Advertisement

Inhibition of NF-κB Signaling as a Strategy in Disease Therapy

  • Thomas D. GilmoreEmail author
  • Michael R. Garbati
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 349)

Abstract

As described extensively in this issue, NF-κB transcription factors regulate a number of important physiological processes, including inflammation and immune responses, cell growth and survival, and the expression of certain viral genes. Moreover, NF-κB activity is elevated in and contributes to the pathology of several human diseases, including many cancers and chronic inflammatory diseases. Therefore, there has been great interest in the characterization and development of methods to limit NF-κB signaling for pharmacological intervention. This article describes some of the approaches that have been employed to inhibit NF-κB using in vitro and in vivo experimental models. Moreover, some examples of the clinical use of NF-κB inhibitors are discussed, primarily for the treatment of two B-cell malignancies, multiple myeloma and diffuse large B-cell lymphoma. Finally, the rationale and strategies for inhibiting specific NF-κB subunit activity for disease therapy are discussed.

Keywords

Multiple Myeloma Decoy Oligonucleotide DLBCL Cell Line Kinase Activation Loop Natural Product Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Dr. Eric Widmaier (Boston University) for comments on the manuscript. Research in our laboratory is supported by NIH grants CA047763 and CA047763-21S3 (to TDG). For a comprehensive list of NF-κB inhibitors and their targets, see our lab website at www.nf-kb.org (click on Inhibitors).

References

  1. Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5:417–421PubMedCrossRefGoogle Scholar
  2. Agou F, Courtois G, Chiaravalli J, Baleux F, Coïc YM, Traincard F, Israël A, Véron M (2004) Inhibition of NF-κB activation by peptides targeting NF-κB essential modulator (NEMO) oligomerization. J Biol Chem 279:54248–54257PubMedCrossRefGoogle Scholar
  3. Arkan MC, Greten FR (2010) IKK and NF-κB mediated functions in carcinogenesis. Current topics in microbiology and immunology. Springer, Berlin (this issue)Google Scholar
  4. Bales KR, Du Y, Dodel RC, Yan GM, Hamilton-Byrd E, Paul SM (1998) The NF-κB/Rel family of proteins mediates Aβ-induced neurotoxicity and glial activation. Brain Res Mol Brain Res 57:63–72PubMedCrossRefGoogle Scholar
  5. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, Fröhling S, Chan EM, Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB, Wadlow RC, Le H, Hoersch S, Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES, Mesirov JP, Root DE, Gilliland DG, Jacks T, Hahn WC (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112PubMedCrossRefGoogle Scholar
  6. Bassères D, Baldwin AS (2006) Nuclear factor-κB and inhibitor of κB kinase pathways in oncogenic initiation and progression. Oncogene 25:6817–6830PubMedCrossRefGoogle Scholar
  7. Bhat-Nakshatri P, Sweeney CJ, Nakshatri H (2002) Identification of signal transduction pathways involved in constitutive activation in breast cancer cells. Oncogene 21:2066–2078PubMedCrossRefGoogle Scholar
  8. Bidère N, Ngo VN, Lee J, Collins C, Zheng L, Wan F, Davis RE, Lenz G, Anderson DE, Arnoult D, Vazquez A, Sakai K, Zhang J, Meng Z, Veenstra TD, Staudt LM, Lenardo MJ (2009) Casein kinase 1α governs antigen-receptor-induced NF-κB activation and human lymphoma cell survival. Nature 458:92–96PubMedCrossRefGoogle Scholar
  9. Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF, Sjostrom SK, Garraway LA, Weremowicz S, Richardson AL, Greulich H, Stewart CJ, Mulvey LA, Shen RR, Ambrogio L, Hirozane-Kishikawa T, Hill DE, Vidal M, Meyerson M, Grenier JK, Hinkle G, Root DE, Roberts TM, Lander ES, Polyak K, Hahn WC (2007) Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129:1065–1079PubMedCrossRefGoogle Scholar
  10. Burke JR, Pattoli MA, Gregor KR, Brassil PJ, MacMaster JF, McIntyre KW, Yang X, Iotzova VS, Clarke W, Strnad J, Qiu Y, Zusi FC (2003) BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J Biol Chem 278:1450–1456PubMedCrossRefGoogle Scholar
  11. Campbell IK, Gerondakis S, O’Donnell K, Wicks IP (2000) Distinct roles for the NF-κB1 (p50) and c-Rel transcription factors in inflammatory arthritis. J Clin Invest 105:1799–1806PubMedCrossRefGoogle Scholar
  12. Clark K, Plater L, Peggie M, Cohen P (2009) Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IκB kinase ε: a distinct kinase mediates Ser-172 phosphorylation and activation. J Biol Chem 284:14136–14146PubMedCrossRefGoogle Scholar
  13. Clément JF, Meloche S, Servant MJ (2008) The IKK-related kinase: from innate immunity to oncogenesis. Cell Res 18:889–899PubMedCrossRefGoogle Scholar
  14. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A, Bhagat G, Chadburn A, Dalla-Favera R, Pasqualucci L (2009) Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459:717–721PubMedCrossRefGoogle Scholar
  15. Courtois G, Gilmore TD (2006) Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene 25:6831–6843PubMedCrossRefGoogle Scholar
  16. Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS Jr (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-κB inhibition. Cancer Res 61:3535–3540PubMedGoogle Scholar
  17. Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor κB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194:1861–1874PubMedCrossRefGoogle Scholar
  18. Davis RE, Zhang YQ, Southall N, Staudt LM, Austin CP, Inglese J, Auld DS (2007) A cell-based assay for IκBα stabilization using a two-color dual luciferase-based sensor. Assay Drug Dev Technol 5:85–103PubMedCrossRefGoogle Scholar
  19. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, Kohlhammer H, Lamy L, Zhao H, Yang Y, Xu W, Shaffer AL, Wright G, Xiao W, Powell J, Jiang JK, Thomas CJ, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Johnson NA, Rimsza LM, Campo E, Jaffe ES, Wilson WH, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pierce SK, Staudt LM (2010) Chronic active B-cell-receptor signaling in diffuse large B-cell lymphoma. Nature 463:88–92PubMedCrossRefGoogle Scholar
  20. De Bosscher K, Vanden Berge W, Haegeman G (2006) Cross-talk between nuclear receptors and nuclear factor κB. Oncogene 25:6868–6886PubMedCrossRefGoogle Scholar
  21. Dunleavy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, Grant N, Shovlin M, Jaffe ES, Janik JE, Staudt LM, Wilson WH (2009) Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood 113:6069–6076PubMedCrossRefGoogle Scholar
  22. Eddy SF, Guo S, Demicco EG, Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE (2005) Inducible IκB kinase/IκB kinase ε expression is induced by CK2 and promotes aberrant nuclear factor-κB activation in breast cancer cells. Cancer Res 65:11375–11383PubMedCrossRefGoogle Scholar
  23. Edwards MR, Bartlett NW, Clarke D, Birrell M, Belvisi M, Johnston SL (2009) Targeting the NF-κB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther 121:1–13PubMedCrossRefGoogle Scholar
  24. Ehrlich LC, Hu S, Peterson PK, Chao CC (1998) IL-10 down-regulates human microglial IL-8 by inhibition of NF-κB activation. Neuroreport 9:1723–1726PubMedCrossRefGoogle Scholar
  25. Eyre S, Hinks A, Flynn E, Martin P, Wilson AG, Maxwell JR, Morgan AW, Emery P, Steer S, Hocking LJ, Reid DM, Harrison P, Wordsworth P, Thomson W, Worthington J, Barton A (2010) Confirmation of association of the REL locus with rheumatoid arthritis susceptibility in the UK population. Ann Rheum Dis 69:1407–1408PubMedCrossRefGoogle Scholar
  26. Fagerlund R, Melén K, Cao X, Julkunen I (2008) NF-kB p52, RelB and c-Rel are transported into the nucleus via a subset of importin alpha molecules. Cell Signal 20:1442–1451PubMedCrossRefGoogle Scholar
  27. Fan Y, Dutta J, Gupta N, Fan G, Gélinas C (2008) Regulation of programmed cell death by NF-κB and its role in tumorigenesis and therapy. Adv Exp Med Biol 615:223–250PubMedCrossRefGoogle Scholar
  28. Fenteany G, Schreiber SL (1998) Lactacystin, proteasome function, and cell fate. J Biol Chem 273:8545–8548PubMedCrossRefGoogle Scholar
  29. Folmer F, Jaspars DM, Diederich M (2008) Marine natural products as targeted modulators of the transcription factor NF-κB. Biochem Pharmacol 75:603–617PubMedCrossRefGoogle Scholar
  30. Garber K (2009) Ariad’s NFκB patent claims shot down on appeal. Nat Biotechnol 27:494–495PubMedCrossRefGoogle Scholar
  31. García-Piñeres AJ, Lindenmeyer MT, Merfort I (2004) Role of cysteine residues of p65/NF-κB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential. Life Sci 75:841–856PubMedCrossRefGoogle Scholar
  32. Gilmore TD (2007) Multiple myeloma: lusting for NF-κB. Cancer Cell 12:95–97PubMedCrossRefGoogle Scholar
  33. Gilmore TD, Herscovitch M (2006) Inhibitors of NF-κB signaling: 785 and counting. Oncogene 25:6887–6899PubMedCrossRefGoogle Scholar
  34. Gilmore TD, Kalaitzidis D, Liang M-C, Starczynowski DT (2004) The c-Rel transcription factor and B-cell proliferation: a deal with the devel. Oncogene 23:2275–2286PubMedCrossRefGoogle Scholar
  35. Godl K, Gruss OJ, Eickhoff J, Wissing J, Blencke S, Weber M, Degen H, Brehmer D, Õrfi L, Horváth Z, Kéri G, Müller S, Cotton M, Ullrich A, Daub H (2005) Proteomic characterization of the angiogenesis inhibitor SU6668 reveals multiple impacts on cellular kinase signaling. Cancer Res 65:6919–6926PubMedCrossRefGoogle Scholar
  36. Gregersen PK, Amos CI, Lee AT, Lu Y, Remmers EF, Kastner DL, Seldin MF, Criswell LA, Plenge RM, Holers VM, Mikuls TR, Sokka T, Moreland LW, Bridges Jr SL, Xie G, Begovich AB, Siminovitch KA (2009) REL, encoding a member of the NF-κB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat Genet 41:820–823PubMedCrossRefGoogle Scholar
  37. Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132:344–362PubMedCrossRefGoogle Scholar
  38. Grisham MB, Palombella VJ, Elliott PJ, Conner EM, Brand S, Wong HL, Pien C, Mazzola LM, Destree A, Parent L, Adams J (1999) Inhibition of NF-κB activation in vitro and in vivo: role of 26S proteasome. Methods Enzymol 300:345–363PubMedCrossRefGoogle Scholar
  39. Guo G, Wang T, Gao Q, Tamae D, Wong P, Chen T, Chen WC, Shively JE, Wong JY, Li JJ (2004) Expression of ErbB2 enhances radiation-induced NF-κB activation. Oncogene 23:535–545PubMedCrossRefGoogle Scholar
  40. Hayes CJ, Sherlock AE, Selby MD (2006) Enantioselective total syntheses of (-)-clasto-lactacystin β-lactone and 7-epi-(-)-clasto-lactacystin β-lactone. Org Biomol Chem 4:193–195PubMedCrossRefGoogle Scholar
  41. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC (2002) NF-κB as a therapeutic target in multiple myeloma. J Biol Chem 277:16639–16647PubMedCrossRefGoogle Scholar
  42. Hiscott J, Nguyen T-LA, Arguello M, Nakhaei P, Paz S (2006) Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene 25:6844–6867PubMedCrossRefGoogle Scholar
  43. Jagannath S, Kyle RA, Palumbo A, Siegel DS, Cunningham S, Berenson J (2010) The current status and future of multiple myeloma in the clinic. Clin Lymphoma Myeloma 10:E1–E16Google Scholar
  44. Jobin C, Hellerbrand C, Licato LL, Brenner DA, Sartor RB (1998) Mediation by NF-κB of cytokine induced expression of intercellular adhesion molecule 1 (ICAM-1) in an intestinal epithelial cell line, a process blocked by proteasome inhibitors. Gut 42:779–787PubMedCrossRefGoogle Scholar
  45. Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-κB. Trends Endocrinol Metab 16:46–52PubMedCrossRefGoogle Scholar
  46. Kapahi P, Takahashi T, Natoli G, Adams SR, Chen Y, Tsien RY, Karin M (2000) Inhibition of NF-κB activation by arsenite through reaction with a critical cysteine in the activation loop of IκB kinase. J Biol Chem 275:36062–36066PubMedCrossRefGoogle Scholar
  47. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-κB system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26PubMedCrossRefGoogle Scholar
  48. Keino H, Watanabe T, Sato Y, Niikura M, Wada Y, Okada A (2008) Therapeutic effect of the potent IL-12/IL-23 inhibitor STA-5326 on experimental autoimmune uveoretinitis. Arthritis Res Ther 10:R122PubMedCrossRefGoogle Scholar
  49. Khanna D, Sethi G, Ahn KS, Pandey MK, Kunnumakkara AB, Sung B, Aggarwal A, Aggarwal BB (2007) Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol 7:344–351PubMedCrossRefGoogle Scholar
  50. Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM (2001) The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IκB kinase. Chem Biol 8:759–766PubMedCrossRefGoogle Scholar
  51. Lai C, Jiang X, Li X (2006) Development of luciferase reporter-based cell assays. Assay Drug Dev Technol 4:307–315PubMedCrossRefGoogle Scholar
  52. Lam LT, Davis RE, Pierce J, Hepperle M, Xu Y, Hottelet M, Nong Y, Wen D, Adams J, Dang L, Staudt LM (2005) Small molecule inhibitors of IκB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res 11:28–40PubMedCrossRefGoogle Scholar
  53. Lam LT, Davis RE, Ngo VN, Lenz G, Wright G, Xu W, Zhao H, Yu X, Dang L, Staudt LM (2008) Compensatory IKKα activation of classical NF-κB signaling during IKKβ inhibition identified by an RNA interference sensitization screen. Proc Natl Acad Sci USA 105:20798–20803PubMedCrossRefGoogle Scholar
  54. Laubach JP, Mitsiades CS, Mahindra A, Schlossman RL, Hideshima T, Chauhan D, Carreau NA, Ghobrial IM, Raje N, Munshi NC, Anderson KC, Richardson PG (2009) Novel therapies in the treatment of multiple myeloma. Nat Rev Clin Oncol 6:596–603CrossRefGoogle Scholar
  55. Lee DF, Hung MC (2008) Advances in targeting IKK and IKK-related kinases for cancer therapy. Clin Cancer Res 14:5656–5662PubMedCrossRefGoogle Scholar
  56. Lentsch AB, Shanley TP, Sarma V, Ward PA (1997) In vivo suppression of NF-κB and preservation of IκBα by interleukin-10 and interleukin-13. J Clin Invest 100:2443–2448PubMedCrossRefGoogle Scholar
  57. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald, A, Ott G, Müller-Hermelink H-K, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smelan EB, Fisher RI, Chan WC, Staudt LM (2008) Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319:1676–1679PubMedCrossRefGoogle Scholar
  58. Letoha T, Somlai C, Takacs T, Szabolcs A, Jarmay K, Rakonczay Z Jr, Hegyi P, Varga I, Kaszaki J, Krizbai I, Boros I, Duda E, Kusz E, Penke B (2005) A nuclear import inhibitory peptide ameliorates the severity of cholecystokinin-induced acute pancreatitis. World J Gasteroenterol 11:990–999Google Scholar
  59. Liang M-C, Bardhan S, Li C, Pace EA, Porco JA Jr, Gilmore TD (2003) Jesterone dimer, a synthetic derivative of the fungal metabolite jesterone, blocks activation of transcription factor nuclear factor κB by inhibiting the inhibitor of κB kinase. Mol Pharmacol 64:123–131PubMedCrossRefGoogle Scholar
  60. Liang M-C, Bardhan S, Pace EA, Rosman D, Beutler JA, Porco JA Jr, Gilmore TD (2006) Inhibition of transcription factor NF-κB signaling proteins IKKβ and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity. Biochem Pharmacol 71:634–645PubMedCrossRefGoogle Scholar
  61. Lin YZ, Yao SY, Veach RA, Torgerson TR, Hawiger J (1995) Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem 270:14255–14258PubMedCrossRefGoogle Scholar
  62. Luedde T, Bereza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, Roskams T, Trautwein C, Pasparakis M (2007) Deletion of NEMO/IKKγ in liver parenchymal cells causes steatoheptatis and hepatocellular carincoma. Cancer Cell 11:119–132PubMedCrossRefGoogle Scholar
  63. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78:773–785PubMedCrossRefGoogle Scholar
  64. Pande V, Sousa SF, Ramos MJ (2009) Direct covalent modification as a strategy to inhibit nuclear factor-κB. Curr Med Chem 16:4261–4273PubMedCrossRefGoogle Scholar
  65. Park SJ, Lee MY, Bon BS, Youn HS (2009) TBK1-targeted suppression of TRIF-dependent signaling pathway of Toll-like receptors by 6-shogaol, an active component of ginger. Biosci Biotechnol Biochem 73:1474–1478PubMedCrossRefGoogle Scholar
  66. Pasparakis M (2009) Regulation of tissue homeostasis by NF-κB signaling: implications for inflammatory diseases. Nat Rev Immunol 9:778–788PubMedCrossRefGoogle Scholar
  67. Perkins ND (2006) Post-translational modifications regulating the activity and function of the nuclear factor κB pathway. Oncogene 25:6717–6730PubMedCrossRefGoogle Scholar
  68. Pianetti S, Arsura M, Romieu-Mourez R, Coffey RJ, Sonenshein GE (2001) Her-1/Neu overexpression induces NF-κB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IκB-α that can be inhibited by the tumor suppressor PTEN. Oncogene 20: 1287–1299PubMedCrossRefGoogle Scholar
  69. Ríos JL, Recio MC, Escandell JM, Andújar I (2009) Inhibition of transcription factors by plant-derived compounds and their implications in inflammation and cancer. Curr Pharm Des 15:1212–1237PubMedCrossRefGoogle Scholar
  70. Sakurai T, Maeda S, Chang L, Karin M (2006) Loss of hepatic NF-κB activity enhances chemical carcionogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci USA 103:10544–10551PubMedCrossRefGoogle Scholar
  71. Scheidereit C (2006) IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25:6685–6705PubMedCrossRefGoogle Scholar
  72. Sen J, Venkataraman L, Shinkai Y, Pierce JW, Alt FW, Burakoff SJ, Sen R (1995) Expression and induction of nuclear factor-κB-related proteins in thymocytes. J Immunol 154:3213–3221PubMedGoogle Scholar
  73. Shishodia S, Sethi G, Konopleva M, Andreeff M, Aggarwal BB (2006) A synthetic triterpenoid, CDDO-Me, inhibits IκBα kinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor κB-regulated gene products in human leukemic cells. Clin Cancer Res 12:1828–1838PubMedCrossRefGoogle Scholar
  74. Skaug B, Jiang X, Chen ZJ (2009) The role of ubiquitin in NF-κB regulatory pathways. Annu Rev Biochem 78:769–796PubMedCrossRefGoogle Scholar
  75. Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang C-H, Sengchanthalangsy LL, Ghosh G, Glass CK (2000) 15-deoxy-Δ12,14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. Proc Natl Acad Sci USA 97:4844–4849PubMedCrossRefGoogle Scholar
  76. Strickland I, Ghosh S (2006) Use of cell permeable NBD peptides for suppression of inflammation. Ann Rheum Dis 65(Suppl 3):iii75–iii82Google Scholar
  77. Su Y, Amiri KI, Horton LW, Yu Y, Ayers GD, Koehler E, Kelley MC, Puzanov I, Richmond A, Sosman JA (2010) A phase I trial of bortezomib with temozolomide in patients with advanced melanoma: toxicities, antitumor effects, and modulation of therapeutic targets. Clin Cancer Res 16:348–357PubMedCrossRefGoogle Scholar
  78. Sun S-C, Cesarman E (2010) NF-κB as a target for oncogenic viruses. In: Current topics in microbiology and immunology. Springer, Berlin (this issue)Google Scholar
  79. Swinney DC, Xu Y-Z, Scarafia LE, Lee I, Mak AY, Gan Q-F, Ramesha CS, Mulkins MA, Dunn J, So O-Y, Biegel T, Dinh M, Volkel P, Barnett J, Dalrymple SA, Lee S, Huber M (2002) A small molecule ubiquitination inhibitor blocks NF-κB-dependent cytokine expression in cells and rats. J Biol Chem 277:23573–23581PubMedCrossRefGoogle Scholar
  80. Takigawa N, Vaziri SA, Grabowski DR, Chikamori K, Rybicki LR, Bukowski RM, Ganapathi MK, Ganapathi R, Mekhail T (2006) Proteasome inhibition with bortezomib enhances activity of topoisomerase I-targeting drugs by NF-κB-independent mechanisms. Anticancer Res 26:1869–1876PubMedGoogle Scholar
  81. Tang W, Li Y, Yu D, Thomas-Tikhonenko A, Spiegelman VS, Fuchs SY (2005) Targeting β-transducin repeat-containing protein E3 ubiquitin ligase augments the effects of antitumor drugs on breast cancer cells. Cancer Res 65:1904–1908PubMedCrossRefGoogle Scholar
  82. Taylor PC, Feldmann (2009) Anti-TNF biologic agents still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 5:578–582PubMedCrossRefGoogle Scholar
  83. Tian W, Liou H-C (2009) RNAi-mediated c-Rel silencing leads to apoptosis of B cell tumor cells and suppresses antigenic immune response in vivo. PLoS ONE 4:e5028PubMedCrossRefGoogle Scholar
  84. Torgerson TR, Colosia AD, Donahue JP, Lin Y-Z, Hawiger J (1998) Regulation of NF-κB, AP-1, NFAT, and STAT1 nuclear import in T lymphocytes by noninvasive delivery of peptide carrying the nuclear localization sequence of NF-κB p50. J Immunol 161:6084–6092PubMedGoogle Scholar
  85. Tran TA, McCoy MK, Sporn MB, Tansey MG (2008) The synthetic triterpenoid CDDO-methyl ester modulates microglial activities, inhibits TNF production, and provides dopaminergic neuroprotection. J Neuroinflammation 5:14PubMedCrossRefGoogle Scholar
  86. Trepicchio WL, Dorner AJ (1998) The therapeutic utility of Interleukin-11 in the treatment of inflammatory disease. Expert Opin Investig Drugs 7:1501–1504PubMedCrossRefGoogle Scholar
  87. Tsukamoto S, Takeuchi T, Rotinsulu H, Mangindaan RE, van Soest RW, Ukai K, Kobayashi H, Namikoshi M, Ohta T, Yokosawa H (2008) Leucettamol A: a new inhibitor of Ubc13-Uev1A interaction isolatd from a marine sponge, Leucetta aff. microrhaphis. Bioorg Med Chem Lett 18: 6319–6320PubMedCrossRefGoogle Scholar
  88. Umezawa K, Chaicharoenpong C (2002) Molecular design and biological activities of NF-κB inhibitors. Mol Cells 14:163–167PubMedGoogle Scholar
  89. Venkataraman L, Burakoff SJ, Sen R (1995) FK506 inhibits antigen receptor-mediated induction of c-rel in B and T lymphoid cells. J Exp Med 181:1091–1099PubMedCrossRefGoogle Scholar
  90. Watanabe M, Nakashima M, Togano T, Higashihara M, Watanabe T, Umezawa K, Horie R (2008) Identification of the RelA domain responsible for action of a new NF-κB inhibitor DHMEQ. Biochem Biophys Res Commun 376:310–314PubMedCrossRefGoogle Scholar
  91. Wiestner A, Staudt LM (2003) Towards molecular diagnosis and targeted therapy of lymphoid malignancies. Semin Hematol 40:296–307PubMedCrossRefGoogle Scholar
  92. Xie Y, Rinderspacher A, Liu Y, Gong G, Smith DH, Wyler M, Brandén L, Deng SX (2009) Small-molecule modulators of the NF-κB pathway newly identified by a translocation-based cellular assay. Curr Top Med Chem 9:1172–1180PubMedCrossRefGoogle Scholar
  93. Yaron A, Gonen H, Alkalay I, Hatzubai A, Jung S, Beyth S, Mercurio F, Manning AM, Ciechanover A, Ben-Neriah Y (1997) Inhibition of NF-κB cellular function via specific targeting of the IκB-ubiquitin ligase. EMBO J 16:6486–6494PubMedCrossRefGoogle Scholar
  94. Zheng B, Georgakis GV, Li Y, Bharti A, McConkey D, Aggarwal BB, Younes A (2004) Induction of cell cycle arrest and apoptosis by the proteasome inhibitor PS-341 in Hodgkin disease cell lines is independent of inhibitor of nuclear factor-κB mutations or activation of the CD30, CD40, and RANK receptors. Clin Cancer Res 10:3207–3215PubMedCrossRefGoogle Scholar
  95. Zhou H, Monack DM, Kayagaki N, Wertz I, Yin J, Wolf B, Dixit VM (2005) Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-κB activation. J Exp Med 202:1327–1332PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Biology DepartmentBoston UniversityBostonUSA

Personalised recommendations