Design of Small-Molecule Smac Mimetics as IAP Antagonists

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 348)


Smac/DIABLO, discovered in 2000 as a protein released from mitochondria into the cytosol in response to apoptotic stimuli, functions as an endogenous antagonist of X-linked inhibitor of apoptosis protein (XIAP) and several other IAP proteins through direct binding. The interaction between Smac and IAPs involves the AVPI tetrapeptide binding motif on the N-terminus of Smac and a well-defined groove on the surface of these IAP proteins, providing an ideal site for the design of small-molecule Smac mimetics. Potent and cell-permeable small-molecule Smac mimetics have provided powerful pharmacological tools for study of the regulation of apoptosis by IAP proteins, and several such compounds are now in early clinical trials as new anticancer agents.


  1. Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH (2002) Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 277:44236–44243CrossRefPubMedGoogle Scholar
  2. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700CrossRefPubMedGoogle Scholar
  3. Bockbrader KM, Tan M, Sun Y (2005) A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene 24:7381–7388CrossRefPubMedGoogle Scholar
  4. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862CrossRefPubMedGoogle Scholar
  5. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Dataa P, Alnemri ES, Shi Y (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104:769–780CrossRefPubMedGoogle Scholar
  6. Chauhan D, Neri P, Velankar M, Podar K, Hideshima T, Fulciniti M, Tassone P, Raje N, Mitsiades C, Mitsiades N, Richardson P, Zawel L, Tran M, Munshi N, Anderson KC (2007) Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 109:1220–1227CrossRefPubMedGoogle Scholar
  7. Cheung HH, Mahoney DJ, Lacasse EC, Korneluk RG (2009) Down-regulation of c-FLIP enhances death of cancer cells by smac mimetic compound. Cancer Res 69:7729–7738CrossRefPubMedGoogle Scholar
  8. Deveraux QL, Reed JC (1999) IAP family proteins–suppressors of apoptosis. Genes Dev 13:239–252CrossRefPubMedGoogle Scholar
  9. Dougan M, Dougan S, Slisz J, Firestone B, Vanneman M, Draganov D, Goyal G, Li W, Neuberg D, Blumberg R, Hacohen N, Porter D, Zawel L, Dranoff G (2010) IAP inhibitors enhance co-stimulation to promote tumor immunity. J Exp Med. 207:2195–206CrossRefPubMedGoogle Scholar
  10. Du C, Fang M, Li Y, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c–dependent caspase activation by eliminating IAP inhibition. Cell 102:33CrossRefPubMedGoogle Scholar
  11. Fakler M, Loeder S, Vogler M, Schneider K, Jeremias I, Debatin KM, Fulda S (2009) Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood 113:1710–1722CrossRefPubMedGoogle Scholar
  12. Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8:808–815PubMedGoogle Scholar
  13. Gaither A, Porter D, Yao Y, Borawski J, Yang G, Donovan J, Sage D, Slisz J, Tran M, Straub C, Ramsey T, Iourgenko V, Huang A, Chen Y, Schlegel R, Labow M, Fawell S, Sellers WR, Zawel L (2007) A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res 67:11493–11498CrossRefPubMedGoogle Scholar
  14. Gao Z, Tian Y, Wang J, Yin Q, Wu H, Li YM, Jiang X (2007) A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/Diablo. J Biol Chem 282:30718–30727CrossRefPubMedGoogle Scholar
  15. Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 10:561–574CrossRefPubMedGoogle Scholar
  16. Holcik M, Gibson H, Korneluk RG (2001) XIAP: apoptotic brake and promising therapeutic target. Apoptosis 6:253–261CrossRefPubMedGoogle Scholar
  17. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H (2001) Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104:781–790PubMedGoogle Scholar
  18. Huang Y, Rich RL, Myszka DG, Wu H (2003) Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J Biol Chem 278:49517–49522CrossRefPubMedGoogle Scholar
  19. Infante JR, Dees EC, Burris III HA, Zawel L, Sager JA, Stevenson C, Clarke K, Dhuria S, Porter D, Sen SK, Zannou E, Sharma S, Cohen RB (2010) A phase I study of LCL161, an oral IAP inhibitor, in patients with advanced cancer. In: Abstract # 2775, AACR 101st Annual Meeting 2010, 17–21 April 2010, Washington, DCGoogle Scholar
  20. Kipp RA, Case MA, Wist AD, Cresson CM, Carrell M, Griner E, Wiita A, Albiniak PA, Chai J, Shi Y, Semmelhack MF, McLendon GL (2002) Molecular targeting of inhibitors of apoptosis proteins based on small molecule mimics of natural binding partners. Biochemistry 41:7344–7349CrossRefPubMedGoogle Scholar
  21. Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG (2004) A small molecule smac mimic potentiates TRAIL- and TNFα-mediated cell death. Science 305:1471–1474CrossRefPubMedGoogle Scholar
  22. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408:1004CrossRefPubMedGoogle Scholar
  23. Loeder S, Drensek A, Jeremias I, Debatin KM, Fulda S (2010) Small molecule XIAP inhibitors sensitize childhood acute leukemia cells for CD95-induced apoptosis. Int J Cancer 126:2216–2228PubMedGoogle Scholar
  24. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495CrossRefPubMedGoogle Scholar
  25. Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S (2008) SM-164: a novel, bivalent Smac mimetic induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP1/2 and XIAP. Cancer Res 68:9384–9393CrossRefPubMedGoogle Scholar
  26. Ndubaku C, Varfolomeev E, Wang L, Zobel K, Lau K, Elliott LO, Maurer B, Fedorova AV, Dynek JN, Koehler M, Hymowitz SG, Tsuis V, Deshayes K, Fairbrother WJ, Flygare JA, Vucic D (2009) Antagonism of c-IAP and XIAP proteins is required for efficient induction of cell death by small-molecule IAP antagonists. ACS Chem Biol 4:557–566CrossRefPubMedGoogle Scholar
  27. Nicholson DW (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407:810–816CrossRefPubMedGoogle Scholar
  28. Nikolovska-Coleska Z, Meagher JL, Jiang S, Yang C-Y, Qiu S, Roller PP, Stuckey JA, Wang S (2008) Interaction of a cyclic, bivalent Smac mimetic with the X-linked inhibitor of apoptosis protein. Biochemistry 47:9811–9824CrossRefPubMedGoogle Scholar
  29. Oost TK, Sun C, Armstrong RC, Al-assaad AS, Bentz SF, Deckwerth TL, Ding H, Elmore SW, Meadows RP, Olejniczak ET, Oleksijew A, Oltersdorf T, Rosenberg SH, Shoemaker AR, Tomaselli KJ, Zou H, Fesik SW (2004) Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 47:4417CrossRefPubMedGoogle Scholar
  30. Peng Y, Sun H, Nikolovska-Coleska Z, Qiu S, Yang C-Y, Lu J, Cai Q, Yi H, Wang S (2008) Design, synthesis and evaluation of potent and orally bioavailable diazabicyclic smac mimetics. J Med Chem 51:8158–8162CrossRefPubMedGoogle Scholar
  31. Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J, Harran P, Wang X (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12:445–456CrossRefPubMedGoogle Scholar
  32. Ponder BA (2001) Cancer genetics. Nature 411:336–341CrossRefPubMedGoogle Scholar
  33. Probst BL, Liu L, Ramesh V, Li L, Sun H, Minna JD, Wang L (2010) Smac mimetics increase cancer cell response to chemotherapeutics in a TNF-α-dependent manner. Cell Death Differ 17:1645–1654CrossRefPubMedGoogle Scholar
  34. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104:791–800CrossRefPubMedGoogle Scholar
  35. Salvesen GS, Duckett CS (2002) Apoptosis: IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3:401CrossRefPubMedGoogle Scholar
  36. Scott FL, Denault J-B, Riedl SJ, Shin H, Renatus M, Salvesen GS (2005) XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 24:645–655CrossRefPubMedGoogle Scholar
  37. Shiozaki EN, Shi Y (2004) Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci 29:486–494CrossRefPubMedGoogle Scholar
  38. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R, Shi Y (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11:519–527CrossRefPubMedGoogle Scholar
  39. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112–116CrossRefPubMedGoogle Scholar
  40. Srinivasula, SM, Ashwell, JD (2008) IAPs: what’s in a name? Mol. Cell. 30:123–135CrossRefPubMedGoogle Scholar
  41. Sun H, Nikolovska-Coleska Z, Yang C-Y, Xu L, Liu M, Tomita Y, Pan H, Yoshioka Y, Krajewski K, Roller PP, Wang S (2004a) Structure-based design of potent, conformationally constrained smac mimetics. J Am Chem Soc 126:16686CrossRefPubMedGoogle Scholar
  42. Sun H, Nikolovska-Coleska Z, Yang C-Y, Xu L, Tomita Y, Krajewski K, Roller PP, Wang S (2004b) Structure-based design, synthesis, and evaluation of conformationally constrained mimetics of the second mitochondria-derived activator of caspase that target the X-linked inhibitor of apoptosis protein/caspase-9 interaction site. J Med Chem 47:4147–4150CrossRefPubMedGoogle Scholar
  43. Sun H, Nikolovska-Coleska Z, Lu J, Qiu S, Yang C-Y, Gao W, Meagher J, Stuckey J, Wang S (2006) Design, synthesis, and evaluation of a potent, cell-permeable, conformationally constrained second mitochondria derived activator of caspase (Smac) mimetic. J Med Chem 49:7916–7920CrossRefPubMedGoogle Scholar
  44. Sun H, Nikolovska-Coleska Z, Lu J, Meagher JL, Yang C-Y, Qiu S, Tomita Y, Ueda Y, Jiang S, Krajewski K, Roller PP, Stuckey JA, Wang S (2007) Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. J Am Chem Soc 129:15279–15294CrossRefPubMedGoogle Scholar
  45. Sun H, Stuckey JA, Nikolovska-Coleska Z, Qin D, Meagher JL, Qiu S, Lu J, Yang C-Y, Saito NG, Wang S (2008) Structure-based design, synthesis, evaluation and crystallographic studies of conformationally constrained Smac mimetics as inhibitors of the X-linked inhibitor of apoptosis protein (XIAP). J Med Chem 51:7169–7180CrossRefPubMedGoogle Scholar
  46. Sun W, Nikolovska-Coleska Z, Qin D, Sun H, Yang C-Y, Bai L, Qiu S, Ma D, Wang S (2009) Design, synthesis and evaluation of potent, non-peptidic Smac mimetics. J Med Chem 52: 593–596CrossRefPubMedGoogle Scholar
  47. Sun H, Lu J, Liu L, Yi H, Qiu S, Yang C-Y, Deschamps JR, Wang S (2010) Nonpeptidic and potent small-molecule inhibitors of cIAP-1/2 and XIAP proteins. J Med Chem 53:6361–6367CrossRefPubMedGoogle Scholar
  48. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, Andreeff M, Reed JC (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6:1796–1803PubMedGoogle Scholar
  49. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, Flygare JA, Fairbrother WJ, Deshayes K, Dixit VM, Vucic D (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131:669–681CrossRefPubMedGoogle Scholar
  50. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43CrossRefPubMedGoogle Scholar
  51. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693CrossRefPubMedGoogle Scholar
  52. Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, Gschwend JE, Simmet T, Debatin KM, Fulda S (2008) Targeting XIAP bypasses Bcl-2-mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo. Cancer Res 68:7956–7965CrossRefPubMedGoogle Scholar
  53. Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133:693–703CrossRefPubMedGoogle Scholar
  54. Yang L, Mashima T, Sato S, Mochizuki M, Sakamoto H, Yamori T, Oh-Hara T, Tsuruo T (2003) Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res 63:831–837PubMedGoogle Scholar
  55. Zhang B, Nikolovska-Coleska Z, Zhang Y, Bai L, Qiu S, Yang C-Y, Sun H, Wang S, Yikang Wu Y (2008) J Med Chem 51:7352–7355CrossRefPubMedGoogle Scholar
  56. Zobel K, Wang L, Varfolomeev E, Franklin MC, Elliott LO, Wallweber HJ, Okawa DC, Flygare JA, Vucic D, Fairbrother WJ, Deshayes K (2006) Design, synthesis, and biological activity of a potent Smac mimetic that sensitizes cancer cells to apoptosis by antagonizing IAPs. ACS Chem Biol 1:525–533CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Comprehensive Cancer CenterUniversity of MichiganAnn ArborUSA
  2. 2.Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  3. 3.Department of PharmacologyUniversity of MichiganAnn ArborUSA
  4. 4.Department of Medicinal ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations