Advertisement

Rotavirus Cell Entry

  • Matthew Baker
  • B. V. Venkataram Prasad
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 343)

Abstract

Infecting nearly every child by age five, rotaviruses are the major causative agents of severe gastroenteritis in young children. While much is known about the structure of these nonenveloped viruses and their components, the exact mechanism of viral cell entry is still poorly understood. A consensus opinion that appears to be emerging from recent studies is that rotavirus cell entry involves a series of complex and coordinated events following proteolytic priming of the virus. Rotaviruses attach to the cell through sialic acid containing receptors, with integrins and Hsc70 acting as postattachment receptors, all localized on lipid rafts. Unlike other endocytotic mechanisms, this internalization pathway appears to be independent of clathrin or caveola. Equally complex and coordinated is the fascinating structural gymnastics of the VP4 spikes that are implicated in facilitating optimal interface between viral and host components. While these studies only begin to capture the basic cellular, molecular, and structural mechanisms of cell entry, the unusual features they have uncovered and many intriguing questions they have raised undoubtedly will prompt further investigations.

Keywords

Sialic Acid Cell Entry Rice Dwarf Virus dsRNA Segment Sialic Acid Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge the support from NIH grants AI36040 and RR002250, National Science Foundation IIS-0705474, and Robert Welch foundation (Q 1279). We thank Mary Estes and Sue Crawford for useful discussions and critical reading of the manuscript.

References

  1. Angel J, Franco MA, Greenberg HB (2007) Rotavirus vaccines: recent developments and future considerations. Nat Rev Microbiol 5(7):529–539PubMedGoogle Scholar
  2. Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR (2009) Structure of rotavirus outer layer protein VP7 bound with a neutralizing Fab. Science 324:1444–1447Google Scholar
  3. Arias CF, Romero P, Alvarez V, Lopez S (1996) Trypsin activation pathway of rotavirus infectivity. J Virol 70(9):5832–5839PubMedGoogle Scholar
  4. Banda K, Kang G, Varki A (2009) ‘Sialidase sensitivity’ of rotaviruses revisited. Nat Chem Biol 5(2):71–72PubMedGoogle Scholar
  5. Bass DM, Baylor MR, Chen C, Mackow EM, Bremont M, Greenberg HB (1992) Liposome-mediated transfection of intact viral particles reveals that plasma membrane penetration determines permissivity of tissue culture cells to rotavirus. J Clin Invest 90(6):2313–2320PubMedGoogle Scholar
  6. Bass DM, Baylor M, Chen C, Upadhyayula U (1995) Dansylcadaverine and cytochalasin D enhance rotavirus infection of murine L cells. Virology 212(2):429–437PubMedGoogle Scholar
  7. Blanchard H, Yu X, Coulson BS, von Itzstein M (2007) Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*). J Mol Biol 367(4):1215–1226PubMedGoogle Scholar
  8. Blutt SE, Conner ME (2007) Rotavirus: to the gut and beyond! Curr Opin Gastroenterol 23(1):39–43PubMedGoogle Scholar
  9. Charpilienne A, Abad MJ, Michelangeli F, Alvarado F, Vasseur M, Cohen J, Ruiz MC (1997) Solubilized and cleaved VP7, the outer glycoprotein of rotavirus, induces permeabilization of cell membrane vesicles. J Gen Virol 78(Pt 6):1367–1371PubMedGoogle Scholar
  10. Chemello ME, Aristimuno OC, Michelangeli F, Ruiz MC (2002) Requirement for vacuolar H+-ATPase activity and Ca2+ gradient during entry of rotavirus into MA104 cells. J Virol 76(24):13083–13087PubMedGoogle Scholar
  11. Ciarlet M, Estes MK (1999) Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J Gen Virol 80(Pt 4):943–948PubMedGoogle Scholar
  12. Ciarlet M, Estes MK (2001) Interactions between rotavirus and gastrointestinal cells. Curr Opin Microbiol 4(4):435–441PubMedGoogle Scholar
  13. Ciarlet M, Crawford SE, Cheng E, Blutt SE, Rice DA, Bergelson JM, Estes MK (2002) VLA-2 (alpha2beta1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment. J Virol 76(3):1109–1123PubMedGoogle Scholar
  14. Cohen J (1977) Ribonucleic acid polymerase activity associated with purified calf rotavirus. J Gen Virol 36(3):395–402PubMedGoogle Scholar
  15. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44PubMedGoogle Scholar
  16. Coulson BS, Londrigan SL, Lee DJ (1997) Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proc Natl Acad Sci USA 94:5389–5394PubMedGoogle Scholar
  17. Crawford SE, Mukherjee SK, Estes MK, Lawton JA, Shaw AL, Ramig RF, Prasad BV (2001) Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol 75(13):6052–6061PubMedGoogle Scholar
  18. Cuadras MA, Greenberg HB (2003) Rotavirus infectious particles use lipid rafts during replication for transport to the cell surface in vitro and in vivo. Virology 313(1):308–321PubMedGoogle Scholar
  19. Cuadras MA, Arias CF, Lopez S (1997) Rotaviruses induce an early membrane permeabilization of MA104 cells and do not require a low intracellular Ca2+ concentration to initiate their replication cycle. J Virol 71(12):9065–9074PubMedGoogle Scholar
  20. Cunliffe NA, Bresee JS, Gentsch JR, Glass RI, Hart CA (2002) The expanding diversity of rotaviruses. Lancet 359(9307):640–641PubMedGoogle Scholar
  21. Delorme C, Brussow H, Sidoti J, Roche N, Karlsson KA, Neeser JR, Teneberg S (2001) Glycosphingolipid binding specificities of rotavirus: identification of a sialic acid-binding epitope. J Virol 75(5):2276–2287PubMedGoogle Scholar
  22. Denisova E, Dowling W, LaMonica R, Shaw R, Scarlata S, Ruggeri F, Mackow ER (1999) Rotavirus capsid protein VP5* permeabilizes membranes. J Virol 73(4):3147–3153PubMedGoogle Scholar
  23. Dimitrov DS (2004) Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol 2(2):109–122PubMedGoogle Scholar
  24. Dormitzer PR (2008) Rotavirus cell entry. In: Patton J (ed) Segmented double-stranded RNA viruses – structure and molecular biology. Caister/Academic, Norfolk, pp 189–214Google Scholar
  25. Dormitzer PR, Greenberg HB, Harrison SC (2000) Purified recombinant rotavirus VP7 forms soluble, calcium-dependent trimers. Virology 277(2):420–428PubMedGoogle Scholar
  26. Dormitzer PR, Sun ZY, Blixt O, Paulson JC, Wagner G, Harrison SC (2002a) Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J Virol 76(20):10512–10517PubMedGoogle Scholar
  27. Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002b) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21(5):885–897PubMedGoogle Scholar
  28. Dormitzer PR, Nason EB, Prasad BV, Harrison SC (2004) Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature 430(7003):1053–1058PubMedGoogle Scholar
  29. Estes MK, Kapikian AZ (2006) Rotaviruses. In: Knipe PMHDM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (ed) Fields virology, vol 2. Lippincott Williams & Wilkins/Wolters Kluwer, Philadelphia, pp 1917–1974, 2 volsGoogle Scholar
  30. Estes MK, Morris AP (1999) A viral enterotoxin. A new mechanism of virus-induced pathogenesis. Adv Exp Med Biol 473:73–82PubMedGoogle Scholar
  31. Estes MK, Graham DY, Mason BB (1981) Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J Virol 39(3):879–888PubMedGoogle Scholar
  32. Falconer MM, Gilbert JM, Roper AM, Greenberg HB, Gavora JS (1995) Rotavirus-induced fusion from without in tissue culture cells. J Virol 69(9):5582–5591PubMedGoogle Scholar
  33. Feng N, Lawton JA, Gilbert J, Kuklin N, Vo P, Prasad BV, Greenberg HB (2002) Inhibition of rotavirus replication by a non-neutralizing, rotavirus VP6-specific IgA mAb. J Clin Invest 109(9):1203–1213PubMedGoogle Scholar
  34. Fiore L, Greenberg HB, Mackow ER (1991) The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin. Virology 181(2):553–563PubMedGoogle Scholar
  35. Fukudome K, Yoshie O, Konno T (1989) Comparison of human, simian, and bovine rotaviruses for requirement of sialic acid in hemagglutination and cell adsorption. Virology 172(1):196–205PubMedGoogle Scholar
  36. Fukuhara N, Yoshie O, Kitaoka S, Konno T (1988) Role of VP3 in human rotavirus internalization after target cell attachment via VP7. J Virol 62(7):2209–2218PubMedGoogle Scholar
  37. Gajardo R, Vende P, Poncet D, Cohen J (1997) Two proline residues are essential in the calcium-binding activity of rotavirus VP7 outer capsid protein. J Virol 71(3):2211–2216PubMedGoogle Scholar
  38. Gavrilovskaya IN, Brown EJ, Ginsberg MH, Mackow ER (1999) Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by beta3 integrins. J Virol 73(5):3951–3959PubMedGoogle Scholar
  39. Gentsch JR, Laird AR, Bielfelt B, Griffin DD, Banyai K, Ramachandran M, Jain V, Cunliffe NA, Nakagomi O, Kirkwood CD, Fischer TK, Parashar UD, Bresee JS, Jiang B, Glass RI (2005) Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J Infect Dis 192(Suppl 1):S146–S159PubMedGoogle Scholar
  40. Gouet P, Diprose JM, Grimes JM, Malby R, Burroughs JN, Zientara S, Stuart DI, Mertens PP (1999) The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 97(4):481–490PubMedGoogle Scholar
  41. Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, Robinson MK, Coulson BS (2003) Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol 77(18):9969–9978PubMedGoogle Scholar
  42. Greenberg HB, Estes MK (2009) Rotaviruses: from pathogenesis to vaccination. Gastroenterology 136:1939–1951PubMedGoogle Scholar
  43. Grimes JM, Jakana J, Ghosh M, Basak AK, Roy P, Chiu W, Stuart DI, Prasad BV (1997) An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure 5(7):885–893PubMedGoogle Scholar
  44. Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Zientara S, Mertens PCP, Stuart DI (1998) The atomic structure of the bluetongue virus core. Nature 395:470–478PubMedGoogle Scholar
  45. Gualtero DF, Guzman F, Acosta O, Guerrero CA (2007) Amino acid domains 280–297 of VP6 and 531–554 of VP4 are implicated in heat shock cognate protein hsc70-mediated rotavirus infection. Arch Virol 152(12):2183–2196PubMedGoogle Scholar
  46. Guerrero CA, Mendez E, Zarate S, Isa P, Lopez S, Arias CF (2000) Integrin alpha(v)beta(3) mediates rotavirus cell entry. Proc Natl Acad Sci USA 97(26):14644–14649PubMedGoogle Scholar
  47. Guerrero CA, Bouyssounade D, Zarate S, Isa P, Lopez T, Espinosa R, Romero P, Mendez E, Lopez S, Arias CF (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76(8):4096–4102PubMedGoogle Scholar
  48. Haselhorst T, Fleming FE, Dyason JC, Hartnell RD, Yu X, Holloway G, Santegoets K, Kiefel MJ, Blanchard H, Coulson BS, von Itzstein M (2009) Sialic acid dependence in rotavirus host cell invasion. Nat Chem Biol 5(2):91–93PubMedGoogle Scholar
  49. Hewish MJ, Takada Y, Coulson BS (2000) Integrins alpha2beta1 and alpha4beta1 can mediate SA11 rotavirus attachment and entry into cells. J Virol 74(1):228–236PubMedGoogle Scholar
  50. Hill CL, Booth TF, Prasad BV, Grimes JM, Mertens PP, Sutton GC, Stuart DI (1999) The structure of a cypovirus and the functional organization of dsRNA viruses. Nat Struct Biol 6(6):565–568PubMedGoogle Scholar
  51. Hogle JM (2002) Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu Rev Microbiol 56:677–702PubMedGoogle Scholar
  52. Hyser JM, Estes MK (2009) Rotavirus vaccines and pathogenesis: 2008. Curr Opin Gastroenterol 25(1):36–43PubMedGoogle Scholar
  53. Isa P, Realpe M, Romero P, Lopez S, Arias CF (2004) Rotavirus RRV associates with lipid membrane microdomains during cell entry. Virology 322(2):370–381PubMedGoogle Scholar
  54. Isa P, Arias CF, Lopez S (2006) Role of sialic acids in rotavirus infection. Glycoconj J 23(1–2):27–37PubMedGoogle Scholar
  55. Kaljot KT, Shaw RD, Rubin DH, Greenberg HB (1988) Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J Virol 62(4):1136–1144PubMedGoogle Scholar
  56. Keljo DJ, Smith AK (1988) Characterization of binding of simian rotavirus SA-11 to cultured epithelial cells. J Pediatr Gastroenterol Nutr 7(2):249–256PubMedGoogle Scholar
  57. Keljo DJ, Kuhn M, Smith A (1988) Acidification of endosomes is not important for the entry of rotavirus into the cell. J Pediatr Gastroenterol Nutr 7(2):257–263PubMedGoogle Scholar
  58. Konno T, Suzuki H, Kitaoka S, Sato T, Fukuhara N, Yoshie O, Fukudome K, Numazaki Y (1993) Proteolytic enhancement of human rotavirus infectivity. Clin Infect Dis 16(Suppl 2):S92–S97PubMedGoogle Scholar
  59. Kraschnefski MJ, Bugarcic A, Fleming FE, Yu X, von Itzstein M, Coulson BS, Blanchard H (2009) Effects on sialic acid recognition of amino acid mutations in the carbohydrate-binding cleft of the rotavirus spike protein. Glycobiology 19(3):194–200PubMedGoogle Scholar
  60. Krishnan T, Sen A, Choudhury JS, Das S, Naik TN, Bhattacharya SK (1999) Emergence of adult diarrhoea rotavirus in Calcutta, India. Lancet 353(9150):380–381PubMedGoogle Scholar
  61. Lawton JA, Estes MK, Prasad BV (1997a) Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles. Nat Struct Biol 4(2):118–121PubMedGoogle Scholar
  62. Lawton JA, Zeng CQ, Mukherjee SK, Cohen J, Estes MK, Prasad BV (1997b) Three-dimensional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer. J Virol 71(10):7353–7360PubMedGoogle Scholar
  63. Lawton JA, Estes MK, Prasad BV (1999) Comparative structural analysis of transcriptionally competent and incompetent rotavirus-antibody complexes. Proc Natl Acad Sci USA 96(10):5428–5433PubMedGoogle Scholar
  64. Lawton JA, Estes MK, Prasad BV (2000) Mechanism of genome transcription in segmented dsRNA viruses. Adv Virus Res 55:185–229PubMedGoogle Scholar
  65. Li Z, Baker ML, Jiang W, Estes MK, Prasad BV (2009) Rotavirus architecture at subnanometer resolution. J Virol 83(4):1754–1766PubMedGoogle Scholar
  66. Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC (2002) Structure of the reovirus membrane-penetration protein, Mu1, in a complex with is protector protein, Sigma3. Cell 108(2):283–295PubMedGoogle Scholar
  67. Liprandi F, Moros Z, Gerder M, Ludert JE, Pujol FH, Ruiz MC, Michelangeli F, Charpilienne A, Cohen J (1997) Productive penetration of rotavirus in cultured cells induces coentry of the translation inhibitor alpha-sarcin. Virology 237(2):430–438PubMedGoogle Scholar
  68. Lopez S, Arias CF (2004) Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol 12(6):271–278PubMedGoogle Scholar
  69. Lopez S, Arias CF (2006) Early steps in rotavirus cell entry. Curr Top Microbiol Immunol 309:39–66PubMedGoogle Scholar
  70. Lorrot M, Vasseur M (2006) Rotavirus NSP4 114-135 peptide has no direct, specific effect on chloride transport in rabbit brush-border membrane. Virol J 3:94PubMedGoogle Scholar
  71. Ludert JE, Michelangeli F, Gil F, Liprandi F, Esparza J (1987) Penetration and uncoating of rotaviruses in cultured cells. Intervirology 27(2):95–101PubMedGoogle Scholar
  72. Ludert JE, Krishnaney AA, Burns JW, Vo PT, Greenberg HB (1996) Cleavage of rotavirus VP4 in vivo. J Gen Virol 77(Pt 3):391–395PubMedGoogle Scholar
  73. Mackow ER (2002) Human group B and C rotaviruses, 2nd edn. In: Blaser MJ, Smith PD, Ravdin JI, Greenberg HB, Guerrant RL (eds) Infections of the gastrointestinal tract. Lippincott Williams & Wilkins, Philadelphia, pp 879–902Google Scholar
  74. Mackow ER, Shaw RD, Matsui SM, Vo PT, Dang MN, Greenberg HB (1988) The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proc Natl Acad Sci USA 85(3):645–649PubMedGoogle Scholar
  75. Mathieu M, Petitpas I, Navaza J, Lepault J, Kohli E, Pothier P, Prasad BV, Cohen J, Rey FA (2001) Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion. EMBO J 20(7):1485–1497PubMedGoogle Scholar
  76. Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo EA, Iturriza-Gomara M, Maes P, Patton JT, Rahman M, Van Ranst M (2008) Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82(7):3204–3219PubMedGoogle Scholar
  77. McClain B, Settembre E, Temple BR, Bellamy AR, Harrison SC (2010). X-ray crystal structure of rotavirus inner capsid particle at 3.8 A resolution. J. Mol. Biol. 397:587–599Google Scholar
  78. Mendez E, Arias CF, Lopez S (1993) Binding to sialic acids is not an essential step for the entry of animal rotaviruses to epithelial cells in culture. J Virol 67(9):5253–5259PubMedGoogle Scholar
  79. Mendez E, Lopez S, Cuadras MA, Romero P, Arias CF (1999) Entry of rotaviruses is a multistep process. Virology 263(2):450–459PubMedGoogle Scholar
  80. Mertens PPC, Attoui H, Duncan R, Dermody TS (2005) Reoviridae. In: Ball LA (ed) Virus taxonomy. Eighth report of the international committee on taxonomy of viruses. Elsevier/Academic, London, pp 447–454Google Scholar
  81. Monnier N, Higo-Moriguchi K, Sun ZY, Prasad BV, Taniguchi K, Dormitzer PR (2006) High-resolution molecular and antigen structure of the VP8* core of a sialic acid-independent human rotavirus strain. J Virol 80(3):1513–1523PubMedGoogle Scholar
  82. Nakagawa A, Miyazaki N, Taka J, Naitow H, Ogawa A, Fujimoto Z, Mizuno H, Higashi T, Watanabe Y, Omura T, Cheng RH, Tsukihara T (2003) The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure 11(10):1227–1238PubMedGoogle Scholar
  83. Nandi P, Charpilienne A, Cohen J (1992) Interaction of rotavirus particles with liposomes. J Virol 66(6):3363–3367PubMedGoogle Scholar
  84. Nason EL, Samal SK, Venkataram Prasad BV (2000) Trypsin-induced structural transformation in aquareovirus. J Virol 74(14):6546–6555PubMedGoogle Scholar
  85. Nason EL, Rothagel R, Mukherjee SK, Kar AK, Forzan M, Prasad BV, Roy P (2004) Interactions between the inner and outer capsids of bluetongue virus. J Virol 78(15):8059–8067PubMedGoogle Scholar
  86. Nejmeddine M, Trugnan G, Sapin C, Kohli E, Svensson L, Lopez S, Cohen J (2000) Rotavirus spike protein VP4 is present at the plasma membrane and is associated with microtubules in infected cells. J Virol 74(7):3313–3320PubMedGoogle Scholar
  87. Parashar UD, Glass RI (2009) Rotavirus vaccines – early success, remaining questions. N Engl J Med 360(11):1063–1065PubMedGoogle Scholar
  88. Parashar UD, Gibson CJ, Bresse JS, Glass RI (2006) Rotavirus and severe childhood diarrhea. Emerg Infect Dis 12(2):304–306PubMedGoogle Scholar
  89. Penaranda ME, Cubitt WD, Sinarachatanant P, Taylor DN, Likanonsakul S, Saif L, Glass RI (1989a) Group C rotavirus infections in patients with diarrhea in Thailand, Nepal, and England. J Infect Dis 160(3):392–397PubMedGoogle Scholar
  90. Penaranda ME, Ho MS, Fang ZY, Dong H, Bai XS, Duan SC, Ye WW, Estes MK, Echeverria P, Hung T et al (1989b) Seroepidemiology of adult diarrhea rotavirus in China, 1977 to 1987. J Clin Microbiol 27(10):2180–2183PubMedGoogle Scholar
  91. Pesavento JB, Crawford SE, Roberts E, Estes MK, Prasad BV (2005) pH-Induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization. J Virol 79(13):8572–8580PubMedGoogle Scholar
  92. Pesavento JB, Crawford SE, Estes MK, Prasad BV (2006) Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol 309:189–219PubMedGoogle Scholar
  93. Petrie BL, Graham DY, Estes MK (1981) Identification of rotavirus particle types. Intervirology 16(1):20–28PubMedGoogle Scholar
  94. Prasad BV, Wang GJ, Clerx JP, Chiu W (1988) Three-dimensional structure of rotavirus. J Mol Biol 199(2):269–275PubMedGoogle Scholar
  95. Prasad BV, Burns JW, Marietta E, Estes MK, Chiu W (1990) Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature 343(6257):476–479PubMedGoogle Scholar
  96. Prasad BV, Rothnagel R, Zeng CQ, Jakana J, Lawton JA, Chiu W, Estes MK (1996) Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382(6590):471–473PubMedGoogle Scholar
  97. Quan CM, Doane FW (1983) Ultrastructural evidence for the cellular uptake of rotavirus by endocytosis. Intervirology 20(4):223–231PubMedGoogle Scholar
  98. Ramig RF (1997) Genetics of the rotaviruses. Annu Rev Microbiol 51:225–255PubMedGoogle Scholar
  99. Ramig RF (2004) Pathogenesis of intestinal and systemic rotavirus infection. J Virol 78(19):10213–10220PubMedGoogle Scholar
  100. Ramig RF (2007) Systemic rotavirus infection. Expert Rev Anti Infect Ther 5(4):591–612PubMedGoogle Scholar
  101. Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6 A resolution. Nature 404(6781):960–967PubMedGoogle Scholar
  102. Ruiz MC, Alonso-Torre SR, Charpilienne A, Vasseur M, Michelangeli F, Cohen J, Alvarado F (1994) Rotavirus interaction with isolated membrane vesicles. J Virol 68(6):4009–4016PubMedGoogle Scholar
  103. Ruiz MC, Abad MJ, Charpilienne A, Cohen J, Michelangeli F (1997) Cell lines susceptible to infection are permeabilized by cleaved and solubilized outer layer proteins of rotavirus. J Gen Virol 78(Pt 11):2883–2893PubMedGoogle Scholar
  104. Saif LJ, Jiang B (1994) Nongroup A rotaviruses of humans and animals. Curr Top Microbiol Immunol 185:339–371PubMedGoogle Scholar
  105. Sanchez-San Martin C, Lopez T, Arias CF, Lopez S (2004) Characterization of rotavirus cell entry. J Virol 78(5):2310–2318PubMedGoogle Scholar
  106. Sanekata T, Ahmed MU, Kader A, Taniguchi K, Kobayashi N (2003) Human group B rotavirus infections cause severe diarrhea in children and adults in Bangladesh. J Clin Microbiol 41(5):2187–2190PubMedGoogle Scholar
  107. Santos N, Hoshino Y (2005) Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol 15(1):29–56PubMedGoogle Scholar
  108. Sapin C, Colard O, Delmas O, Tessier C, Breton M, Enouf V, Chwetzoff S, Ouanich J, Cohen J, Wolf C, Trugnan G (2002) Rafts promote assembly and atypical targeting of a nonenveloped virus, rotavirus, in Caco-2 cells. J Virol 76(9):4591–4602PubMedGoogle Scholar
  109. Sen A, Kobayashi N, Das S, Krishnan T, Bhattacharya SK, Naik TN (2001) The evolution of human group B rotaviruses. Lancet 357(9251):198–199PubMedGoogle Scholar
  110. Shaw AL, Rothnagel R, Chen D, Ramig RF, Chiu W, Prasad BV (1993) Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell 74(4):693–701PubMedGoogle Scholar
  111. Shaw AL, Samal SK, Subramanian K, Prasad BV (1996) The structure of aquareovirus shows how the different geometries of the two layers of the capsid are reconciled to provide symmetrical interactions and stabilization. Structure 4(8):957–967PubMedGoogle Scholar
  112. Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110(5):597–603PubMedGoogle Scholar
  113. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569PubMedGoogle Scholar
  114. Stewart PL, Nemerow GR (2007) Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol 15(11):500–507PubMedGoogle Scholar
  115. Suzuki H, Kitaoka S, Konno T, Sato T, Ishida N (1985) Two modes of human rotavirus entry into MA 104 cells. Arch Virol 85(1–2):25–34PubMedGoogle Scholar
  116. Svensson L (1992) Group C rotavirus requires sialic acid for erythrocyte and cell receptor binding. J Virol 66(9):5582–5585PubMedGoogle Scholar
  117. Taniguchi K, Urasawa S (1995) Diversity in rotavirus genomes. Semin Virol 6(2):123–131Google Scholar
  118. Tihova M, Dryden KA, Bellamy AR, Greenberg HB, Yeager M (2001) Localization of membrane permeabilization and receptor binding sites on the VP4 hemagglutinin of rotavirus: implications for cell entry. J Mol Biol 314(5):985–992PubMedGoogle Scholar
  119. Trask SD, Dormitzer PR (2006) Assembly of highly infectious rotavirus particles recoated with recombinant outer capsid proteins. J Virol 80(22):11293–11304PubMedGoogle Scholar
  120. Triantafilou K, Takada Y, Triantafilou M (2001) Mechanisms of integrin-mediated virus attachment and internalization process. Crit Rev Immunol 21(4):311–322PubMedGoogle Scholar
  121. Tucker AW, Haddix AC, Bresee JS, Holman RC, Parashar UD, Glass RI (1998) Cost-effectiveness analysis of a rotavirus immunization program for the United States. JAMA 279(17):1371–1376PubMedGoogle Scholar
  122. Willoughby RE, Yolken RH, Schnaar RL (1990) Rotaviruses specifically bind to the neutral glycosphingolipid asialo-GM1. J Virol 64(10):4830–4835PubMedGoogle Scholar
  123. Yeager M, Dryden KA, Olson NH, Greenberg HB, Baker TS (1990) Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. J Cell Biol 110(6):2133–2144PubMedGoogle Scholar
  124. Yeager M, Berriman JA, Baker TS, Bellamy AR (1994) Three-dimensional structure of the rotavirus haemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO J 13(5):1011–1018PubMedGoogle Scholar
  125. Yoder JD, Dormitzer PR (2006) Alternative intermolecular contacts underlie the rotavirus VP5* two- to three-fold rearrangement. EMBO J 25(7):1559–1568PubMedGoogle Scholar
  126. Yolken RH, Willoughby R, Wee SB, Miskuff R, Vonderfecht S (1987) Sialic acid glycoproteins inhibit in vitro and in vivo replication of rotaviruses. J Clin Invest 79(1):148–154PubMedGoogle Scholar
  127. Zarate S, Espinosa R, Romero P, Guerrero CA, Arias CF, Lopez S (2000a) Integrin alpha2beta1 mediates the cell attachment of the rotavirus neuraminidase-resistant variant nar3. Virology 278(1):50–54PubMedGoogle Scholar
  128. Zarate S, Espinosa R, Romero P, Mendez E, Arias CF, Lopez S (2000b) The VP5 domain of VP4 can mediate attachment of rotaviruses to cells. J Virol 74(2):593–599PubMedGoogle Scholar
  129. Zarate S, Cuadras MA, Espinosa R, Romero P, Juarez KO, Camacho-Nuez M, Arias CF, Lopez S (2003) Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol 77(13):7254–7260PubMedGoogle Scholar
  130. Zarate S, Romero P, Espinosa R, Arias CF, Lopez S (2004) VP7 mediates the interaction of rotaviruses with integrin alphavbeta3 through a novel integrin-binding site. J Virol 78(20):10839–10847PubMedGoogle Scholar
  131. Zhang H, Zhang J, Yu X, Lu X, Zhang Q, Jakana J, Chen DH, Zhang X, Zhou ZH (1999) Visualization of protein-RNA interactions in cytoplasmic polyhedrosis virus. J Virol 73(2):1624–1629PubMedGoogle Scholar
  132. Zhang X, Walker SB, Chipman PR, Nibert ML, Baker TS (2003) Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Nat Struct Biol 10(12):1011–1018PubMedGoogle Scholar
  133. Zhang X, Settembre E, Xu C, Dormitzer PR, Bellamy R, Harrison SC, Grigorieff N (2008) Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci USA 105(6):1867–1872PubMedGoogle Scholar
  134. Zhou YJ, Burns JW, Morita Y, Tanaka T, Estes MK (1994) Localization of rotavirus VP4 neutralization epitopes involved in antibody-induced conformational changes of virus structure. J Virol 68(6):3955–3964PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.National Center for Macromolecular ImagingBaylor College of MedicineHoustonUSA
  2. 2.Verna and Marrs Mclean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonUSA
  3. 3.Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonUSA

Personalised recommendations