NF-κB as a Target for Oncogenic Viruses

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 349)


NF-κB is a pivotal transcription factor that controls cell survival and proliferation in diverse physiological processes. The activity of NF-κB is tightly controlled through its cytoplasmic sequestration by specific inhibitors, IκBs. Various cellular stimuli induce the activation of an IκB kinase, which phosphorylates IκBs and triggers their proteasomal degradation, causing nuclear translocation of activated NF-κB. Under normal conditions, the activation of NF-κB occurs transiently, thus ensuring rapid but temporary induction of target genes. Deregulated NF-κB activation contributes to the development of various diseases, including cancers and immunological disorders. Accumulated studies demonstrate that the NF-κB signaling pathway is a target of several human oncogenic viruses, including the human T cell leukemia virus type 1, the Kaposi sarcoma-associated herpesvirus, and the Epstein–Bar virus. These viruses encode specific oncoproteins that target different signaling components of the NF-κB pathway, leading to persistent activation of NF-κB. This chapter will discuss the molecular mechanisms by which NF-κB is activated by the viral oncoproteins.



IκB kinase


Human T cell leukemia virus type 1


Kaposi sarcoma-associated herpesvirus


Epstein–Bar virus


Inhibitory κB


Adult T cell leukemia




Long-terminal repeat


T cell receptor


Lysine 63


Ubiquitin association


Tak1-binding protein 2


Leucine zipper


NEMO-related protein


NF-κB inducing kinase


HTLV1 basic leucine zipper


PI3 kinase


Multicentric Castleman’s disease


Kaposi’s sarcoma


Highly active antiretroviral treatment


Latency-associated nuclear antigen


Primary effusion lymphomas


Viral cyclin


Viral FLICE inhibitor protein


G-protein coupled receptor


Tetradecanoyl phorbol acetate


Death effector domains


Death-inducing signaling complex


Lymphoblastoid cell line


EBV-encoded nuclear antigen


Latent membrane protein


Burkitt lymphoma


Post-transplantation lymphoproliferative disorders


Non-Hodgkin lymphoma


Diffuse large B cell lymphoma






Primary central nervous system lymphoma


T/natural killer


Hodgkin lymphoma


Nasopharyngeal carcinoma


Complement receptor type 2


Protein kinase C


Lymphoblastoid cell lines


Peripheral blood mononuclear cells


Toll-like receptor


C-Terminal-activating region


B cell receptor


Mitogen-activated protein


Hen egg lysozyme


Ribonucleoprotein Smith


  1. Adhikari A, Xu M, Chen ZJ (2007) Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26:3214–3226PubMedGoogle Scholar
  2. Ariza ME, Glaser R, Kaumaya PT, Jones C, Williams MV (2009) The EBV-encoded dUTPase activates NF-kappa B through the TLR2 and MyD88-dependent signaling pathway. J Immunol 182:851–859PubMedGoogle Scholar
  3. Arnold J, Zimmerman B, Li M, Lairmore MD, Green PL (2008) Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation. Blood 112:3788–3797PubMedGoogle Scholar
  4. Arvanitakis L, Mesri EA, Nador R, Said JW, Asch AS, Knowles DM, Cesarman E (1996) Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein–Barr virus. Blood 88:2648–2654PubMedGoogle Scholar
  5. Babcock GJ, Hochberg D, Thorley-Lawson AD (2000) The expression pattern of Epstein–Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13:497–506PubMedGoogle Scholar
  6. Babu G, Waterfield M, Chang M, Wu X, Sun S-C (2006) Deregulated activation of oncoprotein kinase Tpl2/Cot in HTLV-I-transformed T cells. J Biol Chem 281:14041–14047PubMedGoogle Scholar
  7. Bagneris C, Ageichik AV, Cronin N, Wallace B, Collins M, Boshoff C, Waksman G, Barrett T (2008) Crystal structure of a vFlip–IKKgamma complex: insights into viral activation of the IKK signalosome. Mol Cell 30:620–631PubMedGoogle Scholar
  8. Baldwin A S Jr (1996) The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 14:649–683PubMedGoogle Scholar
  9. Beinke S, Ley SC (2004) Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J 382:393–409PubMedGoogle Scholar
  10. Béraud C, Sun S-C, Ganchi PA, Ballard DW, Greene WC (1994) Human T-cell leukemia virus type I Tax associates with and is negatively regulated by the NF-κB2 p100 gene product: implications for viral latency. Mol Cell Biol 14:1374–1382PubMedGoogle Scholar
  11. Bhende PM, Dickerson SJ, Sun X, Feng WH, Kenney SC (2007) X-box-binding protein 1 activates lytic Epstein–Barr virus gene expression in combination with protein kinase D. J Virol 81:7363–7370PubMedGoogle Scholar
  12. Boshoff C, Weiss RA (1998) Kaposi’s sarcoma-associated herpesvirus. Adv Cancer Res 75:57–86PubMedGoogle Scholar
  13. Boshoff C, Gao SJ, Healy LE, Matthews S, Thomas AJ, Coignet L, Warnke RA, Strauchen JA, Matutes E, Kamel OW, Moore PS, Weiss RA, Chang Y (1998) Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in Nod/SCID mice. Blood 91:1671–1679PubMedGoogle Scholar
  14. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V (2009) A review of human carcinogens—Part B: biological agents. Lancet Oncol 10:321–322PubMedGoogle Scholar
  15. Brielmeier M, Mautner J, Laux G, Hammerschmidt W (1996) The latent membrane protein 2 gene of Epstein–Barr virus is important for efficient B cell immortalization. J Gen Virol 77(Pt 11):2807–2818PubMedGoogle Scholar
  16. Brousset P, Cesarman E, Meggetto F, Lamant L, Delsol G (2001) Colocalization of the viral interleukin-6 with latent nuclear antigen-1 of human herpesvirus-8 in endothelial spindle cells of Kaposi’s sarcoma and lymphoid cells of multicentric Castleman’s disease. Hum Pathol 32:95–100PubMedGoogle Scholar
  17. Brown HJ, Song MJ, Deng H, Wu TT, Cheng G, Sun R (2003) NF-kappaB inhibits gammaherpesvirus lytic replication. J Virol 77:8532–8540PubMedGoogle Scholar
  18. Burmeister T (2001) Oncogenic retroviruses in animals and humans. Rev Med Virol 11:369–380PubMedGoogle Scholar
  19. Cahir McFarland ED, Izumi KM, Mosialos G (1999) Epstein–Barr virus transformation: involvement of latent membrane protein 1-mediated activation of NF-kappaB. Oncogene 18:6959–6964PubMedGoogle Scholar
  20. Cahir-McFarland ED, Davidson DM, Schauer SL, Duong J, Kieff E (2000) NF-kappa B inhibition causes spontaneous apoptosis in Epstein–Barr virus-transformed lymphoblastoid cells. Proc Natl Acad Sci USA 97:6055–6060PubMedGoogle Scholar
  21. Cahir-McFarland ED, Carter K, Rosenwald A, Giltnane JM, Henrickson SE, Staudt LM, Kieff E (2004) Role of NF-kappa B in cell survival and transcription of latent membrane protein 1-expressing or Epstein–Barr virus latency III-infected cells. J Virol 78:4108–4119PubMedGoogle Scholar
  22. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102:5570–5575PubMedGoogle Scholar
  23. Caldwell RG, Wilson JB, Anderson SJ, Longnecker R (1998) Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9:405–411PubMedGoogle Scholar
  24. Caldwell RG, Brown RC, Longnecker R (2000) Epstein–Barr virus LMP2A-induced B-cell survival in two unique classes of EmuLMP2A transgenic mice. J Virol 74:1101–1113PubMedGoogle Scholar
  25. Cannon ML, Cesarman E (2004) The KSHV G protein-coupled receptor signals via multiple pathways to induce transcription factor activation in primary effusion lymphoma cells. Oncogene 23:514–523PubMedGoogle Scholar
  26. Cannon JS, Nicholas J, Orenstein JM, Mann RB, Murray PG, Browning PJ, DiGiuseppe JA, Cesarman E, Hayward GS, Ambinder RF (1999) Heterogeneity of viral IL-6 expression in HHV-8-associated diseases. J Infect Dis 180:824–828PubMedGoogle Scholar
  27. Cannon JS, Ciufo D, Hawkins AL, Griffin CA, Borowitz MJ, Hayward GS, Ambinder RF (2000) A new primary effusion lymphoma-derived cell line yields a highly infectious Kaposi’s sarcoma herpesvirus-containing supernatant. J Virol 74:10187–10193PubMedGoogle Scholar
  28. Cannon M, Cesarman E, Boshoff C (2006) KSHV G protein-coupled receptor inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated inhibition of Cdk2. Blood 107:277–284PubMedGoogle Scholar
  29. Carbone A (2003) Emerging pathways in the development of AIDS-related lymphomas. Lancet Oncol 4:22–29PubMedGoogle Scholar
  30. Carbone A, Gaidano G, Gloghini A, Larocca LM, Capello D, Canzonieri V, Antinori A, Tirelli U, Falini B, Dalla-Favera R (1998) Differential expression of BCL-6, CD138/syndecan-1, and Epstein–Barr virus-encoded latent membrane protein-1 identifies distinct histogenetic subsets of acquired immunodeficiency syndrome-related non-Hodgkin’s lymphomas. Blood 91:747–755PubMedGoogle Scholar
  31. Carbone A, Gloghini A, Vaccher E, Cerri M, Gaidano G, Dalla-Favera R, Tirelli U (2005) Kaposi’s sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma. J Mol Diagn 7:17–27PubMedGoogle Scholar
  32. Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF (2009) HIV-associated lymphomas and gamma-herpesviruses. Blood 113:1213–1224PubMedGoogle Scholar
  33. Carter RS, Pennington KN, Ungurait BJ, Arrate P, Ballard DW (2003) Signal-induced ubiquitination of I kappaB kinase-beta. J Biol Chem 278:48903–48906PubMedGoogle Scholar
  34. Carter RS, Pennington KN, Arrate P, Oltz EM, Ballard DW (2005) Site-specific monoubiquitination of IkappaB kinase IKKbeta regulates its phosphorylation and persistent activation. J Biol Chem 280:43272–43279PubMedGoogle Scholar
  35. Cereseto A, Diella F, Mulloy JC, Cara A, Michieli P, Grassmann R, Franchini G, Klotman ME (1996) p53 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells. Blood 88:1551–1560PubMedGoogle Scholar
  36. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995a) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body cavity-based lymphomas. N Engl J Med 332:1186–1191PubMedGoogle Scholar
  37. Cesarman E, Moore PS, Rao P, Inghirami G, Knowles DM, Chang Y (1995b) In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86:2708–2714PubMedGoogle Scholar
  38. Chadburn A, Hyjek E, Mathew S, Cesarman E, Said J, Knowles DM (2004) KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am J Surg Pathol 28:1401–1416PubMedGoogle Scholar
  39. Chan AT, Lo YM, Zee B, Chan LY, Ma BB, Leung SF, Mo F, Lai M, Ho S, Huang DP, Johnson PJ (2002) Plasma Epstein–Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J Natl Cancer Inst 94:1614–1619PubMedGoogle Scholar
  40. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869PubMedGoogle Scholar
  41. Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583PubMedGoogle Scholar
  42. Chaudhary PM, Jasmin A, Eby MT, Hood L (1999a) Modulation of the NF-kappa B pathway by virally encoded death effector domains-containing proteins. Oncogene 18:5738–5746PubMedGoogle Scholar
  43. Chaudhary PM, Jasmin A, Eby MT, Hood L (1999b) Modulation of the NF-kappa B pathway by virally encoded death effector domains-containing proteins. Oncogene 14:5738–5746Google Scholar
  44. Chen ZJ (2005) Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7:758–765PubMedGoogle Scholar
  45. Chen G, Cao P, Goeddel DV (2002a) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9:401–410PubMedGoogle Scholar
  46. Chen SY, Lu J, Shih YC, Tsai CH (2002b) Epstein–Barr virus latent membrane protein 2A regulates c-Jun protein through extracellular signal-regulated kinase. J Virol 76:9556–9561PubMedGoogle Scholar
  47. Chen ZJ, Bhoj V, Seth RB (2006) Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 13:687–692PubMedGoogle Scholar
  48. Chu Z-L, DiDonato JA, Hawiger J, Ballard DW (1998) The Tax oncoprotein of human T-cell leukemia virus type 1 associates with and persistently activates IκB kinases containing IKKα and IKKβ. J Biol Chem 273:15891–15894PubMedGoogle Scholar
  49. Chu Z-L, Shin Y-A, Yang J-M, DiDonato JA, Ballard DW (1999) IKKγ mediates the interaction of cellular IκB kinases with the Tax transforming protein of human T cell leukemia virus type 1. J Biol Chem 274:15297–15300PubMedGoogle Scholar
  50. Chugh P, Matta H, Schamus S, Zachariah S, Kumar A, Richardson JA, Smith AL, Chaudhary PM (2005) Constitutive NF-{kappa}B activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice. Proc Natl Acad Sci USA 102:12885–12890PubMedGoogle Scholar
  51. Claudio E, Brown K, Park S, Wang H, Siebenlist U (2002) BAFF-induced NEMO-independent processing of NF-kappaB2 in maturing B cells. Nat Immunol 3:958–965PubMedGoogle Scholar
  52. Coope HJ, Atkinson PG, Huhse B, Belich M, Janzen J, Holman MJ, Klaus GG, Johnston LH, Ley SC (2002) CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 15:5375–5385Google Scholar
  53. Coornaert B, Carpentier I, Beyaert R (2009) A20: central gatekeeper in inflammation and immunity. J Biol Chem 284:8217–8221PubMedGoogle Scholar
  54. Cross SL, Feinberg MB, Wolf JB, Holbrook NJ, Wong-Staal F, Leonard WJ (1987) Regulation of the human interleukin-2 receptor a chain promoter: activation of a non functional promoter by the transactivator gene of HTLV-1. Cell 49:47–56PubMedGoogle Scholar
  55. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ, Greiner TC, Weisenburger DD, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Delabie J, Rimsza LM, Braziel RM, Grogan TM, Campo E, Jaffe ES, Dave BJ, Sanger W, Bast M, Vose JM, Armitage JO, Connors JM, Smeland EB, Kvaloy S, Holte H, Fisher RI, Miller TP, Montserrat E, Wilson WH, Bahl M, Zhao H, Yang L, Powell J, Simon R, Chan WC, Staudt LM (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354:2431–2442PubMedGoogle Scholar
  56. Dawson CW, George JH, Blake SM, Longnecker R, Young LS (2001) The Epstein–Barr virus encoded latent membrane protein 2A augments signaling from latent membrane protein 1. Virology 289:192–207PubMedGoogle Scholar
  57. de La Fuente C, Deng L, Santiago F, Arce L, Wang L, Kashanchi F (2000) Gene expression array of HTLV type 1-infected T cells: up-regulation of transcription factors and cell cycle genes. AIDS Res Hum Retroviruses 16:1695–1700PubMedGoogle Scholar
  58. Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, Li ZW, Karin M, Ware CF, Green DR (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17:525–535PubMedGoogle Scholar
  59. Deloose ST, Smit LA, Pals FT, Kersten MJ, van Noesel CJ, Pals ST (2005) High incidence of Kaposi sarcoma-associated herpesvirus infection in HIV-related solid immunoblastic/plasmablastic diffuse large B-cell lymphoma. Leukemia 19:851–855PubMedGoogle Scholar
  60. Dittmer D, Lagunoff M, Renne R, Staskus K, Haase A, Ganem D (1998) A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus. J Virol 72:8309–8315PubMedGoogle Scholar
  61. Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A (1999) The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 190:1025–1032 (see comments)PubMedGoogle Scholar
  62. Dong J, Zhong H, Hayden MS, Ghosh G (2008) Repression of gene expression by unphosphorylated NF-κB p65 through epigenetic mechanisms. Genes Dev 22:1159–1173PubMedGoogle Scholar
  63. Doxsey S, McCollum D, Theurkauf W (2005) Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 21:411–434PubMedGoogle Scholar
  64. Du MQ, Liu H, Diss TC, Ye H, Hamoudi RA, Dupin N, Meignin V, Oksenhendler E, Boshoff C, Isaacson PG (2001) Kaposi sarcoma-associated herpesvirus infects monotypic (IgM lambda) but polyclonal naive B cells in Castleman disease and associated lymphoproliferative disorders. Blood 97:2130–2136PubMedGoogle Scholar
  65. Du MQ, Diss TC, Liu H, Ye H, Hamoudi RA, Cabecadas J, Dong HY, Harris NL, Chan JK, Rees JW, Dogan A, Isaacson PG (2002) KSHV- and EBV-associated germinotropic lymphoproliferative disorder. Blood 100:3415–3418PubMedGoogle Scholar
  66. Dupin N, Fisher C, Kellam P, Ariad S, Tulliez M, Franck N, van Marck E, Salmon D, Gorin I, Escande JP, Weiss RA, Alitalo K, Boshoff C (1999) Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci USA 96:4546–4551PubMedGoogle Scholar
  67. Dupin N, Diss TL, Kellam P, Tulliez M, Du MQ, Sicard D, Weiss RA, Isaacson PG, Boshoff C (2000) HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood 95:1406–1412PubMedGoogle Scholar
  68. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22:245–257PubMedGoogle Scholar
  69. Elenitoba-Johnson KS, Zarate-Osorno A, Meneses A, Krenacs L, Kingma DW, Raffeld M, Jaffe ES (1998) Cytotoxic granular protein expression, Epstein–Barr virus strain type, and latent membrane protein-1 oncogene deletions in nasal T-lymphocyte/natural killer cell lymphomas from Mexico. Mod Pathol 11:754–761PubMedGoogle Scholar
  70. Eltom MA, Jemal A, Mbulaiteye SM, Devesa SS, Biggar RJ (2002) Trends in Kaposi’s sarcoma and non-Hodgkin’s lymphoma incidence in the United States from 1973 through 1998. J Natl Cancer Inst 94:1204–1210PubMedGoogle Scholar
  71. Engels EA, Pittaluga S, Whitby D, Rabkin C, Aoki Y, Jaffe ES, Goedert JJ (2003) Immunoblastic lymphoma in persons with AIDS-associated Kaposi’s sarcoma: a role for Kaposi’s sarcoma-associated herpesvirus. Mod Pathol 16:424–429PubMedGoogle Scholar
  72. Feuer G, Green PL (2005) Comparative biology of human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2. Oncogene 24:5996–6004PubMedGoogle Scholar
  73. Feuillard J, Schuhmacher M, Kohanna S, Asso-Bonnet M, Ledeur F, Joubert-Caron R, Bissieres P, Polack A, Bornkamm GW, Raphael M (2000) Inducible loss of NF-kappaB activity is associated with apoptosis and Bcl-2 down-regulation in Epstein–Barr virus-transformed B lymphocytes. Blood 95:2068–2075PubMedGoogle Scholar
  74. Field N, Low W, Daniels M, Howell S, Daviet L, Boshoff C, Collins M (2003) KSHV vFLIP binds to IKK-gamma to activate IKK. J Cell Sci 116:3721–3728PubMedGoogle Scholar
  75. Flore O, Rafii S, Ely S, O’Leary JJ, Hyjek EM, Cesarman E (1998) Transformation of primary human endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Nature 394:588–592PubMedGoogle Scholar
  76. Franchini G, Nicot C, Johnson JM (2003) Seizing of T cells by human T-cell leukemia/lymphoma virus type 1. Adv Cancer Res 89:69–132PubMedGoogle Scholar
  77. Fruehling S, Longnecker R (1997) The immunoreceptor tyrosine-based activation motif of Epstein–Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235:241–251PubMedGoogle Scholar
  78. Fukuda M, Longnecker R (2007) Epstein–Barr virus (EBV) Latent membrane protein 2A mediates transformation through constitutive activation of the Ras/PI3-K/Akt Pathway. J Virol 81:9299–9306Google Scholar
  79. Fukuda RI, Tsuchiya K, Suzuki K, Itoh K, Fujita J, Utsunomiya A, Tsuji T (2009) Human T-cell leukemia virus type I tax down-regulates the expression of phosphatidylinositol 3,4,5-trisphosphate inositol phosphatases via the NF-kappaB pathway. J Biol Chem 284:2680–2689PubMedGoogle Scholar
  80. Gaide O, Favier B, Legler DF, Bonnet D, Brissoni B, Valitutti S, Bron C, Tschopp J, Thome M (2002) CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation. Nat Immunol 3:836–843PubMedGoogle Scholar
  81. Gartenhaus RB, Wang P (1995) Functional inactivation of wild-type p53 protein correlates with loss of IL-2 dependence in HTLV-I transformed human T lymphocytes. Leukemia 9:2082–2086PubMedGoogle Scholar
  82. Geleziunas R, Ferrell S, Lin X, Mu Y, Cunningham E T Jr, Grant M, Connelly MA, Hambor JE, Marcu KB, Greene WC (1998) Human T-cell leukemia virus type 1 Tax induction of NF-κB involves activation of the IkB kinase α (IKKα) and IKKβ cellular kinases. Mol Cell Biol 18:5157–5165PubMedGoogle Scholar
  83. Gires O, Zimber-Strobl U, Gonnella R, Ueffing M, Marschall G, Zeidler R, Pich D, Hammerschmidt W (1997) Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J 16:6131–6140PubMedGoogle Scholar
  84. Godfrey A, Anderson J, Papanastasiou A, Takeuchi Y, Boshoff C (2005) Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood 105:2510–2518PubMedGoogle Scholar
  85. Grassmann R, Dengler C, Müller-Fleckenstein I, Fleckenstein B, McGuire K, Dokhelar M-C, Sodroski JG, Haseltine WA (1989) Transformation to continuous growth of primary human T-lymphocytes by human T-cell leukemia virus type I X-region gene transduced by a herpesvirus saimiri vector. Proc Natl Acad Sci USA 86:3351–3355PubMedGoogle Scholar
  86. Grassmann R, Berchtold S, Radant I, Alt M, Fleckenstein B, Sodroski JG, Haseltine WA, Ramstedt U (1992) Role of human T-cell leukemia virus type I x region proteins in immortalization of primary human lymphocytes in culture. J Virol 66:4570–4575PubMedGoogle Scholar
  87. Guasparri I, Keller SA, Cesarman E (2004) KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med 199:993–1003PubMedGoogle Scholar
  88. Guasparri I, Wu H, Cesarman E (2006) The KSHV oncoprotein vFLIP contains a TRAF-interacting motif and requires TRAF2 and TRAF3 for signalling. EMBO Rep 7:114–119PubMedGoogle Scholar
  89. Guasparri I, Bubman D, Cesarman E (2008) EBV LMP2A affects LMP1-mediated NF-kappaB signaling and survival of lymphoma cells by regulating TRAF2 expression. Blood 111:3813–3820PubMedGoogle Scholar
  90. Hall PA, Donaghy M, Cotter FE, Stansfeld AG, Levison DA (1989) An immunohistological and genotypic study of the plasma cell form of Castleman’s disease. Histopathology 14:333–346 (discussion 429–432)Google Scholar
  91. Hara H, Bakal C, Wada T, Bouchard D, Rottapel R, Saito T, Penninger JM (2004) The molecular adapter Carma1 controls entry of IkappaB kinase into the central immune synapse. J Exp Med 200:1167–1177PubMedGoogle Scholar
  92. Harhaj EW, Sun S-C (1999) IKKg serves as a docking subunit of the IkB kinase and mediates interaction of IKK with the human T-cell leukemia virus Tax protein. J Biol Chem 274:22911–22914PubMedGoogle Scholar
  93. Harhaj EW, Good L, Xiao G, Sun S-C (1999) Gene expression profiles in HTLV-I-immortalized T cells: deregulated expression of genes involved in apoptosis regulation. Oncogene 18:1341–1349PubMedGoogle Scholar
  94. Harhaj NS, Sun SC, Harhaj EW (2007) Activation of NF-kappa B by the human T cell leukemia virus type I (HTLV-I) tax oncoprotein is associated with ubiquitin-dependent relocalization of IKK. J Biol Chem 282:4185–4192PubMedGoogle Scholar
  95. Harris NL (1998) The many faces of Hodgkin’s disease around the world: what have we learned from its pathology? Ann Oncol 9:S45–S56PubMedGoogle Scholar
  96. Hasegawa H, Sawa H, Lewis MJ, Orba Y, Sheehy N, Yamamoto Y, Ichinohe T, Tsunetsugu-Yokota Y, Katano H, Takahashi H, Matsuda J, Sata T, Kurata T, Nagashima K, Hall WW (2006) Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med 12:466–472PubMedGoogle Scholar
  97. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362PubMedGoogle Scholar
  98. Higuchi M, Tsubata C, Kondo R, Yoshida S, Takahashi M, Oie M, Tanaka Y, Mahieux R, Matsuoka M, Fujii M (2007) Cooperation of NF-kappaB2/p100 activation and the PDZ domain binding motif signal in human T-cell leukemia virus type 1 (HTLV-1) Tax1 but not HTLV-2 Tax2 is crucial for interleukin-2-independent growth transformation of a T-cell line. J Virol 81:11900–11907PubMedGoogle Scholar
  99. Hironaka N, Mochida K, Mori N, Maeda M, Yamamoto N, Yamaoka S (2004) Tax-independent constitutive IkappaB kinase activation in adult T-cell leukemia cells. Neoplasia 6:266–278PubMedGoogle Scholar
  100. Ho JW, Ho FC, Chan AC, Liang RH, Srivastava G (1998) Frequent detection of Epstein–Barr virus-infected B cells in peripheral T-cell lymphomas. J Pathol 185:79–85PubMedGoogle Scholar
  101. Homig-Holzel C, Hojer C, Rastelli J, Casola S, Strobl LJ, Muller W, Quintanilla-Martinez L, Gewies A, Ruland J, Rajewsky K, Zimber-Strobl U (2008) Constitutive CD40 signaling in B cells selectively activates the noncanonical NF-kappaB pathway and promotes lymphomagenesis. J Exp Med 205:1317–1329PubMedGoogle Scholar
  102. Horie R (2007) NF-kappaB in pathogenesis and treatment of adult T-cell leukemia/lymphoma. Int Rev Immunol 26:269–281PubMedGoogle Scholar
  103. Huang GJ, Zhang ZQ, Jin DY (2002) Stimulation of IKK-gamma oligomerization by the human T-cell leukemia virus oncoprotein Tax. FEBS Lett 531:494–498PubMedGoogle Scholar
  104. Huang J, Ren T, Guan H, Jiang Y, Cheng H (2009) HTLV-1 Tax is a critical lipid raft modulator that hijacks IkappaB kinases to the microdomains for persistent activation of NF-kappaB. J Biol Chem 284:6208–6217PubMedGoogle Scholar
  105. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, Bernd HW, Cogliatti SB, Dierlamm J, Feller AC, Hansmann ML, Haralambieva E, Harder L, Hasenclever D, Kuhn M, Lenze D, Lichter P, Martin-Subero JI, Moller P, Muller-Hermelink HK, Ott G, Parwaresch RM, Pott C, Rosenwald A, Rosolowski M, Schwaenen C, Sturzenhofecker B, Szczepanowski M, Trautmann H, Wacker HH, Spang R, Loeffler M, Trumper L, Stein H, Siebert R (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354:2419–2430PubMedGoogle Scholar
  106. Inoue J, Seiki M, Taniguchi T, Tsuru S, Yoshida M (1986) Induction of interleukin-2 receptor gene expression by p40x encoded by human T-cell leukemia virus type I. EMBO J 5:2883–2888PubMedGoogle Scholar
  107. Izumiya Y, Izumiya C, Hsia D, Ellison TJ, Luciw PA, Kung HJ (2009) NF-kappaB serves as a cellular sensor of Kaposi’s sarcoma-associated herpesvirus latency and negatively regulates K-Rta by antagonizing the RBP-Jkappa coactivator. J Virol 83:4435–4446PubMedGoogle Scholar
  108. Jaffe ES, Krenacs L, Kumar S, Kingma DW, Raffeld M (1999) Extranodal peripheral T-cell and NK-cell neoplasms. Am J Clin Pathol 111:S46–S55PubMedGoogle Scholar
  109. Jeang KT (2001) Functional activities of the human T-cell leukemia virus type I Tax oncoprotein: cellular signaling through NF-kappa B. Cytokine Growth Factor Rev 12:207–217PubMedGoogle Scholar
  110. Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN (2005a) A Novel NF-{kappa}B Pathway Involving IKK{beta} and p65/RelA Ser-536 phosphorylation results in p53 inhibition in the absence of NF-{kappa}B transcriptional activity. J Biol Chem 280:10326–19332PubMedGoogle Scholar
  111. Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN (2005b) Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24:6719–6728PubMedGoogle Scholar
  112. Jin D-Y, Giordano V, Kibler KV, Nakano H, Jeang K-T (1999) Role of adaptor function in oncoprotein-mediated activation of NF-κB: HTLV-I Tax interacts directly with IκB kinase γ. J Biol Chem 274:17402–17405PubMedGoogle Scholar
  113. Johansson P, Jansson A, Ruetschi U, Rymo L (2009) Nuclear factor-kappaB binds to the Epstein–Barr virus LMP1 promoter and upregulates its expression. J Virol 83:1393–1401PubMedGoogle Scholar
  114. Journo C, Filipe J, About F, Chevalier SA, Afonso PV, Brady JN, Flynn D, Tangy F, Israël A, Vidalain PO, Mahieux R, Weil R (2009) NRP/optineurin cooperates with TAX1BP1 to potentiate the activation of NF-kappaB by human T-lymphotropic virus type 1 tax protein. PLoS Pathog 5:e1000521Google Scholar
  115. Kanegane H, Yachie A, Miyawaki T, Tosato G (1998) EBV-NK cells interactions and lymphoproliferative disorders. Leuk Lymphoma 29:491–498PubMedGoogle Scholar
  116. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663PubMedGoogle Scholar
  117. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759PubMedGoogle Scholar
  118. Katano H, Sato Y, Kurata T, Mori S, Sata T (1999) High expression of HHV-8-encoded ORF73 protein in spindle-shaped cells of Kaposi’s sarcoma. Am J Pathol 155:47–52PubMedGoogle Scholar
  119. Katano H, Sato Y, Kurata T, Mori S, Sata T (2000) Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi’s sarcoma, and multicentric Castleman’s disease. Virology 269:335–344PubMedGoogle Scholar
  120. Kayagaki N, Yan M, Seshasayee D, Wang H, Lee W, French DM, Grewal IS, Cochran AG, Gordon NC, Yin J, Starovasnik MA, Dixit VM (2002) BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 17:515–524PubMedGoogle Scholar
  121. Kellam P, Bourboulia D, Dupin N, Shotton C, Fisher C, Talbot S, Boshoff C, Weiss RA (1999) Characterization of monoclonal antibodies raised against the latent nuclear antigen of human herpesvirus 8. J Virol 73:5149–5155PubMedGoogle Scholar
  122. Keller SA, Schattner EJ, Cesarman E (2000) Inhibition of NF-κB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 96:2537–2542PubMedGoogle Scholar
  123. Keller SA, Hernandez-Hopkins D, Vider J, Ponomarev V, Hyjek E, Schattner EJ, Cesarman E (2006) NF-{kappa}B is essential for progression of KSHV- and EBV-infected lymphomas in vivo. Blood 107:3295–3302PubMedGoogle Scholar
  124. Kelly G, Bell A, Rickinson A (2002) Epstein–Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat Med 8:1098–1104PubMedGoogle Scholar
  125. Kelly GL, Milner AE, Tierney RJ, Croom-Carter DS, Altmann M, Hammerschmidt W, Bell AI, Rickinson AB (2005) Epstein–Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A, -3B, and -3C expression in Burkitt’s lymphoma cells and with increased resistance to apoptosis. J Virol 79:10709–10717PubMedGoogle Scholar
  126. Kersten MJ, Van Gorp J, Pals ST, Boon F, Van Oers MH (1998) Expression of Epstein–Barr virus latent genes and adhesion molecules in AIDS-related non-Hodgkin’s lymphomas: correlation with histology and CD4-cell number. Leuk Lymphoma 30:515–524PubMedGoogle Scholar
  127. Kfoury Y, Nasr R, Favre-Bonvin A, El-Sabban M, Renault N, Giron ML, Setterblad N, Hajj HE, Chiari E, Mikati AG, Hermine O, Saib A, de Thé H, Pique C, Bazarbachi A (2008) Ubiquitylated Tax targets and binds the IKK signalosome at the centrosome. Oncogene 27:1665–1676PubMedGoogle Scholar
  128. Khoshnan A, Bae D, Tindell CA, Nel AE (2000) The physical association of protein kinase C theta with a lipid raft-associated inhibitor of kappa B factor kinase (IKK) complex plays a role in the activation of the NF-kappa B cascade by TCR and CD28. J Immunol 165:6933–6940PubMedGoogle Scholar
  129. Kieff E (1996) Epstein–Barr virus and its replication. In: Fields BN, Knipe DM, Howley PM (eds) Virology. Lippincott–Raven Publishers, Philadelphia, pp 2343-2396Google Scholar
  130. Kieser A (2008) Pursuing different ‘TRADDes’: TRADD signaling induced by TNF-receptor 1 and the Epstein–Barr virus oncoprotein LMP1. Biol Chem 389:1261–1271PubMedGoogle Scholar
  131. Kitajima I, Shinohara T, Bilakovics J, Brown DA, Xu X, Nerenberg M (1992) Ablation of transplanted HTLV-I Tax-transformed tumors in mice by antisense inhibition of NF-κB. Science 258:1792–1795PubMedGoogle Scholar
  132. Knowles DM (2001) Neoplastic hematopathology. Williams and Wilkins, Baltimore, p 1956Google Scholar
  133. Knowles DM, Cesarman E, Chadburn A, Frizzera G, Chen J, Rose EA, Michler RE (1995) Correlative morphologic and molecular genetic analysis demonstrates three distinct categories of posttransplantation lymphoproliferative disorders. Blood 85:552–565PubMedGoogle Scholar
  134. Koga H, Imada K, Ueda M, Hishizawa M, Uchiyama T (2004) Identification of differentially expressed molecules in adult T-cell leukemia cells proliferating in vivo. Cancer Sci 95:411–417PubMedGoogle Scholar
  135. Konrad A, Wies E, Thurau M, Marquardt G, Naschberger E, Hentschel S, Jochmann R, Schulz TF, Erfle H, Brors B, Lausen B, Neipel F, Sturzl M (2009) A systems biology approach to identify the combination effects of human herpesvirus 8 genes on NF-kappaB activation. J Virol 83:2563–2574PubMedGoogle Scholar
  136. Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N (1998) Expression of the Epstein–Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci USA 95:11963–11968PubMedGoogle Scholar
  137. Küppers R, Rajewsky K (1998) The origin of Hodgkin and Reed/Sternberg cells in Hodgkin’s disease. Annu Rev Immunol 16:471–493PubMedGoogle Scholar
  138. Kwon H, Ogle L, Benitez B, Bohuslav J, Montano M, Felsher DW, Greene WC (2005) Lethal cutaneous disease in transgenic mice conditionally expressing type I human T cell leukemia virus Tax. J Biol Chem 280:35713–35722PubMedGoogle Scholar
  139. Laichalk LL, Thorley-Lawson DA (2005) Terminal differentiation into plasma cells initiates the replicative cycle of Epstein–Barr virus in vivo. J Virol 79:1296–1307PubMedGoogle Scholar
  140. Laichalk LL, Hochberg D, Babcock GJ, Freeman RB, Thorley-Lawson DA (2002) The dispersal of mucosal memory B cells: evidence from persistent EBV infection. Immunity 16:745–754PubMedGoogle Scholar
  141. Lairmore MD, Silverman L, Ratner L (2005) Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 24:6005–6015PubMedGoogle Scholar
  142. Lamsoul I, Lodewick J, Lebrun S, Brasseur R, Burny A, Gaynor RB, Bex F (2005) Exclusive ubiquitination and sumoylation on overlapping lysine residues mediate NF-kappaB activation by the human T-cell leukemia virus tax oncoprotein. Mol Cell Biol 25:10391–10406PubMedGoogle Scholar
  143. Larocca LM, Capello D, Rinelli A, Nori S, Antinori A, Gloghini A, Cingolani A, Migliazza A, Saglio G, Cammilleri-Broet S, Raphael M, Carbone A, Gaidano G (1998) The molecular and phenotypic profile of primary central nervous system lymphoma identifies distinct categories of the disease and is consistent with histogenetic derivation from germinal center-related B cells. Blood 92:1011–1099PubMedGoogle Scholar
  144. Larroche C, Cacoub P, Soulier J, Oksenhendler E, Clauvel JP, Piette JC, Raphael M (2002) Castleman’s disease and lymphoma: report of eight cases in HIV-negative patients and literature review. Am J Hematol 69:119–126PubMedGoogle Scholar
  145. Lechowicz MJ, Lin L, Ambinder RF (2002) Epstein–Barr virus DNA in body fluids. Curr Opin Oncol 14:533–537PubMedGoogle Scholar
  146. Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, Lee HR, Chang H, Zhou FC, Gao SJ, Liang C, Jung JU (2009) FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 11:1355–1362PubMedGoogle Scholar
  147. Li Y, Kang J, Horwitz M (1998) Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains. Mol Cell Biol 18:1601–1610PubMedGoogle Scholar
  148. Li H, Kobayashi M, Blonska M, You Y, Lin X (2006) Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem 281:13636–13643PubMedGoogle Scholar
  149. Liebowitz D (1998) Epstein–Barr virus and a cellular signaling pathway in lymphomas from immunosuppressed patients. N Engl J Med 338:1413–1421PubMedGoogle Scholar
  150. Lin JC, Wang WY, Chen KY, Wei YH, Liang WM, Jan JS, Jiang RS (2004) Quantification of plasma Epstein–Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med 350:2461–2470PubMedGoogle Scholar
  151. Liu Y, Wang Y, Yamakuchi M, Masuda S, Tokioka T, Yamaoka S, Maruyama I, Kitajima I (2001) Phosphoinositide-3 kinase-PKB/Akt pathway activation is involved in fibroblast Rat-1 transformation by human T-cell leukemia virus type I tax. Oncogene 20:2514–2526PubMedGoogle Scholar
  152. Liu L, Eby MT, Rathore N, Sinha SK, Kumar A, Chaudhary PM (2002) The human herpes virus 8 encoded viral FLICE inhibitory protein physically associates with and persistently activates the IkappaB kinase complex. J Biol Chem 5:5Google Scholar
  153. Lo YM, Chan AT, Chan LY, Leung SF, Lam CW, Huang DP, Johnson PJ (2000) Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein–Barr virus DNA. Cancer Res 60:6878–6881PubMedGoogle Scholar
  154. Lu KP, Zhou XZ (2007) The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8:904–916PubMedGoogle Scholar
  155. Lu J, Lin WH, Chen SY, Longnecker R, Tsai SC, Chen CL, Tsai CH (2006) Syk tyrosine kinase mediates Epstein–Barr virus latent membrane protein 2A-induced cell migration in epithelial cells. J Biol Chem 281:8806–8814PubMedGoogle Scholar
  156. Luftig M, Prinarakis E, Yasui T, Tsichritzis T, Cahir-McFarland E, Inoue J, Nakano H, Mak TW, Yeh WC, Li X, Akira S, Suzuki N, Suzuki S, Mosialos G, Kieff E (2003) Epstein–Barr virus latent membrane protein 1 activation of NF-kappaB through IRAK1 and TRAF6. Proc Natl Acad Sci USA 100:15595–15600PubMedGoogle Scholar
  157. Mainou BA, Everly D N Jr, Raab-Traub N (2007) Unique signaling properties of CTAR1 in LMP1-mediated transformation. J Virol 81:9680–9692PubMedGoogle Scholar
  158. Martin D, Galisteo R, Ji Y, Montaner S, Gutkind JS (2008) An NF-kappaB gene expression signature contributes to Kaposi’s sarcoma virus vGPCR-induced direct and paracrine neoplasia. Oncogene 27:1844–1852PubMedGoogle Scholar
  159. Maruyama M, Shibuya H, Harada H, Hatakeyama M, Seiki M, Fujita T, Inoue JI, Yoshida M, Taniguchi T (1987) Evidence for aberrant activation of the interleukin-2 autocrine loop by HTLV-1-encoded p40x and T3/Ti complex triggering. Cell 48:343–350PubMedGoogle Scholar
  160. Matsumoto R, Wang D, Blonska M, Li H, Kobayashi M, Pappu B, Chen Y, Wang D, Lin X (2005) Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation. Immunity 23:575–585PubMedGoogle Scholar
  161. Matsuoka M (2003) Human T-cell leukemia virus type I and adult T-cell leukemia. Oncogene 22:5131–5140PubMedGoogle Scholar
  162. Matsuoka M, Green PL (2009) The HBZ gene, a key player in HTLV-1 pathogenesis. Retrovirology 6:71PubMedGoogle Scholar
  163. Matsuoka M, Jeang KT (2007) Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 7:270–280PubMedGoogle Scholar
  164. Matta H, Chaudhary PM (2004) Activation of alternative NF-kappa B pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1 beta-converting enzyme inhibitory protein (vFLIP). Proc Natl Acad Sci USA 101:9399–9404PubMedGoogle Scholar
  165. Matta H, Mazzacurati L, Schamus S, Yang T, Sun Q, Chaudhary PM (2007) Kaposi’s sarcoma-associated herpesvirus (KSHV) oncoprotein K13 bypasses TRAFs and directly interacts with the IkappaB kinase complex to selectively activate NF-kappaB without JNK activation. J Biol Chem 282:24858–24865PubMedGoogle Scholar
  166. Menke DM, Chadbum A, Cesarman E, Green E, Berenson J, Said J, Tiemann M, Parwaresch R, Thome SD (2002) Analysis of the human herpesvirus 8 (HHV-8) genome and HHV-8 vIL-6 expression in archival cases of Castleman disease at low risk for HIV infection. Am J Clin Pathol 117:268–275PubMedGoogle Scholar
  167. Merchant M, Caldwell RG, Longnecker R (2000) The LMP2A ITAM is essential for providing B cells with development and survival signals in vivo. J Virol 74:9115–9124PubMedGoogle Scholar
  168. Mesri EA, Cesarman E, Arvanitakis L, Rafii S, Moore MAS, Posnett DN, Knowles DM, Asch AS (1996) Human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus is a new transmissible virus that infects B cells. J Exp Med 183:2385–2390PubMedGoogle Scholar
  169. Miller CL, Lee JH, Kieff E, Longnecker R (1994) An integral membrane protein (LMP2) blocks reactivation of Epstein–Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci USA 91:772–776PubMedGoogle Scholar
  170. Miller G, Heston L, Grogan E, Gradoville L, Rigsby M, Sun R, Shedd D, Kushnaryov VM, Grossberg S, Chang Y (1997) Selective switch between latency and lytic replication of Kaposi’s sarcoma herpesvirus and Epstein–Barr virus in dually infected body cavity lymphoma cells. J Virol 71:314–324PubMedGoogle Scholar
  171. Moody CA, Scott RS, Amirghahari N, Nathan CA, Young LS, Dawson CW, Sixbey JW (2005) Modulation of the cell growth regulator mTOR by Epstein–Barr virus-encoded LMP2A. J Virol 79:5499–5506PubMedGoogle Scholar
  172. Mori N, Sato H, Hayashibara T, Senba M, Hayashi T, Yamada Y, Kamihira S, Ikeda S, Yamasaki Y, Morikawa S, Tomonaga M, Geleziunas R, Yamamoto N (2002) Human T-cell leukemia virus type I Tax transactivates the matrix metalloproteinase-9 gene: potential role in mediating adult T-cell leukemia invasiveness. Blood 99:1341–1349PubMedGoogle Scholar
  173. Morrison TE, Kenney SC (2004) BZLF1, an Epstein–Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function. Virology 328:219–232PubMedGoogle Scholar
  174. Morrison JA, Klingelhutz AJ, Raab-Traub N (2003) Epstein–Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. J Virol 77:12276–12284PubMedGoogle Scholar
  175. Moses AV, Fish KN, Ruhl R, Smith PP, Strussenberg JG, Zhu L, Chandran B, Nelson JA (1999) Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J Virol 73:6892–6902PubMedGoogle Scholar
  176. Nador RG, Cesarman E, Knowles DM, Said JW (1995) Herpes-like DNA sequences in a body-cavity-based lymphoma in an HIV-negative patient. N Engl J Med 333:943 (letter to the editor)PubMedGoogle Scholar
  177. Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ, Said J, Knowles DM (1996) Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpesvirus. Blood 88:645–656PubMedGoogle Scholar
  178. Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU (2003) Global changes in Kaposi’s sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 77:4205–4220PubMedGoogle Scholar
  179. Nasr R, Chiari E, El-Sabban M, Mahieux R, Kfoury Y, Abdulhay M, Yazbeck V, Hermine O, de The H, Pique C, Bazarbachi A (2006) Tax ubiquitylation and sumoylation control critical cytoplasmic and nuclear steps of NF-kappaB activation. Blood 107:4021–4029PubMedGoogle Scholar
  180. Ng PW, Iha H, Iwanaga Y, Bittner M, Chen Y, Jiang Y, Gooden G, Trent JM, Meltzer P, Jeang KT, Zeichner SL (2001) Genome-wide expression changes induced by HTLV-1 Tax: evidence for MLK-3 mixed lineage kinase involvement in Tax-mediated NF-kappaB activation. Oncogene 20:4484–4496PubMedGoogle Scholar
  181. Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP, Teitelbaum SL (2003) The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198:771–781PubMedGoogle Scholar
  182. Ohsugi T, Kumasaka T, Okada S, Urano T (2007) The Tax protein of HTLV-1 promotes oncogenesis in not only immature T cells but also mature T cells. Nat Med 13:527–528PubMedGoogle Scholar
  183. Okamoto K, Fujisawa J, Reth M, Yonehara S (2006) Human T-cell leukemia virus type-I oncoprotein Tax inhibits Fas-mediated apoptosis by inducing cellular FLIP through activation of NF-kappaB. Genes Cells 11:177–191PubMedGoogle Scholar
  184. Panagopoulos D, Victoratos P, Alexiou M, Kollias G, Mosialos G (2004) Comparative analysis of signal transduction by CD40 and the Epstein–Barr virus oncoprotein LMP1 in vivo. J Virol 78:13253–13261PubMedGoogle Scholar
  185. Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118:3030–3044PubMedGoogle Scholar
  186. Parravicini C, Corbellino M, Paulli M, Magrini U, Lazzarino M, Moore PS, Chang Y (1997) Expression of a virus-derived cytokine, KSHV vIL-6, in HIV-seronegative Castleman’s disease. Am J Pathol 151:1517–1522PubMedGoogle Scholar
  187. Parravicini C, Chandran B, Corbellino M, Berti E, Paulli M, Moore PS, Chang Y (2000) Differential viral protein expression in Kaposi’s sarcoma-associated herpesvirus-infected diseases: Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Am J Pathol 156:743–749PubMedGoogle Scholar
  188. Pathmanathan R, Prasad U, Chandrika G, Sadler R, Flynn K, Raab-Traub N (1995) Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein–Barr virus-infected neoplasia. Am J Pathol 146:1355–1367PubMedGoogle Scholar
  189. Peloponese JM, Yeung ML, Jeang KT (2006) Modulation of nuclear factor-kappaB by human T cell leukemia virus type 1 Tax protein: implications for oncogenesis and inflammation. Immunol Res 34:1–12PubMedGoogle Scholar
  190. Peloponese JJ, Yasunaga J, Kinjo T, Watashi K, Jeang KT (2009) Peptidylproline cis-trans-isomerase Pin1 interacts with human T-cell leukemia virus type 1 tax and modulates its activation of NF-kappaB. J Virol 83:3238–3248PubMedGoogle Scholar
  191. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276PubMedGoogle Scholar
  192. Pise-Masison CA, Brady JN (2005) Setting the stage for transformation: HTLV-1 Tax inhibition of p53 function. Front Biosci 10:919–930PubMedGoogle Scholar
  193. Pise-Masison CA, Choi KS, Radonovich M, Dittmer J, Kim SJ, Brady JN (1998) Inhibition of p53 transactivation function by the human T-cell lymphotropic virus type 1 Tax protein. J Virol 72:1165–1170PubMedGoogle Scholar
  194. Pise-Masison CA, Radonovich M, Mahieux R, Chatterjee P, Whiteford C, Duvall J, Guillerm C, Gessain A, Brady JN (2002) Transcription profile of cells infected with human T-cell leukemia virus type I compared with activated lymphocytes. Cancer Res 62:3562–3571PubMedGoogle Scholar
  195. Poiesz BF, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of a type C retrovirus particles from fresh cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77:7415–7419PubMedGoogle Scholar
  196. Pomerantz JL, Baltimore D (2002) Two pathways to NF-kappaB. Mol Cell 10:693–695PubMedGoogle Scholar
  197. Portis T, Harding JC, Ratner L (2001) The contribution of NF-kappa B activity to spontaneous proliferation and resistance to apoptosis in human T-cell leukemia virus type 1 Tax-induced tumors. Blood 98:1200–1208PubMedGoogle Scholar
  198. Pozzatti R, Vogel J, Jay G (1990) The human T-lymphotropic virus type I tax gene can cooperate with the ras oncogene to induce neoplastic transformation of cells. Mol Cell Biol 10:413–417PubMedGoogle Scholar
  199. Prakash O, Tang ZY, Peng X, Coleman R, Gill J, Farr G, Samaniego F (2002) Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 K1 gene. J Natl Cancer Inst 94:926–935PubMedGoogle Scholar
  200. Prince S, Keating S, Fielding C, Brennan P, Floettmann E, Rowe M (2003) Latent membrane protein 1 inhibits Epstein–Barr virus lytic cycle induction and progress via different mechanisms. J Virol 77:5000–5007PubMedGoogle Scholar
  201. Rainbow L, Platt GM, Simpson GR, Sarid R, Gao SJ, Stoiber H, Herrington CS, Moore PS, Schulz TF (1997) The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71:5915–5921PubMedGoogle Scholar
  202. Raphaël M, Said J, Borisch B, Cesarman E, Harris NL (2008) Lymphomas associated with HIV infection. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 340–342Google Scholar
  203. Rappocciolo G, Hensler HR, Jais M, Reinhart TA, Pegu A, Jenkins FJ, Rinaldo CR (2008) Human herpesvirus 8 infects and replicates in primary cultures of activated B lymphocytes through DC-SIGN. J Virol 82:4793–4806PubMedGoogle Scholar
  204. Rauch D, Gross S, Harding J, Niewiesk S, Lairmore M, Piwnica-Worms D, Ratner L (2009) Imaging spontaneous tumorigenesis: inflammation precedes development of peripheral NK tumors. Blood 113:1493–1500PubMedGoogle Scholar
  205. Reed JA, Nador RG, Spaulding D, Tani Y, Cesarman E, Knowles DM (1998) Demonstration of Kaposi’s sarcoma-associated herpesvirus cyclin D homolog in cutaneous Kaposi’s sarcoma by colorimetric in situ hybridization using a catalyzed signal amplification system. Blood 91:3825–3832PubMedGoogle Scholar
  206. Reid RL, Lindholm PF, Mireskandari A, Dittmer J, Brady JN (1993) Stabilization of wild-type p53 in human T-lymphocytes transformed by HTLV-I. Oncogene 8:3029–3036PubMedGoogle Scholar
  207. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D (1996) Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2:342–346PubMedGoogle Scholar
  208. Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Héon E, Krupin T, Ritch R, Kreutzer D, Crick RP, Sarfarazi M (2002) Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295:1077–1079PubMedGoogle Scholar
  209. Rickinson AB, Kieff E (1996) Epstein–Barr virus. In: Fields BN, Knipe DM, Howley PM (eds) Virology. Lippincott-Raven Publishers, Philadelphia, pp 2397–2446Google Scholar
  210. Rivas C, Thlick AE, Parravicini C, Moore PS, Chang Y (2001) Kaposi’s sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53 J Virol 75:429–438PubMedGoogle Scholar
  211. Robek MD, Ratner L (1999) Immortalization of CD4(+) and CD8(+) T lymphocytes by human T-cell leukemia virus type 1 Tax mutants expressed in a functional molecular clone. J Virol 73:4856–4865PubMedGoogle Scholar
  212. Rochford R, Miller CL, Cannon MJ, Izumi KM, Kieff E, Longnecker R (1997) In vivo growth of Epstein–Barr virus transformed B cells with mutations in latent membrane protein 2 (LMP2). Arch Virol 142:707–720PubMedGoogle Scholar
  213. Sadagopan S, Sharma-Walia N, Veettil MV, Raghu H, Sivakumar R, Bottero V, Chandran B (2007) Kaposi’s sarcoma-associated herpesvirus induces sustained NF-kappaB activation during de novo infection of primary human dermal microvascular endothelial cells that is essential for viral gene expression. J Virol 81:3949–3968PubMedGoogle Scholar
  214. Sadler R, Wu L, Forghani B, Renne R, Zhong W, Herndier B, Ganem D (1999) A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi’s sarcoma-associated herpesvirus. J Virol 73:5722–5730PubMedGoogle Scholar
  215. Said JW, Tasaka T, Takeuchi S, Asou H, de Vos S, Cesarman E, Knowles DM, Koeffler HP (1996) Primary effusion lymphoma in women: report of two cases of Kaposi’s sarcoma-herpes virus-associated effusion-based lymphoma in human immunodeficiency virus-negative women. Blood 88:3124–3128PubMedGoogle Scholar
  216. Saitoh Y, Yamamoto N, Dewan MZ, Sugimoto H, Martinez Bruyn VJ, Iwasaki Y, Matsubara K, Qi X, Saitoh T, Imoto I, Inazawa J, Utsunomiya A, Watanabe T, Masuda T, Yamamoto N, Yamaoka S (2008) Overexpressed NF-kappaB-inducing kinase contributes to the tumorigenesis of adult T-cell leukemia and Hodgkin Reed–Sternberg cells. Blood 111:5118–5129PubMedGoogle Scholar
  217. Samaniego F, Pati S, Karp JE, Prakash O, Bose D (2001) Human herpesvirus 8 K1-associated nuclear factor-kappa B-dependent promoter activity: role in Kaposi’s sarcoma inflammation? J Natl Cancer Inst Monogr (28):15–23Google Scholar
  218. Samols MA, Hu J, Skalsky RL, Renne R (2005) Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:9301–9305PubMedGoogle Scholar
  219. Sanda T, Asamitsu K, Ogura H, Iida S, Utsunomiya A, Ueda R, Okamoto T (2006) Induction of cell death in adult T-cell leukemia cells by a novel IkappaB kinase inhibitor. Leukemia 20:590–598PubMedGoogle Scholar
  220. Sarid R, Wiezorek JS, Moore PS, Chang Y (1999) Characterization and cell cycle regulation of the major Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) latent genes and their promoter. J Virol 73:1438–1446PubMedGoogle Scholar
  221. Sasaki H, Nishikata I, Shiraga T, Akamatsu E, Fukami T, Hidaka T, Kubuki Y, Okayama A, Hamada K, Okabe H, Murakami Y, Tsubouchi H, Morishita K (2005) Overexpression of a cell adhesion molecule, TSLC1, as a possible molecular marker for acute-type adult T-cell leukemia. Blood 105:1204–1213PubMedGoogle Scholar
  222. Satou Y, Yasunaga J, Yoshida M, Matsuoka M (2006) HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci USA 103:720–725PubMedGoogle Scholar
  223. Senftleben U, Cao Y, Xiao G, Kraehn G, Greten F, Chen Y, Hu Y, Fong A, Sun S-C, Karin M (2001) Activation of IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293:1495–1499PubMedGoogle Scholar
  224. Seo T, Park J, Lim C, Choe J (2004) Inhibition of nuclear factor kappaB activity by viral interferon regulatory factor 3 of Kaposi’s sarcoma-associated herpesvirus. Oncogene 23:6146–6155PubMedGoogle Scholar
  225. Sgarbanti M, Arguello M, ten Oever BR, Battistini A, Lin R, Hiscott J (2004) A requirement for NF-kappaB induction in the production of replication-competent HHV-8 virions. Oncogene 23:5770–5780PubMedGoogle Scholar
  226. Shembade N, Harhaj NS, Liebl DJ, Harhaj EW (2007a) Essential role for TAX1BP1 in the termination of TNF-alpha-, IL-1- and LPS-mediated NF-kappaB and JNK signaling. EMBO J 26:3910–3922PubMedGoogle Scholar
  227. Shembade N, Harhaj NS, Yamamoto M, Akira S, Harhaj EW (2007b) The human T-cell leukemia virus type 1 Tax oncoprotein requires the ubiquitin-conjugating enzyme Ubc13 for NF-kappaB activation. J Virol 81:13735–13742PubMedGoogle Scholar
  228. Shembade N, Harhaj NS, Parvatiyar K, Copeland NG, Jenkins NA, Matesic LE, Harhaj EW (2008) The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol 9:254–262PubMedGoogle Scholar
  229. Siekevitz M, Feinberg MB, Holbrook N, Wong-Staal F, Greene WC (1987) Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the transactivator (tat) gene product of human T-cell leukemia virus type 1. Proc Natl Acad Sci USA 84:5389–5393PubMedGoogle Scholar
  230. Sinfield RL, Molyneux EM, Banda K, Borgstein E, Broadhead R, Hesseling P, Newton R, Casabonne D, Mkandawire N, Nkume H, Hodgson T, Liomba G (2007) Spectrum and presentation of pediatric malignancies in the HIV era: experience from Blantyre, Malawi, 1998–2003. Pediatr Blood Cancer 48:515–520PubMedGoogle Scholar
  231. Sinha-Datta U, Horikawa I, Michishita E, Datta A, Sigler-Nicot JC, Brown M, Kazanji M, Barrett JC, Nicot C (2004) Transcriptional activation of hTERT through the NF-kappaB pathway in HTLV-I-transformed cells. Blood 104:2523–2531PubMedGoogle Scholar
  232. Skaug B, Jiang X, Chen ZJ (2009) The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 78:769–796PubMedGoogle Scholar
  233. Sommer K, Guo B, Pomerantz JL, Bandaranayake AD, Moreno-Garcia ME, Ovechkina YL, Rawlings DJ (2005) Phosphorylation of the CARMA1 linker controls NF-kappaB activation. Immunity 23:561–567PubMedGoogle Scholar
  234. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay M-F, Clauvel J-P, Raphael M, Degos L, Sigaux F (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86:1275–1280Google Scholar
  235. Speck P, Kline KA, Cheresh P, Longnecker R (1999) Epstein–Barr virus lacking latent membrane protein 2 immortalizes B cells with efficiency indistinguishable from that of wild-type virus. J Gen Virol 80(Pt 8):2193–2203PubMedGoogle Scholar
  236. Staskus KA, Sun R, Miller G, Racz P, Jaslowski A, Metroka C, Brett-Smith H, Haase AT (1999) Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. J Virol 73:4181–4187PubMedGoogle Scholar
  237. Stewart S, Dawson CW, Takada K, Curnow J, Moody CA, Sixbey JW, Young LS (2004) Epstein–Barr virus-encoded LMP2A regulates viral and cellular gene expression by modulation of the NF-kappaB transcription factor pathway. Proc Natl Acad Sci USA 101:15730–15735PubMedGoogle Scholar
  238. Sturzl M, Hohenadl C, Zietz C, Castanos-Velez E, Wunderlich A, Ascherl G, Biberfeld P, Monini P, Browning PJ, Ensoli B (1999) Expression of K13/v-FLIP gene of human herpesvirus 8 and apoptosis in Kaposi’s sarcoma spindle cells. J Natl Cancer Inst 91:1725–1733PubMedGoogle Scholar
  239. Su TT, Guo B, Kawakami Y, Sommer K, Chae K, Humphries LA, Kato RM, Kang S, Patrone L, Wall R, Teitell M, Leitges M, Kawakami T, Rawlings DJ (2002) PKC-beta controls I kappa B kinase lipid raft recruitment and activation in response to BCR signaling. Nat Immunol 3:780–786PubMedGoogle Scholar
  240. Suda T, Katano H, Delsol G, Kakiuchi C, Nakamura T, Shiota M, Sata T, Higashihara M, Mori S (2001) HHV-8 infection status of AIDS-unrelated and AIDS-associated multicentric Castleman’s disease. Pathol Int 51:671–679PubMedGoogle Scholar
  241. Sugano N, Chen W, Roberts ML, Cooper NR (1997) Epstein–Barr virus binding to CD21 activates the initial viral promoter via NF-kappaB induction. J Exp Med 186:731–737PubMedGoogle Scholar
  242. Sun SC (2010) CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation. Cell Death Differ 17(1):25–34PubMedGoogle Scholar
  243. Sun S-C, Ballard DW (1999) Persistent activation of NF-κB by the Tax transforming protein of HTLV-1: hijacking cellular IκB kinases. Oncogene 18:6948–6958PubMedGoogle Scholar
  244. Sun SC, Ley SC (2008) New insights into NF-kappaB regulation and function. Trends Immunol 29:469–478PubMedGoogle Scholar
  245. Sun CC, Thorley-Lawson DA (2007) Plasma cell-specific transcription factor XBP-1s binds to and transactivates the Epstein–Barr virus BZLF1 promoter. J Virol 81:13566–13577PubMedGoogle Scholar
  246. Sun S-C, Xiao G (2003) Deregulation of NF-kB and its upstream kinases in cancer. Cancer Metastasis Rev 22:405–422PubMedGoogle Scholar
  247. Sun SC, Yamaoka S (2005) Activation of NF-κB by HTLV-I and implications for cell transformation. Oncogene 24:5952–5964PubMedGoogle Scholar
  248. Sun L, Deng L, Ea C-K, Xia Z-P, Chen ZJ (2004) The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 14:289–301PubMedGoogle Scholar
  249. Suzuki T, Fujisawa JI, Toita M, Yoshida M (1993) The trans-activator tax of human T-cell leukemia virus type I (HTLV-1) interacts with cAMP-responsive element (CRE) binding and CRE modulator proteins that bind to the 21-base-pair enhancer of HTLV-1. Proc Natl Acad Sci USA 90:610–614PubMedGoogle Scholar
  250. Swanson-Mungerson MA, Caldwell RG, Bultema R, Longnecker R (2005) Epstein–Barr virus LMP2A alters in vivo and in vitro models of B-cell anergy, but not deletion, in response to autoantigen. J Virol 79:7355–7362PubMedGoogle Scholar
  251. Swanson-Mungerson M, Bultema R, Longnecker R (2006) Epstein–Barr virus LMP2A enhances B-cell responses in vivo and in vitro. J Virol 80:6764–6770PubMedGoogle Scholar
  252. Swart R, Ruf IK, Sample J, Longnecker R (2000) Latent membrane protein 2A-mediated effects on the phosphatidylinositol 3-Kinase/Akt pathway. J Virol 74:10838–10845PubMedGoogle Scholar
  253. Takatsuki K (2005) Discovery of adult T-cell leukemia. Retrovirology 2:16PubMedGoogle Scholar
  254. Takemoto S, Trovato R, Cereseto A, Nicot C, Kislyakova T, Casareto L, Waldmann T, Torelli G, Franchini G (2000) p53 stabilization and functional impairment in the absence of genetic mutation or the alteration of the p14(ARF)-MDM2 loop in ex vivo and cultured adult T-cell leukemia/lymphoma cells. Blood 95:3939–3944PubMedGoogle Scholar
  255. Tanaka A, Takahashi C, Yamaoka S, Nosaka T, Maki M, Hatanaka M (1990) Oncogenic transformation by the tax gene of human T-cell leukemia virus type I in vitro. Proc Natl Acad Sci USA 87:1071–1075PubMedGoogle Scholar
  256. Tao Q, Robertson KD, Manns A, Hildesheim A, Ambinder RF (1998) Epstein–Barr virus (EBV) in endemic Burkitt’s lymphoma: molecular analysis of primary tumor tissue. Blood 91:1373–1381PubMedGoogle Scholar
  257. Taylor GP, Matsuoka M (2005) Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene 24:6047–6057PubMedGoogle Scholar
  258. Taylor JM, Nicot C (2008) HTLV-1 and apoptosis: role in cellular transformation and recent advances in therapeutic approaches. Apoptosis 13:733–747PubMedGoogle Scholar
  259. Thorley-Lawson DA (2001) Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol 1:75–82PubMedGoogle Scholar
  260. Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N Engl J Med 350:1328–1337PubMedGoogle Scholar
  261. Tsuchiyama J, Yoshino T, Mori M, Kondoh E, Oka T, Akagi T, Hiraki A, Nakayama H, Shibuya A, Ma Y, Kawabata T, Okada S, Harada M (1998) Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with Epstein–Barr virus infection. Blood 92:1374–1383PubMedGoogle Scholar
  262. Tsukahara T, Kannagi M, Ohashi T, Kato H, Arai M, Nunez G, Iwanaga Y, Yamamoto N, Ohtani K, Nakamura M, Fujii M (1999) Induction of Bcl-x(L) expression by human T-cell leukemia virus type 1 Tax through NF-kappaB in apoptosis-resistant T-cell transfectants with Tax. J Virol 73:7981–7987Google Scholar
  263. Tsukasaki K, Tanosaki S, DeVos S, Hofmann WK, Wachsman W, Gombart AF, Krebs J, Jauch A, Bartram CR, Nagai K, Tomonaga M, Said JW, Koeffler HP (2004) Identifying progression-associated genes in adult T-cell leukemia/lymphoma by using oligonucleotide microarrays. Int J Cancer 109:875–881PubMedGoogle Scholar
  264. Uhlik M, Good L, Xiao G, Harhaj EW, Zandi E, Karin M, Sun S-C (1998) NF-kappaB-inducing kinase and IkappaB kinase participate in human T-cell leukemia virus I Tax-mediated NF-kappaB activation. J Biol Chem 273:21132–21136PubMedGoogle Scholar
  265. Valentine R, Dawson CW, Hu C, Shah KM, Owen TJ, Date KL, Maia SP, Shao J, Arrand JR, Young LS, O’Neil JD (2010) Epstein–Barr virus-encoded EBNA1 inhibits the canonical NF-kappa-B pathway in carcinoma cells by inhibiting IKK phosphorylation. Mol Cancer 9:1Google Scholar
  266. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733PubMedGoogle Scholar
  267. Verdonck K, González E, Van Dooren S, Vandamme AM, Vanham G, Gotuzzo E (2007) Human T-lymphotropic virus 1: recent knowledge about an ancient infection. Lancet Infect Dis 7:266–281PubMedGoogle Scholar
  268. Wada K, Niida M, Tanaka M, Kamitani T (2009) Ro52-mediated monoubiquitination of IKK{beta} downregulates NF-{kappa}B signaling. J Biochem 146:821–832PubMedGoogle Scholar
  269. Wäldele K, Silbermann K, Schneider G, Ruckes T, Cullen BR, Grassmann R (2006) Requirement of the human T-cell leukemia virus (HTLV-1) tax-stimulated HIAP-1 gene for the survival of transformed lymphocytes. Blood 107:4491–4499PubMedGoogle Scholar
  270. Wang D, Liebowitz D, Kieff E (1985) An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840PubMedGoogle Scholar
  271. Wang H, Nicholas MW, Conway KL, Sen P, Diz R, Tisch RM, Clarke SH (2006) EBV latent membrane protein 2A induces autoreactive B cell activation and TLR hypersensitivity. J Immunol 177:2793–2802PubMedGoogle Scholar
  272. Wu X, Sun SC (2007) Retroviral oncoprotein Tax deregulates NF-kB by activating Tak1 and mediating Tak1-IKK physical association. EMBO Rep 8:510–515PubMedGoogle Scholar
  273. Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD (2006) Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation. Nat Cell Biol 8:398–406PubMedGoogle Scholar
  274. Xiao G, Sun SC (2000) Activation of IKKalpha and IKKbeta through their fusion with HTLV-I tax protein. Oncogene 19:5198–5203PubMedGoogle Scholar
  275. Xiao G, Harhaj EW, Sun S-C (2000) Domain-specific interaction with IKKγ is an essential step in Tax-mediated activation of IKK. J Biol Chem 275:34060–34067PubMedGoogle Scholar
  276. Xiao G, Cvijic ME, Fong A, Harhaj EW, Uhlik MT, Waterfield M, Sun SC (2001a) Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 20:6805–6815PubMedGoogle Scholar
  277. Xiao G, Harhaj EW, Sun SC (2001b) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7:401–409PubMedGoogle Scholar
  278. Xiao G, Fong A, Sun SC (2004) Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem 279:30099–30105PubMedGoogle Scholar
  279. Xie P, Hostager BS, Bishop GA (2004) Requirement for TRAF3 in signaling by LMP1 but not CD40 in B lymphocytes. J Exp Med 199:661–671PubMedGoogle Scholar
  280. Yasunaga J, Matsuoka M (2007) Human T-cell leukemia virus type I induces adult T-cell leukemia: from clinical aspects to molecular mechanisms. Cancer Control 14:133–140PubMedGoogle Scholar
  281. Yin M-J, Christerson LB, Yamamoto Y, Kwak Y-T, Xu S, Mercurio F, Barbose M, Cobb MH, Gaynor RB (1998) HTLV-I Tax protein binds to MEKK1 to stimulate IκB kinase activity and NF-κB activation. Cell 93:875–884PubMedGoogle Scholar
  282. Yoshida M (2001) Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 19:475–496PubMedGoogle Scholar
  283. Yoshida M, Miyoshi I, Hinuma Y (1982) Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci USA 79:2031–2035PubMedGoogle Scholar
  284. Yoshimi R, Chang TH, Wang H, Atsumi T, Morse HC 3rd, Ozato K (2009) Gene disruption study reveals a nonredundant role for TRIM21/Ro52 in NF-kappaB-dependent cytokine expression in fibroblasts. J Immunol 182:7527–7538Google Scholar
  285. Yu MC, Yuan JM (2002) Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol 12:421–429PubMedGoogle Scholar
  286. Yu Q, Minoda Y, Yoshida R, Yoshida H, Iha H, Kobayashi T, Yoshimura A, Takaesu G (2008) HTLV-1 Tax-mediated TAK1 activation involves TAB 2 adapter protein. Biochem Biophys Res Commun 365:189–194PubMedGoogle Scholar
  287. Zhao LJ, Giam CZ (1991) Interaction of T-cell lymphotropic virus type I (HTLV-1) transcriptional activator Tax with cellular factors that bind specifically to the 21-base-pair repeats in the HTLV-1 enhancer. Proc Natl Acad Sci USA 88:11445–11449PubMedGoogle Scholar
  288. Zhao LJ, Giam CZ (1992) Human T-cell lymphotropic virus type I (HTLV-1) transcriptional activator, Tax, enhances CREB binding to HTLV-1 21-base-pair repeats by protein-protein interaction. Proc Natl Acad Sci USA 89:7070–7474PubMedGoogle Scholar
  289. Zhao T, Yasunaga J, Satou Y, Nakao M, Takahashi M, Fujii M, Matsuoka M (2009) Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kappaB. Blood 113:2755–2764PubMedGoogle Scholar
  290. Zhou H, Wertz I, O’Rourke K, Ultsch M, Seshagiri S, Eby M, Xiao W, Dixit VM (2004) Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 427:167–171PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of ImmunologyThe University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at HoustonHoustonUSA
  2. 2.Department of Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations