Advertisement

pp 1-26 | Cite as

Transposable Elements

  • G. GuffantiEmail author
  • A. Bartlett
  • P. DeCrescenzo
  • F. Macciardi
  • R. Hunter
Chapter
Part of the Current Topics in Behavioral Neurosciences book series

Abstract

Transposable elements (TEs) are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in molecular functions that influence genomic plasticity and gene expression regulation. With the advent of next-generation sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. In this chapter, the Authors comprehensively summarize the state-of the-art of TE research in animal models and humans supporting a framework in which TEs play a functional role in mechanisms affecting a variety of behaviors, including neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Finally, the Authors discuss recent therapeutic applications raised from the increasing experimental evidence on TE functional mechanisms.

Keywords

Epigenomic regulation Exapation Neuropsychiatric disorders Therapeutic targeting Transposable elements 

References

  1. Ahmed M, Liang P (2012) Transposable elements are a significant contributor to tandem repeats in the human genome. Comp Funct Genomics 2012:1–7.  https://doi.org/10.1155/2012/947089CrossRefGoogle Scholar
  2. Allen TA, Von Kaenel S, Goodrich JA, Kugel JF (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11(9):816–821.  https://doi.org/10.1038/nsmb813CrossRefGoogle Scholar
  3. Balestrieri E, Arpino C, Matteucci C, Sorrentino R, Pica F, Alessandrelli R et al (2012) HERVs expression in autism spectrum disorders. PLoS One 7(11):e48831.  https://doi.org/10.1371/journal.pone.0048831CrossRefGoogle Scholar
  4. Balestrieri E, Pitzianti M, Matteucci C, D’Agati E, Sorrentino R, Baratta A et al (2014) Human endogenous retroviruses and ADHD. World J Biol Psychiatry 15(6):499–504.  https://doi.org/10.3109/15622975.2013.862345CrossRefGoogle Scholar
  5. Bartlett AA, Hunter RG (2018) Transposons, stress and the functions of the deep genome. Front Neuroendocrinol 49:170–174.  https://doi.org/10.1016/j.yfrne.2018.03.002CrossRefGoogle Scholar
  6. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3(5):370–379.  https://doi.org/10.1038/nrg798CrossRefGoogle Scholar
  7. Bedrosian TA, Quayle C, Novaresi N, Gage FH (2018) Early life experience drives structural variation of neural genomes in mice. Science 359(6382):1395–1399.  https://doi.org/10.1126/science.aah3378CrossRefGoogle Scholar
  8. Belyayev A (2014) Bursts of transposable elements as an evolutionary driving force. J Evol Biol 27(12):2573–2584.  https://doi.org/10.1111/jeb.12513CrossRefGoogle Scholar
  9. Boeke JD, Stoye JP (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. http://www.ncbi.nlm.nih.gov/books/NBK19468/Google Scholar
  10. Bogdanik LP, Chapman HD, Miers KE, Serreze DV, Burgess RW (2012) A MusD retrotransposon insertion in the mouse Slc6a5 gene causes alterations in neuromuscular junction maturation and behavioral phenotypes. PLoS One 7(1):e30217.  https://doi.org/10.1371/journal.pone.0030217CrossRefGoogle Scholar
  11. Bose P, Hermetz KE, Conneely KN, Rudd MK (2014) Tandem repeats and G-rich sequences are enriched at human CNV breakpoints. PLoS One 9(7):e101607.  https://doi.org/10.1371/journal.pone.0101607CrossRefGoogle Scholar
  12. Brosius J (2003) The contribution of RNAs and retroposition to evolutionary novelties. Genetica 118(2–3):99–116Google Scholar
  13. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100(9):5280–5285.  https://doi.org/10.1073/pnas.0831042100CrossRefGoogle Scholar
  14. Bucheton A, Vaury C, Chaboissier MC, Abad P, Pélisson A, Simonelig M (1992) I elements and the Drosophila genome. Genetica 86(1–3):175–190Google Scholar
  15. Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T et al (2014) Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81(2):306–313.  https://doi.org/10.1016/j.neuron.2013.10.053CrossRefGoogle Scholar
  16. Campbell IM, Gambin T, Dittwald P, Beck CR, Shuvarikov A, Hixson P et al (2014) Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination. BMC Biol 12:74.  https://doi.org/10.1186/s12915-014-0074-4CrossRefGoogle Scholar
  17. Cappucci U, Torromino G, Casale AM, Camon J, Capitano F, Berloco M et al (2018) Stress-induced strain and brain region-specific activation of LINE-1 transposons in adult mice. Stress:1–5.  https://doi.org/10.1080/10253890.2018.1485647Google Scholar
  18. Carmona LM, Schatz DG (2017) New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. FEBS J 284(11):1590–1605.  https://doi.org/10.1111/febs.13990CrossRefGoogle Scholar
  19. Chu WM, Liu WM, Schmid CW (1995) RNA polymerase III promoter and terminator elements affect Alu RNA expression. Nucleic Acids Res 23(10):1750–1757Google Scholar
  20. Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18(2):71–86.  https://doi.org/10.1038/nrg.2016.139CrossRefGoogle Scholar
  21. Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703.  https://doi.org/10.1038/nrg2640CrossRefGoogle Scholar
  22. Coufal NG, Garcia-Perez JL, Peng GE, Marchetto MCN, Muotri AR, Mu Y et al (2011) Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci U S A 108(51):20382–20387.  https://doi.org/10.1073/pnas.1100273108CrossRefGoogle Scholar
  23. Crow TJ (1987) Integrated viral genes as potential pathogens in the functional psychoses. J Psychiatr Res 21(4):479–485Google Scholar
  24. Curtin F, Bernard C, Levet S, Perron H, Porchet H, Médina J et al (2018) A new therapeutic approach for type 1 diabetes: rationale for GNbAC1, an anti-HERV-W-Env monoclonal antibody. Diabetes Obes Metab 20(9):2075–2084.  https://doi.org/10.1111/dom.13357CrossRefGoogle Scholar
  25. D’Agati E, Pitzianti M, Balestrieri E, Matteucci C, Sinibaldi Vallebona P, Pasini A (2016) First evidence of HERV-H transcriptional activity reduction after methylphenidate treatment in a young boy with ADHD. New Microbiol 39(3):237–239Google Scholar
  26. Daskalakis NP, Provost AC, Hunter RG, Guffanti G (2018) Noncoding RNAs: stress, glucocorticoids, and posttraumatic stress disorder. Biol Psychiatry 83(10):849–865.  https://doi.org/10.1016/j.biopsych.2018.01.009CrossRefGoogle Scholar
  27. de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7(12):e1002384.  https://doi.org/10.1371/journal.pgen.1002384CrossRefGoogle Scholar
  28. de Souza FSJ, Franchini LF, Rubinstein M (2013) Exaptation of transposable elements into novel Cis-regulatory elements: is the evidence always strong? Mol Biol Evol 30(6):1239–1251.  https://doi.org/10.1093/molbev/mst045CrossRefGoogle Scholar
  29. DiDomenico BJ, Bugaisky GE, Lindquist S (1982) Heat shock and recovery are mediated by different translational mechanisms. Proc Natl Acad Sci U S A 79(20):6181–6185Google Scholar
  30. Diem O, Schäffner M, Seifarth W, Leib-Mösch C (2012) Influence of antipsychotic drugs on human endogenous retrovirus (HERV) transcription in brain cells. PLoS One 7(1):e30054.  https://doi.org/10.1371/journal.pone.0030054CrossRefGoogle Scholar
  31. Doyle GA, Crist RC, Karatas ET, Hammond MJ, Ewing AD, Ferraro TN et al (2017) Analysis of LINE-1 elements in DNA from postmortem brains of individuals with schizophrenia. Neuropsychopharmacology 42(13):2602–2611.  https://doi.org/10.1038/npp.2017.115CrossRefGoogle Scholar
  32. Drongitis D, Rainone S, Piscopo M, Viggiano E, Viggiano A, De Luca B et al (2016) Epigenetics and cortical spreading depression: changes of DNA methylation level at retrotransposon sequences. Mol Biol Rep 43(8):755–760.  https://doi.org/10.1007/s11033-016-4000-4CrossRefGoogle Scholar
  33. Dupressoir A, Lavialle C, Heidmann T (2012) From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33(9):663–671.  https://doi.org/10.1016/j.placenta.2012.05.005CrossRefGoogle Scholar
  34. Eickbush TH, Furano AV (2002) Fruit flies and humans respond differently to retrotransposons. Curr Opin Genet Dev 12(6):669–674Google Scholar
  35. Eickbush TH, Jamburuthugoda VK (2008) The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 134(1–2):221–234.  https://doi.org/10.1016/j.virusres.2007.12.010CrossRefGoogle Scholar
  36. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74.  https://doi.org/10.1038/nature11247CrossRefGoogle Scholar
  37. Erwin JA, Marchetto MC, Gage FH (2014) Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci 15(8):497–506.  https://doi.org/10.1038/nrn3730CrossRefGoogle Scholar
  38. Espinoza CA, Allen TA, Hieb AR, Kugel JF, Goodrich JA (2004) B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol 11(9):822–829.  https://doi.org/10.1038/nsmb812CrossRefGoogle Scholar
  39. Espinoza CA, Goodrich JA, Kugel JF (2007) Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription. RNA (New York, NY) 13(4):583–596.  https://doi.org/10.1261/rna.310307CrossRefGoogle Scholar
  40. Ewing AD, Kazazian HH (2011) Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans. Genome Res 21(6):985–990.  https://doi.org/10.1101/gr.114777.110CrossRefGoogle Scholar
  41. Fedoroff NV (2012) Presidential address. Transposable elements, epigenetics, and genome evolution. Science 338(6108):758–767Google Scholar
  42. Feschotte C, Wessler SR, Zhang X (2002) Miniature inverted-repeat transposable elements and their relationship to established DNA transposons. In: Craig NL, Lambowitz AM, Craigie R, Gellert M (eds) Mobile DNA II. American Society of Microbiology, Washington, pp 1147–1158.  https://doi.org/10.1128/9781555817954.ch50
  43. Findly RC, Pederson T (1981) Regulated transcription of the genes for actin and heat-shock proteins in cultured Drosophila cells. J Cell Biol 88(2):323–328Google Scholar
  44. Fornace AJ, Mitchell JB (1986) Induction of B2 RNA polymerase III transcription by heat shock: enrichment for heat shock induced sequences in rodent cells by hybridization subtraction. Nucleic Acids Res 14(14):5793–5811Google Scholar
  45. Frank JA, Feschotte C (2017) Co-option of endogenous viral sequences for host cell function. Curr Opin Virol 25:81–89.  https://doi.org/10.1016/j.coviro.2017.07.021CrossRefGoogle Scholar
  46. Frank O, Giehl M, Zheng C, Hehlmann R, Leib-Mösch C, Seifarth W (2005) Human endogenous retrovirus expression profiles in samples from brains of patients with schizophrenia and bipolar disorders. J Virol 79(17):10890–10901.  https://doi.org/10.1128/JVI.79.17.10890-10901.2005CrossRefGoogle Scholar
  47. Frank O, Jones-Brando L, Leib-Mosch C, Yolken R, Seifarth W (2006) Altered transcriptional activity of human endogenous retroviruses in neuroepithelial cells after infection with toxoplasma gondii. J Infect Dis 194(10):1447–1449.  https://doi.org/10.1086/508496CrossRefGoogle Scholar
  48. Friedli M, Trono D (2015) The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol 31(1):429–451.  https://doi.org/10.1146/annurev-cellbio-100814-125514CrossRefGoogle Scholar
  49. Gilmour DS, Lis JT (1985) In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 5(8):2009–2018Google Scholar
  50. Goodier JL, Kazazian HH (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135(1):23–35.  https://doi.org/10.1016/j.cell.2008.09.022CrossRefGoogle Scholar
  51. Goodier JL, Ostertag EM, Kazazian HH (2000) Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum Mol Genet 9(4):653–657Google Scholar
  52. Gould SJ, Vrba ES (1982) Exaptation – a missing term in the science of form. Paleobiology 8(01):4–15.  https://doi.org/10.1017/S0094837300004310CrossRefGoogle Scholar
  53. Guffanti G, Gaudi S, Fallon JH, Sobell J, Potkin SG, Pato C, Macciardi F (2014) Transposable elements and psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 165B(3):201–216.  https://doi.org/10.1002/ajmg.b.32225CrossRefGoogle Scholar
  54. Guffanti G, Gaudi S, Klengel T, Fallon JH, Mangalam H, Madduri R et al (2016) LINE1 insertions as a genomic risk factor for schizophrenia: preliminary evidence from an affected family. Am J Med Genet B Neuropsychiatr Genet 171(4):534–545.  https://doi.org/10.1002/ajmg.b.32437CrossRefGoogle Scholar
  55. Guo C, Jeong H-H, Hsieh Y-C, Klein H-U, Bennett DA, De Jager PL et al (2018) Tau activates transposable elements in Alzheimer’s disease. Cell Rep 23(10):2874–2880.  https://doi.org/10.1016/j.celrep.2018.05.004CrossRefGoogle Scholar
  56. Habibi L, Shokrgozar MA, Tabrizi M, Modarressi MH, Akrami SM (2014) Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line. Mutat Res Genet Toxicol Environ Mutagen 759:9–20.  https://doi.org/10.1016/j.mrgentox.2013.07.015CrossRefGoogle Scholar
  57. Hambor JE, Mennone J, Coon ME, Hanke JH, Kavathas P (1993) Identification and characterization of an Alu-containing, T-cell-specific enhancer located in the last intron of the human CD8 alpha gene. Mol Cell Biol 13(11):7056–7070Google Scholar
  58. Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH (2011) Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 20(17):3386–3400.  https://doi.org/10.1093/hmg/ddr245CrossRefGoogle Scholar
  59. Harold FM (1986) The vital force: a study of bioenergetics. W.H. Freeman, New YorkGoogle Scholar
  60. Houede N, Piazza PV, Pourquier P (2018) LINE-1 as a therapeutic target for castration-resistant prostate cancer. Front Biosci 23:1292–1309Google Scholar
  61. Huang W-J, Liu Z-C, Wei W, Wang G-H, Wu J-G, Zhu F (2006) Human endogenous retroviral pol RNA and protein detected and identified in the blood of individuals with schizophrenia. Schizophr Res 83(2–3):193–199.  https://doi.org/10.1016/j.schres.2006.01.007CrossRefGoogle Scholar
  62. Huang CRL, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA et al (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141(7):1171–1182.  https://doi.org/10.1016/j.cell.2010.05.026CrossRefGoogle Scholar
  63. Huang W, Li S, Hu Y, Yu H, Luo F, Zhang Q, Zhu F (2011) Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr Bull 37(5):988–1000.  https://doi.org/10.1093/schbul/sbp166CrossRefGoogle Scholar
  64. Huda A, Tyagi E, Mariño-Ramírez L, Bowen NJ, Jjingo D, Jordan IK (2011) Prediction of transposable element derived enhancers using chromatin modification profiles. PLoS One 6(11):e27513.  https://doi.org/10.1371/journal.pone.0027513CrossRefGoogle Scholar
  65. Hunter RG, Murakami G, Dewell S, Seligsohn M, Baker MER, Datson NA et al (2012) Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci U S A 109(43):17657–17662.  https://doi.org/10.1073/pnas.1215810109CrossRefGoogle Scholar
  66. Hunter RG, McEwen BS, Pfaff DW (2013) Environmental stress and transposon transcription in the mammalian brain. Mob Genet Elem 3(2):e24555.  https://doi.org/10.4161/mge.24555CrossRefGoogle Scholar
  67. Hunter RG, Gagnidze K, McEwen BS, Pfaff DW (2015) Stress and the dynamic genome: steroids, epigenetics, and the transposome. Proc Natl Acad Sci U S A 112(22):6828–6833.  https://doi.org/10.1073/pnas.1411260111CrossRefGoogle Scholar
  68. Jjingo D, Conley AB, Wang J, Mariño-Ramírez L, Lunyak VV, Jordan IK (2014) Mammalian-wide interspersed repeat (MIR)-derived enhancers and the regulation of human gene expression. Mob DNA 5:14.  https://doi.org/10.1186/1759-8753-5-14CrossRefGoogle Scholar
  69. Karijolich J, Abernathy E, Glaunsinger BA (2015) Infection-induced retrotransposon-derived noncoding RNAs enhance herpesviral gene expression via the NF-κB pathway. PLoS Pathog 11(11):e1005260.  https://doi.org/10.1371/journal.ppat.1005260CrossRefGoogle Scholar
  70. Karlsson H, Bachmann S, Schröder J, McArthur J, Torrey EF, Yolken RH (2001) Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci U S A 98(8):4634–4639.  https://doi.org/10.1073/pnas.061021998CrossRefGoogle Scholar
  71. Karlsson H, Schröder J, Bachmann S, Bottmer C, Yolken RH (2004) HERV-W-related RNA detected in plasma from individuals with recent-onset schizophrenia or schizoaffective disorder. Mol Psychiatry 9(1):12–13.  https://doi.org/10.1038/sj.mp.4001439CrossRefGoogle Scholar
  72. Kelley D, Rinn J (2012) Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13(11):R107.  https://doi.org/10.1186/gb-2012-13-11-r107CrossRefGoogle Scholar
  73. Kerur N, Hirano Y, Tarallo V, Fowler BJ, Bastos-Carvalho A, Yasuma T et al (2013) TLR-independent and P2X7-dependent signaling mediate Alu RNA-induced NLRP3 inflammasome activation in geographic atrophy. Invest Ophthalmol Vis Sci 54(12):7395–7401.  https://doi.org/10.1167/iovs.13-12500CrossRefGoogle Scholar
  74. Kesby JP, Eyles DW, McGrath JJ, Scott JG (2018) Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl Psychiatry 8(1):30.  https://doi.org/10.1038/s41398-017-0071-9CrossRefGoogle Scholar
  75. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3(107):ra8.  https://doi.org/10.1126/scisignal.2000568CrossRefGoogle Scholar
  76. Kirov G (2015) CNVs in neuropsychiatric disorders. Hum Mol Genet 24(R1):R45–R49.  https://doi.org/10.1093/hmg/ddv253CrossRefGoogle Scholar
  77. Krug L, Chatterjee N, Borges-Monroy R, Hearn S, Liao W-W, Morrill K et al (2017) Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS. PLoS Genet 13(3):e1006635.  https://doi.org/10.1371/journal.pgen.1006635CrossRefGoogle Scholar
  78. Kugel JF, Goodrich JA (2006) Beating the heat: a translation factor and an RNA mobilize the heat shock transcription factor HSF1. Mol Cell 22(2):153–154.  https://doi.org/10.1016/j.molcel.2006.04.003CrossRefGoogle Scholar
  79. Kuhn RM, Karolchik D, Zweig AS, Trumbower H, Thomas DJ, Thakkapallayil A et al (2007) The UCSC genome browser database: update 2007. Nucleic Acids Res 35(Database issue):D668–D673.  https://doi.org/10.1093/nar/gkl928CrossRefGoogle Scholar
  80. Lacar B, Linker SB, Jaeger BN, Krishnaswami S, Barron J, Kelder M, Parylak SL, Paquola ACM, Venepally P, Novotny M, O’Connor C, Fitzpatrick C, Erwin JA, Hsu JY, Husband D, McConnell MJ, Lasken R, Gage FH (2016) Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat Commun 7:11022.  https://doi.org/10.1038/ncomms11022CrossRefGoogle Scholar
  81. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921.  https://doi.org/10.1038/35057062CrossRefGoogle Scholar
  82. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934.  https://doi.org/10.1038/nature09486CrossRefGoogle Scholar
  83. Lapp HE, Hunter RG (2016) The dynamic genome: transposons and environmental adaptation in the nervous system. Epigenomics 8(2):237–249.  https://doi.org/10.2217/epi.15.107CrossRefGoogle Scholar
  84. Leboyer M, Tamouza R, Charron D, Faucard R, Perron H (2013) Human endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface. World J Biol Psychiatry 14(2):80–90.  https://doi.org/10.3109/15622975.2010.601760CrossRefGoogle Scholar
  85. Li T, Spearow J, Rubin CM, Schmid CW (1999) Physiological stresses increase mouse short interspersed element (SINE) RNA expression in vivo. Gene 239(2):367–372Google Scholar
  86. Li W, Jin Y, Prazak L, Hammell M, Dubnau J (2012) Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS One 7(9):e44099.  https://doi.org/10.1371/journal.pone.0044099CrossRefGoogle Scholar
  87. Li W, Prazak L, Chatterjee N, Grüninger S, Krug L, Theodorou D, Dubnau J (2013) Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16(5):529–531.  https://doi.org/10.1038/nn.3368CrossRefGoogle Scholar
  88. Li W, Lee M-H, Henderson L, Tyagi R, Bachani M, Steiner J et al (2015) Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med 7(307):307ra153.  https://doi.org/10.1126/scitranslmed.aac8201CrossRefGoogle Scholar
  89. Liu WM, Chu WM, Choudary PV, Schmid CW (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 23(10):1758–1765Google Scholar
  90. Long Y, Wang X, Youmans DT, Cech TR (2017) How do lncRNAs regulate transcription? Sci Adv 3(9):eaao2110.  https://doi.org/10.1126/sciadv.aao2110CrossRefGoogle Scholar
  91. Lu X, Sachs F, Ramsay L, Jacques P-É, Göke J, Bourque G, Ng H-H (2014) The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol 21(4):423–425.  https://doi.org/10.1038/nsmb.2799CrossRefGoogle Scholar
  92. Lunyak VV, Prefontaine GG, Nunez E, Cramer T, Ju B-G, Ohgi KA et al (2007) Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317(5835):248–251.  https://doi.org/10.1126/science.1140871CrossRefGoogle Scholar
  93. Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43(11):1154–1159.  https://doi.org/10.1038/ng.917CrossRefGoogle Scholar
  94. Lynch VJ, Nnamani MC, Kapusta A, Brayer K, Plaza SL, Mazur EC et al (2015) Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep 10(4):551–561.  https://doi.org/10.1016/j.celrep.2014.12.052CrossRefGoogle Scholar
  95. Mager DL, Stoye JP (2015) Mammalian endogenous retroviruses. Microbiol Spect 3(1):MDNA3-0009-2014.  https://doi.org/10.1128/microbiolspec.MDNA3-0009-2014CrossRefGoogle Scholar
  96. Makino S, Kaji R, Ando S, Tomizawa M, Yasuno K, Goto S et al (2007) Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet 80(3):393–406.  https://doi.org/10.1086/512129CrossRefGoogle Scholar
  97. Mariño-Ramírez L, Jordan IK (2006) Transposable element derived DNaseI-hypersensitive sites in the human genome. Biol Direct 1:20.  https://doi.org/10.1186/1745-6150-1-20CrossRefGoogle Scholar
  98. Mattei D, Schweibold R, Wolf SA (2015) Brain in flames – animal models of psychosis: utility and limitations. Neuropsychiatr Dis Treat 11:1313–1329.  https://doi.org/10.2147/NDT.S65564CrossRefGoogle Scholar
  99. Maxwell PH, Burhans WC, Curcio MJ (2011) Retrotransposition is associated with genome instability during chronological aging. Proc Natl Acad Sci U S A 108(51):20376–20381.  https://doi.org/10.1073/pnas.1100271108CrossRefGoogle Scholar
  100. Mcclintock B (1956) Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol 8:58–74Google Scholar
  101. Mili S, Steitz JA (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10(11):1692–1694.  https://doi.org/10.1261/rna.7151404CrossRefGoogle Scholar
  102. Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562.  https://doi.org/10.1038/nature01262CrossRefGoogle Scholar
  103. Mukherjee S, Sharma D, Upadhyaya KC (2016) L1 retrotransposons are transcriptionally active in Hippocampus of rat brain. Prague Med Rep 117(1):42–53.  https://doi.org/10.14712/23362936.2016.4CrossRefGoogle Scholar
  104. Muotri AR, Zhao C, Marchetto MCN, Gage FH (2009) Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19(10):1002–1007.  https://doi.org/10.1002/hipo.20564CrossRefGoogle Scholar
  105. Muotri AR, Marchetto MCN, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468(7322):443–446.  https://doi.org/10.1038/nature09544CrossRefGoogle Scholar
  106. Nelson PN, Lever AM, Smith S, Pitman R, Murray P, Perera SA et al (1999) Molecular investigations implicate human endogenous retroviruses as mediators of anti-retroviral antibodies in autoimmune rheumatic disease. Immunol Investig 28(4):277–289Google Scholar
  107. Nitsche A, Stadler PF (2017) Evolutionary clues in lncRNAs. Wiley Interdiscip Rev RNA 8(1).  https://doi.org/10.1002/wrna.1376Google Scholar
  108. O’Brien T, Lis JT (1993) Rapid changes in Drosophila transcription after an instantaneous heat shock. Mol Cell Biol 13(6):3456–3463Google Scholar
  109. Ohno S (1972) So much “junk” DNA in our genome. Brookhaven Symp Biol 23:366–370Google Scholar
  110. Okudaira N, Ishizaka Y, Nishio H (2014) Retrotransposition of Long interspersed element 1 induced by methamphetamine or cocaine. J Biol Chem 289(37):25476–25485.  https://doi.org/10.1074/jbc.M114.559419CrossRefGoogle Scholar
  111. Percharde M, Lin C-J, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A et al (2018) A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174(2):391–405.e19.  https://doi.org/10.1016/j.cell.2018.05.043CrossRefGoogle Scholar
  112. Perron H, Hamdani N, Faucard R, Lajnef M, Jamain S, Daban-Huard C et al (2012) Molecular characteristics of human endogenous retrovirus type-W in schizophrenia and bipolar disorder. Transl Psychiatry 2:e201.  https://doi.org/10.1038/tp.2012.125CrossRefGoogle Scholar
  113. Pickeral OK, Makałowski W, Boguski MS, Boeke JD (2000) Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res 10(4):411–415Google Scholar
  114. Polavarapu N, Bowen NJ, McDonald JF (2006) Identification, characterization and comparative genomics of chimpanzee endogenous retroviruses. Genome Biol 7(6):R51.  https://doi.org/10.1186/gb-2006-7-6-r51CrossRefGoogle Scholar
  115. Ponicsan SL, Kugel JF, Goodrich JA (2010) Genomic gems: SINE RNAs regulate mRNA production. Curr Opin Genet Dev 20(2):149–155.  https://doi.org/10.1016/j.gde.2010.01.004CrossRefGoogle Scholar
  116. Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci Off J Soc Neurosci 32(5):1884–1897.  https://doi.org/10.1523/JNEUROSCI.3136-11.2012CrossRefGoogle Scholar
  117. Ramesh V, Bayam E, Cernilogar FM, Bonapace IM, Schulze M, Riemenschneider MJ et al (2016) Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration. Genes Dev 30(19):2199–2212.  https://doi.org/10.1101/gad.284992.116CrossRefGoogle Scholar
  118. Rana G, Donizetti A, Virelli G, Piscopo M, Viggiano E, De Luca B, Fucci L (2012) Cortical spreading depression differentially affects lysine methylation of H3 histone at neuroprotective genes and retrotransposon sequences. Brain Res 1467:113–119.  https://doi.org/10.1016/j.brainres.2012.05.043CrossRefGoogle Scholar
  119. Reilly MT, Faulkner GJ, Dubnau J, Ponomarev I, Gage FH (2013) The role of transposable elements in health and diseases of the central nervous system. J Neurosci Off J Soc Neurosci 33(45):17577–17586.  https://doi.org/10.1523/JNEUROSCI.3369-13.2013CrossRefGoogle Scholar
  120. Ribet D, Harper F, Dupressoir A, Dewannieux M, Pierron G, Heidmann T (2008) An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus. Genome Res 18(4):597–609.  https://doi.org/10.1101/gr.073486.107CrossRefGoogle Scholar
  121. Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV (2015) The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spect 3(2):MDNA3-0061-2014.  https://doi.org/10.1128/microbiolspec.MDNA3-0061-2014CrossRefGoogle Scholar
  122. Rusiecki JA, Chen L, Srikantan V, Zhang L, Yan L, Polin ML, Baccarelli A (2012) DNA methylation in repetitive elements and post-traumatic stress disorder: a case-control study of US military service members. Epigenomics 4(1):29–40.  https://doi.org/10.2217/epi.11.116CrossRefGoogle Scholar
  123. Santangelo AM, de Souza FSJ, Franchini LF, Bumaschny VF, Low MJ, Rubinstein M (2007) Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet 3(10):1813–1826.  https://doi.org/10.1371/journal.pgen.0030166CrossRefGoogle Scholar
  124. Sciamanna I, De Luca C, Spadafora C (2016) The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression, and therapy of cancer. Front Chem 4.  https://doi.org/10.3389/fchem.2016.00006
  125. Sela N, Mersch B, Hotz-Wagenblatt A, Ast G (2010) Characteristics of transposable element exonization within human and mouse. PLoS One 5(6):e10907.  https://doi.org/10.1371/journal.pone.0010907CrossRefGoogle Scholar
  126. Senerchia N, Felber F, Parisod C (2015) Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation. Proc Biol Sci 282(1804):20142874.  https://doi.org/10.1098/rspb.2014.2874CrossRefGoogle Scholar
  127. Shen L, Wu LC, Sanlioglu S, Chen R, Mendoza AR, Dangel AW et al (1994) Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region. Molecular cloning, exon-intron structure, composite retroposon, and breakpoint of gene duplication. J Biol Chem 269(11):8466–8476Google Scholar
  128. Shpyleva S, Melnyk S, Pavliv O, Pogribny I, Jill James S (2018) Overexpression of LINE-1 retrotransposons in autism brain. Mol Neurobiol 55(2):1740–1749.  https://doi.org/10.1007/s12035-017-0421-xCrossRefGoogle Scholar
  129. Smith MA, Gesell T, Stadler PF, Mattick JS (2013) Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res 41(17):8220–8236.  https://doi.org/10.1093/nar/gkt596CrossRefGoogle Scholar
  130. Sonea S, Mathieu LG (2000) Prokaryotology: a coherent point of view. Presses de l’Université de Montréal.  https://doi.org/10.4000/books.pum.14291
  131. Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21(6):1973–1985.  https://doi.org/10.1128/MCB.21.6.1973-1985.2001CrossRefGoogle Scholar
  132. Startek M, Szafranski P, Gambin T, Campbell IM, Hixson P, Shaw CA et al (2015) Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination. Nucleic Acids Res 43(4):2188–2198.  https://doi.org/10.1093/nar/gku1394CrossRefGoogle Scholar
  133. Steller H, Pirrotta V (1986) P transposons controlled by the heat shock promoter. Mol Cell Biol 6(5):1640–1649Google Scholar
  134. Suntsova M, Gogvadze EV, Salozhin S, Gaifullin N, Eroshkin F, Dmitriev SE et al (2013) Human-specific endogenous retroviral insert serves as an enhancer for the schizophrenia-linked gene PRODH. Proc Natl Acad Sci U S A 110(48):19472–19477.  https://doi.org/10.1073/pnas.1318172110CrossRefGoogle Scholar
  135. Swergold GD (1990) Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 10(12):6718–6729Google Scholar
  136. Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N, Kim Y et al (2012) DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149(4):847–859.  https://doi.org/10.1016/j.cell.2012.03.036CrossRefGoogle Scholar
  137. Tica J, Lee E, Untergasser A, Meiers S, Garfield DA, Gokcumen O et al (2016) Next-generation sequencing-based detection of germline L1-mediated transductions. BMC Genomics 17:342.  https://doi.org/10.1186/s12864-016-2670-xCrossRefGoogle Scholar
  138. Ullu E, Tschudi C (1984) Alu sequences are processed 7SL RNA genes. Nature 312(5990):171–172Google Scholar
  139. Voigt A, Herholz D, Fiesel FC, Kaur K, Müller D, Karsten P et al (2010) TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS One 5(8):e12247.  https://doi.org/10.1371/journal.pone.0012247CrossRefGoogle Scholar
  140. Wang Z, Kunze R (2015) Transposons in eukaryotes (part A): structures, mechanisms and applications. In: John Wiley & Sons Ltd (ed) eLS. Wiley, Chichester, pp 1–13.  https://doi.org/10.1002/9780470015902.a0026264CrossRefGoogle Scholar
  141. Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, Batzer MA (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354(4):994–1007.  https://doi.org/10.1016/j.jmb.2005.09.085CrossRefGoogle Scholar
  142. Weber B, Kimhi S, Howard G, Eden A, Lyko F (2010) Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene 29(43):5775–5784.  https://doi.org/10.1038/onc.2010.227CrossRefGoogle Scholar
  143. Weis S, Llenos IC, Sabunciyan S, Dulay JR, Isler L, Yolken R, Perron H (2007) Reduced expression of human endogenous retrovirus (HERV)-W GAG protein in the cingulate gyrus and hippocampus in schizophrenia, bipolar disorder, and depression. J Neural Transm (Vienna, Austria: 1996) 114(5):645–655.  https://doi.org/10.1007/s00702-006-0599-yCrossRefGoogle Scholar
  144. Wheeler BS (2013) Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosom Res 21(6–7):587–600.  https://doi.org/10.1007/s10577-013-9394-4CrossRefGoogle Scholar
  145. Wood JG, Jones BC, Jiang N, Chang C, Hosier S, Wickremesinghe P et al (2016) Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. Proc Natl Acad Sci U S A 113(40):11277–11282.  https://doi.org/10.1073/pnas.1604621113CrossRefGoogle Scholar
  146. Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci USA 106(14):5569–5574.  https://doi.org/10.1073/pnas.0810738106CrossRefGoogle Scholar
  147. Yang Z, Boffelli D, Boonmark N, Schwartz K, Lawn R (1998) Apolipoprotein(a) gene enhancer resides within a LINE element. J Biol Chem 273(2):891–897Google Scholar
  148. Yao B, Cheng Y, Wang Z, Li Y, Chen L, Huang L et al (2017) DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat Commun 8(1):1122.  https://doi.org/10.1038/s41467-017-01195-yCrossRefGoogle Scholar
  149. Yolken RH, Karlsson H, Yee F, Johnston-Wilson NL, Torrey EF (2000) Endogenous retroviruses and schizophrenia. Brain Res Brain Res Rev 31(2–3):193–199Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • G. Guffanti
    • 1
    Email author
  • A. Bartlett
    • 2
  • P. DeCrescenzo
    • 1
  • F. Macciardi
    • 3
  • R. Hunter
    • 2
  1. 1.McLean Hospital - Harvard Medical SchoolBelmontUSA
  2. 2.Department of PsychologyUniversity of Massachusetts, BostonBostonUSA
  3. 3.Department of Psychiatry and Human BehaviorUniversity of California, IrvineIrvineUSA

Personalised recommendations