahedral virus at 3.0 A resolution. Science 245:154–159PubMedCrossRefGoogle Scholar
  32. Chen WJ, Goldstein JL, Brown MS (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem 265:3116–3123PubMedGoogle Scholar
  33. Chow M, Newman JF, Filman D, Hogle JM, Rowlands DJ, Brown F (1987) Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327:482–486PubMedCrossRefGoogle Scholar
  34. Chung SK, Kim JY, Kim IB, Park SI, Paek KH, Nam JH (2005) Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells. Virology 333:31–40PubMedCrossRefGoogle Scholar
  35. Colonno RJ, Condra JH, Mizutani S, Callahan PL, Davies ME, Murcko MA (1988) Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proc Natl Acad Sci USA 85:5449–5453PubMedCrossRefGoogle Scholar
  36. Cox S, Buontempo PJ, Wright-Minogue J, DeMartino JL, Skelton AM, Ferrari E, Schwartz J, Rozhon EJ, Linn CC, Girijavallabhan V, O'Connell JF (1996) Antipicornavirus activity of SCH 47802 and analogs: in vitro and in vivo studies. Antiviral Res 32:71–79PubMedCrossRefGoogle Scholar
  37. Coyne CB, Bergelson JM (2005) CAR: a virus receptor within the tight junction. Adv Drug Deliv Rev 57:869–882PubMedCrossRefGoogle Scholar
  38. Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124:119–131PubMedCrossRefGoogle Scholar
  39. Coyne CB, Kim KS, Bergelson JM (2007a) Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. Embo J 26:4016–4028PubMedCrossRefGoogle Scholar
  40. Coyne CB, Shen L, Turner JR, Bergelson JM (2007b) Coxsackievirus entry across epithelial tight junctions requires occludin and the small GTPases Rab34 and Rab5. Cell Host Microbe 2:181–192PubMedCrossRefGoogle Scholar
  41. Crowell RL, Philipson L (1971) Specific alterations of coxsackievirus B3 eluted from HeLa cells. J Virol 8:509–515PubMedGoogle Scholar
  42. Curry S, Abrams CC, Fry E, Crowther JC, Belsham GJ, Stuart DI, King AM (1995) Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J Virol 69:430–438PubMedGoogle Scholar
  43. Curry S, Chow M, Hogle JM (1996) The poliovirus 135S particle is infectious. J Virol 70:7125–7131PubMedGoogle Scholar
  44. Curry S, Fry E, Blakemore W, Abu-Ghazaleh R, Jackson T, King A, Lea S, Newman J, Stuart D (1997) Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J Virol 71:9743–9752PubMedGoogle Scholar
  45. Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A (2005) Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168:477–488PubMedCrossRefGoogle Scholar
  46. Danthi P, Tosteson M, Li QH, Chow M (2003) Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus. J Virol 77:5266–5274PubMedCrossRefGoogle Scholar
  47. Davis MP, Bottley G, Beales LP, Killington RA, Rowlands DJ, Tuthill TJ (2008) Recombinant VP4 of human rhinovirus induces permeability in model membranes. J ViroL 82:4169–4174Google Scholar
  48. De Sena J, Mandel B (1977) Studies on the in vitro uncoating of poliovirus. II. Characteristics of the membrane-modified particle. Virology 78:554–566PubMedCrossRefGoogle Scholar
  49. DeTulleo L, Kirchhausen T (1998) The clathrin endocytic pathway in viral infection. Embo J 17:4585–4593PubMedCrossRefGoogle Scholar
  50. Diana GD, Pevear DC, Otto MJ, McKinlay MA, Rossmann MG, Smith T, Badger J (1989) Inhibitors of viral uncoating. Pharmacol Ther 42:289–305PubMedCrossRefGoogle Scholar
  51. Dicara D, Burman A, Clark S, Berryman S, Howard MJ, Hart IR, Marshall JF, Jackson T (2008) Foot-and-mouth disease virus forms a highly stable, EDTA-resistant complex with its principal receptor, integrin alphavbeta6: implications for infectiousness. J Virol 82:1537–1546PubMedCrossRefGoogle Scholar
  52. Drose S, Altendorf K (1997) Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J Exp Biol 200:1–8PubMedGoogle Scholar
  53. Dubra MS, La Torre JL, Scodeller EA, Denoya CD, Vasquez C (1982) Cores in foot-and-mouth disease virus. Virology 116:349–353PubMedCrossRefGoogle Scholar
  54. Duque H, LaRocco M, Golde WT, Baxt B (2004) Interactions of foot-and-mouth disease virus with soluble bovine alphaVbeta3 and alphaVbeta6 integrins. J Virol 78:9773–9781PubMedCrossRefGoogle Scholar
  55. Engle MJ, Goetz GS, Alpers DH (1998) Caco-2 cells express a combination of colonocyte and enterocyte phenotypes. J Cell Physiol 174:362–369PubMedCrossRefGoogle Scholar
  56. Everaert L, Vrijsen R, Boeye A (1989) Eclipse products of poliovirus after cold-synchronized infection of HeLa cells. Virology 171:76–82PubMedCrossRefGoogle Scholar
  57. Feigelstock D, Thompson P, Mattoo P, Kaplan GG (1998) Polymorphisms of the hepatitis A virus cellular receptor 1 in African green monkey kidney cells result in antigenic variants that do not react with protective monoclonal antibody 190/4. J Virol 72:6218–6222PubMedGoogle Scholar
  58. Filman DJ, Syed R, Chow M, Macadam AJ, Minor PD, Hogle JM (1989) Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. Embo J 8:1567–1579PubMedGoogle Scholar
  59. Ford MG, Pearse BM, Higgins MK, Vallis Y, Owen DJ, Gibson A, Hopkins CR, Evans PR, McMahon HT (2001) Simultaneous binding of PtdIns(4, 5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291:1051–1055PubMedCrossRefGoogle Scholar
  60. Fox MP, Otto MJ, McKinlay MA (1986) Prevention of rhinovirus and poliovirus uncoating by WIN 51711, a new antiviral drug. Antimicrob Agents Chemother 30:110–116PubMedCrossRefGoogle Scholar
  61. Freimuth P, Philipson L, Carson SD (2008) The coxsackievirus and adenovirus receptor. Curr Top Microbiol Immunol 323:67–87PubMedCrossRefGoogle Scholar
  62. Fricks CE, Hogle JM (1990) Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol 64:1934–1945PubMedGoogle Scholar
  63. Fricks CE, Icenogle JP, Hogle JM (1985) Trypsin sensitivity of the Sabin strain of type 1 poliovirus: cleavage sites in virions and related particles. J Virol 54:856–859PubMedGoogle Scholar
  64. Fry EE, Knowles NJ, Newman JW, Wilsden G, Rao Z, King AM, Stuart DI (2003) Crystal structure of Swine vesicular disease virus and implications for host adaptation. J Virol 77:5475–5486PubMedCrossRefGoogle Scholar
  65. Glickman JN, Conibear E, Pearse BM (1989) Specificity of binding of clathrin adaptors to signals on the mannose-6-phosphate/insulin-like growth factor II receptor. Embo J 8:1041–1047PubMedGoogle Scholar
  66. Golden JS, Harrison SC (1982) Proteolytic dissection of turnip crinkle virus subunit in solution. Biochemistry 21:3862–3866PubMedCrossRefGoogle Scholar
  67. Gomez Yafal A, Kaplan G, Racaniello VR, Hogle JM (1993) Characterization of poliovirus conformational alteration mediated by soluble cell receptors. Virology 197:501–505PubMedCrossRefGoogle Scholar
  68. Goodfellow IG, Powell RM, Ward T, Spiller OB, Almond JW, Evans DJ (2000) Echovirus infection of rhabdomyosarcoma cells is inhibited by antiserum to the complement control protein CD59. J Gen Virol 81:1393–1401PubMedGoogle Scholar
  69. Goodfellow IG, Evans DJ, Blom AM, Kerrigan D, Miners JS, Morgan BP, Spiller OB (2005) Inhibition of coxsackie B virus infection by soluble forms of its receptors: binding affinities, altered particle formation, and competition with cellular receptors. J Virol 79:12016–12024PubMedCrossRefGoogle Scholar
  70. Gould GW, Lippincott-Schwartz J (2009) New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat Rev Mol Cell Biol 10:287–292PubMedCrossRefGoogle Scholar
  71. Grant RA, Hiremath CN, Filman DJ, Syed R, Andries K, Hogle JM (1994) Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr Biol 4:784–797PubMedCrossRefGoogle Scholar
  72. Grassme H, Riehle A, Wilker B, Gulbins E (2005) Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 280:26256–26262PubMedCrossRefGoogle Scholar
  73. Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, Kamarck ME, McClelland A (1989) The major human rhinovirus receptor is ICAM-1. Cell 56:839–847PubMedCrossRefGoogle Scholar
  74. Greve JM, Forte CP, Marlor CW, Meyer AM, Hoover-Litty H, Wunderlich D, McClelland A (1991) Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J Virol 65:6015–6023PubMedGoogle Scholar
  75. Gromeier M, Wetz K (1990) Kinetics of poliovirus uncoating in HeLa cells in a nonacidic environment. J Virol 64:3590–3597PubMedGoogle Scholar
  76. Gromeier M, Solecki D, Patel DD, Wimmer E (2000) Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: implications for the pathogenesis of poliomyelitis. Virology 273:248–257PubMedCrossRefGoogle Scholar
  77. Grunert HP, Wolf KU, Langner KD, Sawitzky D, Habermehl KO, Zeichhardt H (1997) Internalization of human rhinovirus 14 into HeLa and ICAM-1-transfected BHK cells. Med Microbiol Immunol 186:1–9PubMedCrossRefGoogle Scholar
  78. Guttman N, Baltimore D (1977) Morphogenesis of poliovirus. IV. existence of particles sedimenting at 150S and having the properties of provirion. J Virol 23:363–367PubMedGoogle Scholar
  79. Guy M, Chilmonczyk S, Cruciere C, Eloit M, Bakkali-Kassimi L (2009) Efficient infection of buffalo rat liver-resistant cells by encephalomyocarditis virus requires binding to cell surface sialic acids. J Gen Virol 90:187–196PubMedCrossRefGoogle Scholar
  80. Hadfield AT, Lee W, Zhao R, Oliveira MA, Minor I, Rueckert RR, Rossmann MG (1997) The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle. Structure 5:427–441PubMedCrossRefGoogle Scholar
  81. Hansen SH, Sandvig K, van Deurs B (1993) Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification. J Cell Biol 121:61–72PubMedCrossRefGoogle Scholar
  82. Hao W, Tan Z, Prasad K, Reddy KK, Chen J, Prestwich GD, Falck JR, Shears SB, Lafer EM (1997) Regulation of AP-3 function by inositides. Identification of phosphatidylinositol 3, 4, 5-trisphosphate as a potent ligand. J Biol Chem 272:6393–6398PubMedCrossRefGoogle Scholar
  83. Heikkila O, Susi P, Stanway G, Hyypia T (2009) Integrin alphaVbeta6 is a high-affinity receptor for coxsackievirus A9. J Gen Virol 90:197–204PubMedCrossRefGoogle Scholar
  84. Hendry E, Hatanaka H, Fry E, Smyth M, Tate J, Stanway G, Santti J, Maaronen M, Hyypia T, Stuart D (1999) The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure 7:1527–1538PubMedCrossRefGoogle Scholar
  85. Hertzler S, Luo M, Lipton HL (2000) Mutation of predicted virion pit residues alters binding of Theiler's murine encephalomyelitis virus to BHK-21 cells. J Virol 74:1994–2004PubMedCrossRefGoogle Scholar
  86. Heuser JE, Anderson RG (1989) Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108:389–400PubMedCrossRefGoogle Scholar
  87. Hewat EA, Blaas D (2004) Cryoelectron microscopy analysis of the structural changes associated with human rhinovirus type 14 uncoating. J Virol 78:2935–2942PubMedCrossRefGoogle Scholar
  88. Hewat EA, Neumann E, Conway JF, Moser R, Ronacher B, Marlovits TC, Blaas D (2000) The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. Embo J 19:6317–6325PubMedCrossRefGoogle Scholar
  89. Hewat EA, Neumann E, Blaas D (2002) The concerted conformational changes during human rhinovirus 2 uncoating. Mol Cell 10:317–326PubMedCrossRefGoogle Scholar
  90. Hindiyeh M, Li QH, Basavappa R, Hogle JM, Chow M (1999) Poliovirus mutants at histidine 195 of VP2 do not cleave VP0 into VP2 and VP4. J Virol 73:9072–9079PubMedGoogle Scholar
  91. Hoey EM, Martin SJ (1974) A possible precursor containing RNA of a bovine enterovirus: the provirion 11. J Gen Virol 24:515–524PubMedCrossRefGoogle Scholar
  92. Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M, Kuechler E, Blaas D (1994) Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci USA 91:1839–1842PubMedCrossRefGoogle Scholar
  93. Hoover-Litty H, Greve JM (1993) Formation of rhinovirus-soluble ICAM-1 complexes and conformational changes in the virion. J Virol 67:390–397PubMedGoogle Scholar
  94. Huang Y, Hogle JM, Chow M (2000) Is the 135S poliovirus particle an intermediate during cell entry? J Virol 74:8757–8761PubMedCrossRefGoogle Scholar
  95. Huber SA (1994) VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells. J Virol 68:3453–3458PubMedGoogle Scholar
  96. Hughes PJ, Horsnell C, Hyypia T, Stanway G (1995) The coxsackievirus A9 RGD motif is not essential for virus viability. J Virol 69:8035–8040PubMedGoogle Scholar
  97. Jackson T, Ellard FM, Ghazaleh RA, Brookes SM, Blakemore WE, Corteyn AH, Stuart DI, Newman JW, King AM (1996) Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol 70:5282–5287PubMedGoogle Scholar
  98. Jackson T, Sheppard D, Denyer M, Blakemore W, King AM (2000) The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. J Virol 74:4949–4956PubMedCrossRefGoogle Scholar
  99. Jackson T, Mould AP, Sheppard D, King AM (2002) Integrin alphavbeta1 is a receptor for foot-and-mouth disease virus. J Virol 76:935–941PubMedCrossRefGoogle Scholar
  100. Jackson T, Clark S, Berryman S, Burman A, Cambier S, Mu D, Nishimura S, King AM (2004) Integrin alphavbeta8 functions as a receptor for foot-and-mouth disease virus: role of the beta-chain cytodomain in integrin-mediated infection. J Virol 78:4533–4540PubMedCrossRefGoogle Scholar
  101. Johansson S, Niklasson B, Maizel J, Gorbalenya AE, Lindberg AM (2002) Molecular analysis of three Ljungan virus isolates reveals a new, close-to-root lineage of the Picornaviridae with a cluster of two unrelated 2A proteins. J Virol 76:8920–8930PubMedCrossRefGoogle Scholar
  102. Johns HL, Berryman S, Monaghan P, Belsham GJ, Jackson T (2009) A dominant negative mutant of rab5 inhibits infection of cells by foot-and-mouth disease virus; implications for virus entry. J Virol 83(12):6247–6256PubMedCrossRefGoogle Scholar
  103. Joki-Korpela P, Marjomaki V, Krogerus C, Heino J, Hyypia T (2001) Entry of human parechovirus 1. J Virol 75:1958–1967PubMedCrossRefGoogle Scholar
  104. Joklik WK, Darnell JE Jr (1961) The adsorption and early fate of purified poliovirus in HeLa cells. Virology 13:439–447PubMedCrossRefGoogle Scholar
  105. Kaplan G, Totsuka A, Thompson P, Akatsuka T, Moritsugu Y, Feinstone SM (1996) Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. Embo J 15:4282–4296PubMedGoogle Scholar
  106. Karjalainen M, Kakkonen E, Upla P, Paloranta H, Kankaanpaa P, Liberali P, Renkema GH, Hyypia T, Heino J, Marjomaki V (2008) A Raft-derived, Pak1-regulated entry participates in alpha2beta1 integrin-dependent sorting to caveosomes. Mol Biol Cell 19:2857–2869PubMedCrossRefGoogle Scholar
  107. Katpally U, Smith TJ (2007) Pocket factors are unlikely to play a major role in the life cycle of human rhinovirus. J Virol 81:6307–6315PubMedCrossRefGoogle Scholar
  108. Katpally U, Fu TM, Freed DC, Casimiro DR, Smith TJ (2009) Antibodies to the buried N terminus of rhinovirus VP4 exhibit cross-serotypic neutralization. J Virol 83:7040–7048PubMedCrossRefGoogle Scholar
  109. Kim SS, Smith TJ, Chapman MS, Rossmann MC, Pevear DC, Dutko FJ, Felock PJ, Diana GD, McKinlay MA (1989) Crystal structure of human rhinovirus serotype 1A (HRV1A). J Mol Biol 210:91–111PubMedCrossRefGoogle Scholar
  110. Konecsni T, Kremser L, Snyers L, Rankl C, Kilar F, Kenndler E, Blaas D (2004) Twelve receptor molecules attach per viral particle of human rhinovirus serotype 2 via multiple modules. FEBS Lett 568:99–104PubMedCrossRefGoogle Scholar
  111. Korant BD, Lonberg-Holm K, Noble J, Stasny JT (1972) Naturally occurring and artificially produced components of three rhinoviruses. Virology 48:71–86PubMedCrossRefGoogle Scholar
  112. Kruse J, Kruse KM, Witz J, Chauvin C, Jacrot B, Tardieu A (1982) Divalent ion-dependent reversible swelling of tomato bushy stunt virus and organization of the expanded virion. J Mol Biol 162:393–414PubMedCrossRefGoogle Scholar
  113. Lau C, Wang X, Song L, North M, Wiehler S, Proud D, Chow CW (2008) Syk associates with clathrin and mediates phosphatidylinositol 3-kinase activation during human rhinovirus internalization. J Immunol 180:870–880PubMedGoogle Scholar
  114. Lea S (2002) Interactions of CD55 with non-complement ligands. Biochem Soc Trans 30:1014–1019PubMedCrossRefGoogle Scholar
  115. Lee WM, Monroe SS, Rueckert RR (1993) Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome. J Virol 67:2110–2122PubMedGoogle Scholar
  116. Levy HC, Bostina M, Filman DJ, Hogle JM (2010) Catching a virus in the act of RNA-release: a novel poliovirus uncoating intermediate characterized by cryoelectron microscopy. J Virol (Epub ahead of print)Google Scholar
  117. Lewis JK, Bothner B, Smith TJ, Siuzdak G (1998) Antiviral agent blocks breathing of the common cold virus. Proc Natl Acad Sci USA 95:6774–6778PubMedCrossRefGoogle Scholar
  118. Li Q, Yafal AG, Lee YM, Hogle J, Chow M (1994) Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J Virol 68:3965–3970PubMedGoogle Scholar
  119. Li F, Browning GF, Studdert MJ, Crabb BS (1996) Equine rhinovirus 1 is more closely related to foot-and-mouth disease virus than to other picornaviruses. Proc Natl Acad Sci USA 93:990–995PubMedCrossRefGoogle Scholar
  120. Liberali P, Kakkonen E, Turacchio G, Valente C, Spaar A, Perinetti G, Bockmann RA, Corda D, Colanzi A, Marjomaki V, Luini A (2008) The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. Embo J 27:970–981PubMedCrossRefGoogle Scholar
  121. Lindahl G, Sjobring U, Johnsson E (2000) Human complement regulators: a major target for pathogenic microorganisms. Curr Opin Immunol 12:44–51PubMedCrossRefGoogle Scholar
  122. Lipton HL, Kumar AS, Hertzler S, Reddi HV (2006) Differential usage of carbohydrate co-receptors influences cellular tropism of Theiler's murine encephalomyelitis virus infection of the central nervous system. Glycoconj J 23:39–49PubMedCrossRefGoogle Scholar
  123. Logan D, Abu-Ghazaleh R, Blakemore W, Curry S, Jackson T, King A, Lea S, Lewis R, Newman J, Parry N et al (1993) Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362:566–568PubMedCrossRefGoogle Scholar
  124. Lonberg-Holm K, Korant BD (1972) Early interaction of rhinoviruses with host cells. J Virol 9:29–40PubMedGoogle Scholar
  125. Lonberg-Holm K, Yin FH (1973) Antigenic determinants of infective and inactivated human rhinovirus type 2. J Virol 12:114–123PubMedGoogle Scholar
  126. Lonberg-Holm K, Gosser LB, Kauer JC (1975) Early alteration of poliovirus in infected cells and its specific inhibition. J Gen Virol 27:329–342PubMedCrossRefGoogle Scholar
  127. Lonberg-Holm K, Gosser LB, Shimshick EJ (1976) Interaction of liposomes with subviral particles of poliovirus type 2 and rhinovirus type 2. J Virol 19:746–749PubMedGoogle Scholar
  128. Luo M, Vriend G, Kamer G, Minor I, Arnold E, Rossmann MG, Boege U, Scraba DG, Duke GM, Palmenberg AC (1987) The atomic structure of Mengo virus at 3.0 A resolution. Science 235:182–191PubMedCrossRefGoogle Scholar
  129. Mak TW, O'Callaghan DJ, Colter JS (1970) Studies of the pH inactivation of three variants of Mengo encephalomyelitis virus. Virology 40:565–571PubMedCrossRefGoogle Scholar
  130. Marjomaki V, Pietiainen V, Matilainen H, Upla P, Ivaska J, Nissinen L, Reunanen H, Huttunen P, Hyypia T, Heino J (2002) Internalization of echovirus 1 in caveolae. J Virol 76:1856–1865PubMedCrossRefGoogle Scholar
  131. Marlovits TC, Abrahamsberg C, Blaas D (1998a) Soluble LDL minireceptors. Minimal structure requirements for recognition of minor group human rhinovirus. J Biol Chem 273:33835–33840PubMedCrossRefGoogle Scholar
  132. Marlovits TC, Abrahamsberg C, Blaas D (1998b) Very-low-density lipoprotein receptor fragment shed from HeLa cells inhibits human rhinovirus infection. J Virol 72:10246–10250PubMedGoogle Scholar
  133. Marlovits TC, Zechmeister T, Schwihla H, Ronacher B, Blaas D (1998c) Recombinant soluble low-density lipoprotein receptor fragment inhibits common cold infection. J Mol Recognit 11:49–51PubMedCrossRefGoogle Scholar
  134. Martin-Acebes MA, Gonzalez-Magaldi M, Sandvig K, Sobrino F, Armas-Portela R (2007) Productive entry of type C foot-and-mouth disease virus into susceptible cultured cells requires clathrin and is dependent on the presence of plasma membrane cholesterol. Virology 369:105–118PubMedCrossRefGoogle Scholar
  135. Martin-Acebes MA, Gonzalez-Magaldi M, Vazquez-Calvo A, Armas-Portela R, Sobrino F (2009) Internalization of swine vesicular disease virus into cultured cells: a comparative study with foot-and-mouth disease virus. J Virol 83(9):4216–4226PubMedCrossRefGoogle Scholar
  136. Martinez MA, Verdaguer N, Mateu MG, Domingo E (1997) Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc Natl Acad Sci USA 94:6798–6802PubMedCrossRefGoogle Scholar
  137. Mason PW, Baxt B, Brown F, Harber J, Murdin A, Wimmer E (1993) Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology 192:568–577PubMedCrossRefGoogle Scholar
  138. McDermott BM Jr, Rux AH, Eisenberg RJ, Cohen GH, Racaniello VR (2000) Two distinct binding affinities of poliovirus for its cellular receptor. J Biol Chem 275:23089–23096PubMedCrossRefGoogle Scholar
  139. McIntire JJ, Umetsu DT, DeKruyff RH (2004) TIM-1, a novel allergy and asthma susceptibility gene. Springer Semin Immunopathol 25:335–348PubMedCrossRefGoogle Scholar
  140. Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700PubMedCrossRefGoogle Scholar
  141. Monaghan P, Gold S, Simpson J, Zhang Z, Weinreb PH, Violette SM, Alexandersen S, Jackson T (2005) The alpha(v)beta6 integrin receptor for Foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. J Gen Virol 86:2769–2780PubMedCrossRefGoogle Scholar
  142. Mendelsohn CL, Wimmer E, Racaniello VR (1988) Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855–865Google Scholar
  143. Muro S, Wiewrodt R, Thomas A, Koniaris L, Albelda SM, Muzykantov VR, Koval M (2003) A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 116:1599–1609PubMedCrossRefGoogle Scholar
  144. Nathanson N (2008) The pathogenesis of poliomyelitis: what we don't know. Adv Virus Res 71:1–50PubMedCrossRefGoogle Scholar
  145. Nelsen-Salz B, Eggers HJ, Zimmermann H (1999) Integrin alpha(v)beta3 (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. J Gen Virol 80(Pt 9):2311–2313PubMedGoogle Scholar
  146. Neubauer C, Frasel L, Kuechler E, Blaas D (1987) Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology 158:255–258PubMedCrossRefGoogle Scholar
  147. Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H (2009) Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med 15:794–797PubMedCrossRefGoogle Scholar
  148. Nusrat A, Chen JA, Foley CS, Liang TW, Tom J, Cromwell M, Quan C, Mrsny RJ (2000a) The coiled-coil domain of occludin can act to organize structural and functional elements of the epithelial tight junction. J Biol Chem 275:29816–29822PubMedCrossRefGoogle Scholar
  149. Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, Eastburn KK, Madara JL (2000b) Tight junctions are membrane microdomains. J Cell Sci 113(Pt 10):1771–1781PubMedGoogle Scholar
  150. O'Donnell V, LaRocco M, Duque H, Baxt B (2005) Analysis of foot-and-mouth disease virus internalization events in cultured cells. J Virol 79:8506–8518PubMedCrossRefGoogle Scholar
  151. O'Donnell V, Larocco M, Baxt B (2008) Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol 82:9075–9085PubMedCrossRefGoogle Scholar
  152. Oliveira MA, Zhao R, Lee WM, Kremer MJ, Minor I, Rueckert RR, Diana GD, Pevear DC, Dutko FJ, McKinlay MA et al (1993) The structure of human rhinovirus 16. Structure 1:51–68PubMedCrossRefGoogle Scholar
  153. Olson NH, Kolatkar PR, Oliveira MA, Cheng RH, Greve JM, McClelland A, Baker TS, Rossmann MG (1993) Structure of a human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci USA 90:507–511PubMedCrossRefGoogle Scholar
  154. Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA, Fraser-Liggett CM, Liggett SB (2009) Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 324:55–59PubMedCrossRefGoogle Scholar
  155. Parton RG (2004) Caveolae meet endosomes: a stable relationship? Dev Cell 7:458–460PubMedCrossRefGoogle Scholar
  156. Patel KP, Bergelson JM (2009) Receptors identified for hand, foot and mouth virus. Nat Med 15:728–729PubMedCrossRefGoogle Scholar
  157. Pearse BM (1988) Receptors compete for adaptors found in plasma membrane coated pits. Embo J 7:3331–3336PubMedGoogle Scholar
  158. Pelkmans L, Helenius A (2003) Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 15:414–422PubMedCrossRefGoogle Scholar
  159. Pelkmans L, Burli T, Zerial M, Helenius A (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118:767–780PubMedCrossRefGoogle Scholar
  160. Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M (2005) Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436:78–86PubMedCrossRefGoogle Scholar
  161. Perez L, Carrasco L (1993) Entry of poliovirus into cells does not require a low-pH step. J Virol 67:4543–4548PubMedGoogle Scholar
  162. Pevear DC, Fancher MJ, Felock PJ, Rossmann MG, Miller MS, Diana G, Treasurywala AM, McKinlay MA, Dutko FJ (1989) Conformational change in the floor of the human rhinovirus canyon blocks adsorption to HeLa cell receptors. J Virol 63:2002–2007PubMedGoogle Scholar
  163. Phelps DK, Post CB (1999) Molecular dynamics investigation of the effect of an antiviral compound on human rhinovirus. Protein Sci 8:2281–2289PubMedCrossRefGoogle Scholar
  164. Pietiainen V, Marjomaki V, Upla P, Pelkmans L, Helenius A, Hyypia T (2004) Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. Mol Biol Cell 15:4911–4925PubMedCrossRefGoogle Scholar
  165. Powell RM, Schmitt V, Ward T, Goodfellow I, Evans DJ, Almond JW (1998) Characterization of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor. J Gen Virol 79(Pt 7):1707–1713PubMedGoogle Scholar
  166. Powell RM, Ward T, Goodfellow I, Almond JW, Evans DJ (1999) Mapping the binding domains on decay accelerating factor (DAF) for haemagglutinating enteroviruses: implications for the evolution of a DAF-binding phenotype. J Gen Virol 80(Pt 12):3145–3152PubMedGoogle Scholar
  167. Prchla E, Kuechler E, Blaas D, Fuchs R (1994) Uncoating of human rhinovirus serotype 2 from late endosomes. J Virol 68:3713–3723PubMedGoogle Scholar
  168. Prchla E, Plank C, Wagner E, Blaas D, Fuchs R (1995) Virus-mediated release of endosomal content in vitro: different behavior of adenovirus and rhinovirus serotype 2. J Cell Biol 131:111–123PubMedCrossRefGoogle Scholar
  169. Querol-Audi J, Konecsni T, Pous J, Carugo O, Fita I, Verdaguer N, Blaas D (2009) Minor group human rhinovirus-receptor interactions: geometry of multimodular attachment and basis of recognition. FEBS Lett 583:235–240PubMedCrossRefGoogle Scholar
  170. Racaniello VR (2007) Picornaviridae: The viruses and their replication. In Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Strauss SE (5th ed) Fields Virology. Lippincott Williams & Wilkins, USA, pp 795–838Google Scholar
  171. Rankl C, Kienberger F, Wildling L, Wruss J, Gruber HJ, Blaas D, Hinterdorfer P (2008) Multiple receptors involved in human rhinovirus attachment to live cells. Proc Natl Acad Sci USA 105:17778–17783PubMedCrossRefGoogle Scholar
  172. Reischl A, Reithmayer M, Winsauer G, Moser R, Gosler I, Blaas D (2001) Viral evolution toward change in receptor usage: adaptation of a major group human rhinovirus to grow in ICAM-1-negative cells. J Virol 75:9312–9319PubMedCrossRefGoogle Scholar
  173. Reisdorph N, Thomas JJ, Katpally U, Chase E, Harris K, Siuzdak G, Smith TJ (2003) Human rhinovirus capsid dynamics is controlled by canyon flexibility. Virology 314:34–44PubMedCrossRefGoogle Scholar
  174. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749PubMedCrossRefGoogle Scholar
  175. Robinson IK, Harrison SC (1982) Structure of the expanded state of Tomato Bushy Stunt Virus. Nature 297:563–568Google Scholar
  176. Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K (1999) Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10:961–974PubMedGoogle Scholar
  177. Roivainen M, Piirainen L, Hovi T, Virtanen I, Riikonen T, Heino J, Hyypia T (1994) Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology 203:357–365PubMedCrossRefGoogle Scholar
  178. Rowlands DJ, Sangar DV, Brown F (1975) A comparative chemical and serological study of the full and empty particles of foot-and mouth disease virus. J Gen Virol 26:227–238PubMedCrossRefGoogle Scholar
  179. Sa-Carvalho D, Rieder E, Baxt B, Rodarte R, Tanuri A, Mason PW (1997) Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 71:5115–5123PubMedGoogle Scholar
  180. Schober D, Kronenberger P, Prchla E, Blaas D, Fuchs R (1998) Major and minor receptor group human rhinoviruses penetrate from endosomes by different mechanisms. J Virol 72:1354–1364PubMedGoogle Scholar
  181. Shafren DR, Dorahy DJ, Greive SJ, Burns GF, Barry RD (1997a) Mouse cells expressing human intercellular adhesion molecule-1 are susceptible to infection by coxsackievirus A21. J Virol 71:785–789PubMedGoogle Scholar
  182. Shafren DR, Dorahy DJ, Ingham RA, Burns GF, Barry RD (1997b) Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J Virol 71:4736–4743PubMedGoogle Scholar
  183. Shafren DR, Williams DT, Barry RD (1997c) A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells. J Virol 71:9844–9848PubMedGoogle Scholar
  184. Silberstein E, Dveksler G, Kaplan GG (2001) Neutralization of hepatitis A virus (HAV) by an immunoadhesin containing the cysteine-rich region of HAV cellular receptor-1. J Virol 75:717–725PubMedCrossRefGoogle Scholar
  185. Silberstein E, Xing L, van de Beek W, Lu J, Cheng H, Kaplan GG (2003) Alteration of hepatitis A virus (HAV) particles by a soluble form of HAV cellular receptor 1 containing the immunoglobin-and mucin-like regions. J Virol 77:8765–8774PubMedCrossRefGoogle Scholar
  186. Smith TJ, Kremer MJ, Luo M, Vriend G, Arnold E, Kamer G, Rossmann MG, McKinlay MA, Diana GD, Otto MJ (1986) The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233:1286–1293PubMedCrossRefGoogle Scholar
  187. Smyth M, Tate J, Hoey E, Lyons C, Martin S, Stuart D (1995) Implications for viral uncoating from the structure of bovine enterovirus. Nat Struct Biol 2:224–231PubMedCrossRefGoogle Scholar
  188. Snyers L, Zwickl H, Blaas D (2003) Human rhinovirus type 2 is internalized by clathrin-mediated endocytosis. J Virol 77:5360–5369PubMedCrossRefGoogle Scholar
  189. Speelman B, Brooks BR, Post CB (2001) Molecular dynamics simulations of human rhinovirus and an antiviral compound. Biophys J 80:121–129PubMedCrossRefGoogle Scholar
  190. Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78PubMedCrossRefGoogle Scholar
  191. Stanway G, Joki-Korpela P, Hyypia T (2000) Human parechoviruses–biology and clinical significance. Rev Med Virol 10:57–69PubMedCrossRefGoogle Scholar
  192. Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA (1989) A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853PubMedCrossRefGoogle Scholar
  193. Stevenson RA, Huang JA, Studdert MJ, Hartley CA (2004) Sialic acid acts as a receptor for equine rhinitis A virus binding and infection. J Gen Virol 85:2535–2543PubMedCrossRefGoogle Scholar
  194. Subtil A, Gaidarov I, Kobylarz K, Lampson MA, Keen JH, McGraw TE (1999) Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci USA 96:6775–6780PubMedCrossRefGoogle Scholar
  195. Superti F, Seganti L, Orsi N, Divizia M, Gabrieli R, Pana A (1987) The effect of lipophilic amines on the growth of hepatitis A virus in Frp/3 cells. Arch Virol 96:289–296PubMedCrossRefGoogle Scholar
  196. Superti F, Seganti L, Orsi N, Divizia M, Gabrieli R, Pana A (1989) Effect of cellular function inhibitors on the infection of Frp/3 cells by hepatitis A virus. Med Microbiol Immunol 178:29–36PubMedCrossRefGoogle Scholar
  197. Takai Y, Miyoshi J, Ikeda W, Ogita H (2008) Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 9:603–615PubMedCrossRefGoogle Scholar
  198. Tami C, Silberstein E, Manangeeswaran M, Freeman GJ, Umetsu SE, DeKruyff RH, Umetsu DT, Kaplan GG (2007) Immunoglobulin A (IgA) is a natural ligand of hepatitis A virus cellular receptor 1 (HAVCR1), and the association of IgA with HAVCR1 enhances virus-receptor interactions. J Virol 81:3437–3446PubMedCrossRefGoogle Scholar
  199. Tartakoff AM (1983) Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell 32:1026–1028PubMedCrossRefGoogle Scholar
  200. Tavakkol A, Burness AT (1990) Evidence for a direct role for sialic acid in the attachment of encephalomyocarditis virus to human erythrocytes. Biochemistry 29:10684–10690PubMedCrossRefGoogle Scholar
  201. Tesar M, Jia XY, Summers DF, Ehrenfeld E (1993) Analysis of a potential myristoylation site in hepatitis A virus capsid protein VP4. Virology 194:616–626PubMedCrossRefGoogle Scholar
  202. Thompson P, Lu J, Kaplan GG (1998) The Cys-rich region of hepatitis A virus cellular receptor 1 is required for binding of hepatitis A virus and protective monoclonal antibody 190/4. J Virol 72:3751–3761PubMedGoogle Scholar
  203. Tomassini JE, Graham D, DeWitt CM, Lineberger DW, Rodkey JA, Colonno RJ (1989) cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc Natl Acad Sci USA 86:4907–4911PubMedCrossRefGoogle Scholar
  204. Tosteson MT, Chow M (1997) Characterization of the ion channels formed by poliovirus in planar lipid membranes. J Virol 71:507–511PubMedGoogle Scholar
  205. Tosteson MT, Wang H, Naumov A, Chow M (2004) Poliovirus binding to its receptor in lipid bilayers results in particle-specific, temperature-sensitive channels. J Gen Virol 85:1581–1589PubMedCrossRefGoogle Scholar
  206. Toth KS, Zhang CX, Lipton HL, Luo M (1993) Crystallization and preliminary X-ray diffraction studies of Theiler's virus (GDVII strain). J Mol Biol 231:1126–1129PubMedCrossRefGoogle Scholar
  207. Triantafilou M, Triantafilou K, Wilson KM, Takada Y, Fernandez N, Stanway G (1999) Involvement of beta2-microglobulin and integrin alphavbeta3 molecules in the coxsackievirus A9 infectious cycle. J Gen Virol 80(Pt 10):2591–2600PubMedGoogle Scholar
  208. Triantafilou K, Triantafilou M, Takada Y, Fernandez N (2000) Human parechovirus 1 utilizes integrins alphavbeta3 and alphavbeta1 as receptors. J Virol 74:5856–5862PubMedCrossRefGoogle Scholar
  209. Triantafilou K, Takada Y, Triantafilou M (2001) Mechanisms of integrin-mediated virus attachment and internalization process. Crit Rev Immunol 21:311–322PubMedCrossRefGoogle Scholar
  210. Triantafilou K, Fradelizi D, Wilson K, Triantafilou M (2002) GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 76:633–643PubMedCrossRefGoogle Scholar
  211. Tsang SK, Danthi P, Chow M, Hogle JM (2000) Stabilization of poliovirus by capsid-binding antiviral drugs is due to entropic effects. J Mol Biol 296:335–340PubMedCrossRefGoogle Scholar
  212. Tsang SK, Cheh J, Isaacs L, Joseph-McCarthy D, Choi SK, Pevear DC, Whitesides GM, Hogle JM (2001) A structurally biased combinatorial approach for discovering new anti-picornaviral compounds. Chem Biol 8:33–45PubMedCrossRefGoogle Scholar
  213. Turner M, Schweighoffer E, Colucci F, Di Santo JP, Tybulewicz VL (2000) Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol Today 21:148–154PubMedCrossRefGoogle Scholar
  214. Tuthill TJ, Papadopoulos NG, Jourdan P, Challinor LJ, Sharp NA, Plumpton C, Shah K, Barnard S, Dash L, Burnet J, Killington RA, Rowlands DJ, Clarke NJ, Blair ED, Johnston SL (2003) Mouse respiratory epithelial cells support efficient replication of human rhinovirus. J Gen Virol 84:2829–2836PubMedCrossRefGoogle Scholar
  215. Tuthill TJ, Bubeck D, Rowlands DJ, Hogle JM (2006) Characterization of early steps in the poliovirus infection process: receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles. J Virol 80:172–180PubMedCrossRefGoogle Scholar
  216. Tuthill TJ, Rowlands DJ, Killington RA (2007) Future Virol 2(4):343–351CrossRefGoogle Scholar
  217. Tuthill TJ, Harlos K, Walter TS, Knowles NJ, Groppelli E, Rowlands DJ, Stuart DI, Fry EE (2009) Equine rhinitis A virus and its low pH empty particle: clues towards an aphthovirus entry mechanism? PLoS Pathog 5:e1000620PubMedCrossRefGoogle Scholar
  218. Ulanova M, Puttagunta L, Marcet-Palacios M, Duszyk M, Steinhoff U, Duta F, Kim MK, Indik ZK, Schreiber AD, Befus AD (2005) Syk tyrosine kinase participates in beta1-integrin signaling and inflammatory responses in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 288:L497–L507PubMedCrossRefGoogle Scholar
  219. Upla P, Marjomaki V, Kankaanpaa P, Ivaska J, Hyypia T, Van Der Goot FG, Heino J (2004) Clustering induces a lateral redistribution of alpha 2 beta 1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol Biol Cell 15:625–636PubMedCrossRefGoogle Scholar
  220. van Vlijmen HW, Curry S, Schaefer M, Karplus M (1998) Titration calculations of foot-and-mouth disease virus capsids and their stabilities as a function of pH. J Mol Biol 275:295–308PubMedCrossRefGoogle Scholar
  221. Vaughan JC, Brandenburg B, Hogle JM, Zhuang X (2009) Rapid actin-dependent viral motility in live cells. Biophys J 97:1647–1656PubMedCrossRefGoogle Scholar
  222. Verdaguer N, Blaas D, Fita I (2000) Structure of human rhinovirus serotype 2 (HRV2). J Mol Biol 300:1179–1194PubMedCrossRefGoogle Scholar
  223. Vlasak M, Roivainen M, Reithmayer M, Goesler I, Laine P, Snyers L, Hovi T, Blaas D (2005) The minor receptor group of human rhinovirus (HRV) includes HRV23 and HRV25, but the presence of a lysine in the VP1 HI loop is not sufficient for receptor binding. J Virol 79:7389–7395PubMedCrossRefGoogle Scholar
  224. Wachsman MB, Castilla V, Coto CE (1998) Inhibition of foot and mouth disease virus (FMDV) uncoating by a plant-derived peptide isolated from Melia azedarach L leaves. Arch Virol 143:581–590PubMedCrossRefGoogle Scholar
  225. Wang LH, Rothberg KG, Anderson RG (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–1117PubMedCrossRefGoogle Scholar
  226. Wang X, Lau C, Wiehler S, Pow A, Mazzulli T, Gutierrez C, Proud D, Chow CW (2006) Syk is downstream of intercellular adhesion molecule-1 and mediates human rhinovirus activation of p38 MAPK in airway epithelial cells. J Immunol 177:6859–6870PubMedGoogle Scholar
  227. Ward T, Powell RM, Pipkin PA, Evans DJ, Minor PD, Almond JW (1998) Role for beta2-microglobulin in echovirus infection of rhabdomyosarcoma cells. J Virol 72:5360–5365PubMedGoogle Scholar
  228. Warner S, Hartley CA, Stevenson RA, Ficorilli N, Varrasso A, Studdert MJ, Crabb BS (2001) Evidence that Equine rhinitis A virus VP1 is a target of neutralizing antibodies and participates directly in receptor binding. J Virol 75:9274–9281PubMedCrossRefGoogle Scholar
  229. Wetz K, Kucinski T (1991) Influence of different ionic and pH environments on structural alterations of poliovirus and their possible relation to virus uncoating. J Gen Virol 72(Pt 10):2541–2544PubMedCrossRefGoogle Scholar
  230. Widell A, Hansson BG, Oberg B, Nordenfelt E (1986) Influence of twenty potentially antiviral substances on in vitro multiplication of hepatitis A virus. Antiviral Res 6:103–112PubMedCrossRefGoogle Scholar
  231. Williams CH, Kajander T, Hyypia T, Jackson T, Sheppard D, Stanway G (2004) Integrin alpha v beta 6 is an RGD-dependent receptor for coxsackievirus A9. J Virol 78:6967–6973PubMedCrossRefGoogle Scholar
  232. Wipf P, Halter RJ (2005) Chemistry and biology of wortmannin. Org Biomol Chem 3:2053–2061PubMedCrossRefGoogle Scholar
  233. Wruss J, Runzler D, Steiger C, Chiba P, Kohler G, Blaas D (2007) Attachment of VLDL receptors to an icosahedral virus along the 5-fold symmetry axis: multiple binding modes evidenced by fluorescence correlation spectroscopy. Biochemistry 46:6331–6339PubMedCrossRefGoogle Scholar
  234. Xing L, Huhtala M, Pietiainen V, Kapyla J, Vuorinen K, Marjomaki V, Heino J, Johnson MS, Hyypia T, Cheng RH (2004) Structural and functional analysis of integrin alpha2I domain interaction with echovirus 1. J Biol Chem 279:11632–11638PubMedCrossRefGoogle Scholar
  235. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, Koike S (2009) Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 15:798–801PubMedCrossRefGoogle Scholar
  236. Ye W, Ali N, Bembenek ME, Shears SB, Lafer EM (1995) Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J Biol Chem 270:1564–1568PubMedCrossRefGoogle Scholar
  237. Zhou L, Luo Y, Wu Y, Tsao J, Luo M (2000) Sialylation of the host receptor may modulate entry of demyelinating persistent Theiler's virus. J Virol 74:1477–1485PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tobias J. Tuthill
    • 1
    • 2
  • Elisabetta Groppelli
    • 1
  • James M. Hogle
    • 3
  • David J. Rowlands
    • 1
  1. 1.Faculty of Biological Sciences, Institute for Molecular and Cellular Biology, Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
  2. 2.Institute for Animal HealthSurreyUK
  3. 3.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA

Personalised recommendations