Advertisement

Biasing Allocations of Attention via Selective Weighting of Saliency Signals: Behavioral and Neuroimaging Evidence for the Dimension-Weighting Account

  • Heinrich René LiesefeldEmail author
  • Anna M. Liesefeld
  • Stefan Pollmann
  • Hermann J. Müller
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 41)

Abstract

Objects that stand out from the environment tend to be of behavioral relevance, and the visual system is tuned to preferably process these salient objects by allocating focused attention. However, attention is not just passively (bottom-up) driven by stimulus features, but previous experiences and task goals exert strong biases toward attending or actively ignoring salient objects. The core and eponymous assumption of the dimension-weighting account (DWA) is that these top-down biases are not as flexible as one would like them to be; rather, they are subject to dimensional constraints. In particular, DWA assumes that people can often not search for objects that have a particular feature but only for objects that stand out from the environment (i.e., that are salient) in a particular feature dimension. We review behavioral and neuroimaging evidence for such dimensional constraints in three areas: search history, voluntary target enhancement, and distractor handling. The first two have been the focus of research on DWA since its inception and the latter the subject of our more recent research. Additionally, we discuss various challenges to the DWA and its relation to other prominent theories on top-down influences in visual search.

Keywords

Dimension weighting Priority map Review Task history Visual search 

Notes

Acknowledgments

This work was supported by German Research Foundation (DFG) grants MU 773/14-1 and MU 773/16-1 (to H.J.M.), Open Research Area grant DFG PO 548/16-1, and DFG grant CRC779/A4 (to S.P.), by LMU Munich’s Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative (to H.J.M. and H.R.L.) and by the Graduate School of Systemic Neurosciences, Munich Center for Neurosciences – Brain & Mind (to H.R.L.).

References

  1. Algom D, Fitousi D (2016) Half a century of research on Garner interference and the separability-integrality distinction. Psychol Bull 142:1352–1383.  https://doi.org/10.1037/bul0000072 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allenmark F, Müller HJ, Shi Z (2018) Inter-trial effects in visual search: factorial comparison of Bayesian updating models. PLoS Comput Biol 14:e1006328.  https://doi.org/10.1371/journal.pcbi.1006328 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Awh E, Belopolsky AV, Theeuwes J (2012) Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends Cogn Sci 16:437–443.  https://doi.org/10.1016/j.tics.2012.06.010 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bacon WF, Egeth HE (1994) Overriding stimulus-driven attentional capture. Percept Psychophys 55:485–496.  https://doi.org/10.3758/BF03205306 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bartels A, Zeki S (2000) The architecture of the colour centre in the human visual brain: new results and a review. Eur J Neurosci 12:172–193.  https://doi.org/10.1046/j.1460-9568.2000.00905.x CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bauer B, Jolicoeur P, Cowan WB (1996a) Distractor heterogeneity versus linear separability in colour visual search. Perception 25:1281–1294.  https://doi.org/10.1068/p251281 CrossRefGoogle Scholar
  7. Bauer B, Jolicoeur P, Cowan WB (1996b) Visual search for colour targets that are or are not linearly separable from distractors. Vis Res 36:1439–1465.  https://doi.org/10.1016/0042-6989(95)00207-3 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beauchamp MS, Cox RW, DeYoe EA (1997) Graded effects of spatial and featural attention on human area MT and associated motion processing areas. J Neurophysiol 78:516–520.  https://doi.org/10.1152/jn.1997.78.1.516 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Becker SI (2008) Can intertrial effects of features and dimensions be explained by a single theory. J Exp Psychol Hum Percept Perform 34:1417–1440.  https://doi.org/10.1037/a001138 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Becker SI (2010) The role of target–distractor relationships in guiding attention and the eyes in visual search. J Exp Psychol Gen 139:247–265.  https://doi.org/10.1037/a0018808 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Becker SI, Folk CL, Remington RW (2010) The role of relational information in contingent capture. J Exp Psychol Hum Percept Perform 36:1460–1476.  https://doi.org/10.1037/a0020370 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bocca F, Töllner T, Müller HJ, Taylor PC (2015) The right angular gyrus combines perceptual and response-related expectancies in visual search: TMS-EEG evidence. Brain Stimul 8:816–822.  https://doi.org/10.1016/j.brs.2015.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bravo MJ, Nakayama K (1992) The role of attention in different visual-search tasks. Percept Psychophys 51:465–472.  https://doi.org/10.3758/BF03211642 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bundesen C, Habekost T, Kyllingsbæk S (2011) A neural theory of visual attention and short-term memory (NTVA). Neuropsychologia 49:1446–1457.  https://doi.org/10.1016/j.neuropsychologia.2010.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Burgess PW, Simoins JS, Dumontheil I, Gilbert SJ (2005) The gateway hypothesis of rostral prefrontal cortex (area 10) function. In: Duncan J, Phillips L, McLeod P (eds) Measuring the mind: speed, control, and age. Oxford University Press, Oxford, pp 217–248CrossRefGoogle Scholar
  16. Burra N, Kerzel D (2013) Attentional capture during visual search is attenuated by target predictability: evidence from the N2pc, Pd, and topographic segmentation. Psychophysiology 50:422–430.  https://doi.org/10.1111/psyp.12019 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Carandini M, Heeger DJ (2012) Normalization as a canonical neural computation. Nat Rev Neurosci 13:51–62.  https://doi.org/10.1038/nrn3136 CrossRefGoogle Scholar
  18. Chan LH, Hayward WG (2009) Feature integration theory revisited: dissociating feature detection and attentional guidance in visual search. J Exp Psychol Hum Percept Perform 35:119–132.  https://doi.org/10.1037/0096-1523.35.1.119 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215.  https://doi.org/10.1038/nrn755 CrossRefGoogle Scholar
  20. D’Zmura M (1991) Color in visual search. Vis Res 31:951–966.  https://doi.org/10.1016/0042-6989(91)90203-H CrossRefPubMedPubMedCentralGoogle Scholar
  21. Daoutis CA, Pilling M, Davies IL (2006) Categorical effects in visual search for colour. Vis Cogn 14:217–240.  https://doi.org/10.1080/13506280500158670 CrossRefGoogle Scholar
  22. De Valois RL, Abramov I, Jacobs GH (1966) Analysis of response patterns of LGN cells. J Opt Soc Am 56:966–977.  https://doi.org/10.1364/JOSA.56.000966 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Derrington AM, Krauskopf J, Lennie P (1984) Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol 357:241–265.  https://doi.org/10.1113/jphysiol.1984.sp015499 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222.  https://doi.org/10.1146/annurev.ne.18.030195.001205 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Duncan J, Humphreys GW (1989) Visual search and stimulus similarity. Psychol Rev 96:433–458.  https://doi.org/10.1037/0033-295X.96.3.433 CrossRefGoogle Scholar
  26. Egeth H (1977) Attention and preattention. In: Bower GH (ed) The psychology of learning and motivation, vol 11. Academic Press, New York, pp 277–320Google Scholar
  27. Eimer M (1996) The N2pc component as an indicator of attentional selectivity. Electroencephalogr Clin Neurophysiol 99:225–234.  https://doi.org/10.1016/0013-4694(96)95711-9 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Folk CL, Anderson BA (2010) Target-uncertainty effects in attentional capture: color-singleton set or multiple attentional control settings? Psychon Bull Rev 17:421–426.  https://doi.org/10.3758/PBR.17.3.421 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Folk CL, Remington R (1998) Selectivity in distraction by irrelevant featural singletons: evidence for two forms of attentional capture. J Exp Psychol Hum Percept Perform 24:847–858.  https://doi.org/10.1037/0096-1523.24.3.847 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Folk CL, Remington RW, Johnston JC (1992) Involuntary covert orienting is contingent on attentional control settings. J Exp Psychol Hum Percept Perform 18:1030–1044.  https://doi.org/10.1037/0096-1523.18.4.1030 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Found A, Müller HJ (1996) Searching for unknown feature targets on more than one dimension: investigating a ‘dimension-weighting’ account. Percept Psychophys 58:88–101.  https://doi.org/10.3758/BF03205479 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Garner WR (1974) The processing of information and structure. Erlbaum, PotomacGoogle Scholar
  33. Gaspar JM, McDonald JJ (2014) Suppression of salient objects prevents distraction in visual search. J Neurosci 34:5658–5666.  https://doi.org/10.1523/JNEUROSCI.4161-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gaspar JM, Christie GJ, Prime DJ, Jolicoeur P, McDonald JJ (2016) Inability to suppress salient distractors predicts low visual working memory capacity. Proc Natl Acad Sci U S A 113:3693–3698.  https://doi.org/10.1073/pnas.1523471113 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gaspelin N, Luck SJ (2018a) Combined electrophysiological and behavioral evidence for the suppression of salient distractors. J Cogn Neurosci 30:1265–1280.  https://doi.org/10.1162/jocn_a_01279 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gaspelin N, Luck SJ (2018b) The role of inhibition in avoiding distraction by salient stimuli. Trends Cogn Sci 22:79–92.  https://doi.org/10.1016/j.tics.2017.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gaspelin N, Luck SJ (2018c) “Top-down” does not mean “voluntary”. J Cogn 1:25.  https://doi.org/10.5334/joc.28 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Geyer T, Müller HJ, Krummenacher J (2008) Expectancies modulate attentional capture by salient color singletons. Vis Res 48:1315–1326.  https://doi.org/10.1016/j.visres.2008.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gramann K, Töllner T, Müller HJ (2010) Dimension-based attention modulates early visual processing. Psychophysiology 47:968–978.  https://doi.org/10.1111/j.1469-8986.2010.00998.x CrossRefGoogle Scholar
  40. Harris AM, Becker SI, Remington RW (2015) Capture by colour: evidence for dimension-specific singleton capture. Atten Percept Psychophys 77:2305–2321.  https://doi.org/10.3758/s13414-015-0927-0 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hickey C, McDonald JJ, Theeuwes J (2006) Electrophysiological evidence of the capture of visual attention. J Cogn Neurosci 18:604–613.  https://doi.org/10.1162/jocn.2006.18.4.604 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hickey C, Di Lollo V, McDonald JJ (2009) Electrophysiological indices of target and distractor processing in visual search. J Cogn Neurosci 21:760–775.  https://doi.org/10.1162/jocn.2009.21039 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hommel B (1998) Event files: evidence for automatic integration of stimulus-response episodes. Vis Cogn 5:183–216.  https://doi.org/10.1080/713756773 CrossRefGoogle Scholar
  44. Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–937.  https://doi.org/10.1017/S0140525X01000103 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Huang L, Holcombe AO, Pashler H (2004) Repetition priming in visual search: episodic retrieval, not feature priming. Mem Cogn 32:12–20.  https://doi.org/10.3758/BF03195816 CrossRefGoogle Scholar
  46. Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2:194–203.  https://doi.org/10.1038/35058500 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jannati A, Gaspar JM, McDonald JJ (2013) Tracking target and distractor processing in fixed-feature visual search: evidence from human electrophysiology. J Exp Psychol Hum Percept Perform 39:1713–1730.  https://doi.org/10.1037/a0032251 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kerzel D, Barras C (2016) Distractor rejection in visual search breaks down with more than a single distractor feature. J Exp Psychol Hum Percept Perform 42:648–657.  https://doi.org/10.1037/xhp0000180 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kiss M, Grubert A, Petersen A, Eimer M (2012) Attentional capture by salient distractors during visual search is determined by temporal task demands. J Cogn Neurosci 24:749–759.  https://doi.org/10.1162/jocn_a_00127 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Koechlin E, Basso G, Pietrini P et al (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399:148–151.  https://doi.org/10.1038/20178 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kong G, Alais D, van der Burg E (2016) An investigation of linear separability in visual search for color suggests a role of recognizability. J Exp Psychol Hum Percept Perform 42:1724–1738.  https://doi.org/10.1037/xhp0000249 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Krummenacher J, Müller HJ (2012) Dynamic weighting of feature dimensions in visual search: behavioral and psychophysiological evidence. Front Psychol 3:221.  https://doi.org/10.3389/fpsyg.2012.00221 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Krummenacher J, Müller HJ, Heller D (2001) Visual search for dimensionally redundant pop-out targets: evidence for parallel-coactive processing of dimensions. Percept Psychophys 63:901–917.  https://doi.org/10.3758/BF03194446 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Krummenacher J, Müller HJ, Heller D (2002a) Visual search for dimensionally redundant pop-out targets: parallel-coactive processing of dimensions is location specific. J Exp Psychol Hum Percept Perform 28:1303–1322.  https://doi.org/10.1037/0096-1523.28.6.1303 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Krummenacher J, Müller HJ, Heller D (2002b) Visual search for dimensionally redundant pop-out targets: redundancy gains in compound tasks. Vis Cogn 9:801–837.  https://doi.org/10.1080/13506280143000269 CrossRefGoogle Scholar
  56. Krummenacher J, Müller HJ, Zehetleitner M, Geyer T (2009) Dimension- and space-based intertrial effects in visual pop-out search: modulation by task demands for focal-attentional processing. Psychol Res 73:186–197.  https://doi.org/10.1007/s00426-008-0206-y CrossRefPubMedPubMedCentralGoogle Scholar
  57. Krummenacher J, Grubert A, Müller HJ (2010) Inter-trial and redundant-signals effects in visual search and discrimination tasks: separable pre-attentive and post-selective effects. Vis Res 50:1382–1395.  https://doi.org/10.1016/j.visres.2010.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kumada T (2001) Feature-based control of attention: evidence for two forms of dimension weighting. Percept Psychophys 63:698–708.  https://doi.org/10.3758/BF03194430 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lamy D, Zivony A, Yashar A (2011) The role of search difficulty in intertrial feature priming. Vis Res 51:2099–2109.  https://doi.org/10.1016/j.visres.2011.07.010 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Leber AB, Egeth HE (2006) It’s under control: top-down search strategies can override attentional capture. Psychon Bull Rev 13:132–138.  https://doi.org/10.3758/BF03193824 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Li Z (1999) Contextual influences in V1 as a basis for pop out and asymmetry in visual search. Proc Natl Acad Sci U S A 96:10530–10535.  https://doi.org/10.1073/pnas.96.18.10530 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Liesefeld HR, Müller HJ (in rev.) Distractor handling via dimension weightingGoogle Scholar
  63. Liesefeld HR, Moran R, Usher M, Müller HJ, Zehetleitner M (2016) Search efficiency as a function of target saliency: the transition from inefficient to efficient search and beyond. J Exp Psychol Hum Percept Perform 42:821–836.  https://doi.org/10.1037/xhp0000156 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Liesefeld HR, Liesefeld AM, Töllner T, Müller HJ (2017) Attentional capture in visual search: capture and post-capture dynamics revealed by EEG. NeuroImage 156:166–173.  https://doi.org/10.1016/j.neuroimage.2017.05.016 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Liesefeld HR, Liesefeld AM, Müller HJ (in press). Distractor-interference reduction is dimensionally constrained. Visual Cognition.  https://doi.org/10.1080/13506285.2018.1561568 CrossRefGoogle Scholar
  66. Lindsey DT, Brown AM, Reijnen E et al (2010) Color channels, not color appearance or color categories, guide visual search for desaturated color targets. Psychol Sci 21:1208–1214.  https://doi.org/10.1177/0956797610379861 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Luck SJ, Hillyard SA (1994a) Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31:291–308.  https://doi.org/10.1111/j.1469-8986.1994.tb02218.x CrossRefGoogle Scholar
  68. Luck SJ, Hillyard SA (1994b) Spatial filtering during visual search: evidence from human electrophysiology. J Exp Psychol Hum Percept Perform 20:1000–1014.  https://doi.org/10.1037/0096-1523.20.5.1000 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Maljkovic V, Nakayama K (1994) Priming of pop-out: I. Role of features. Mem Cogn 22:657–672.  https://doi.org/10.3758/BF03209251 CrossRefGoogle Scholar
  70. Martinovic J, Wuerger SM, Hillyard SA, Müller MM, Andersen SK (2018) Neural mechanisms of divided feature-selective attention to color. NeuroImage 181:670–682.  https://doi.org/10.1016/j.neuroimage.2018.07.033 CrossRefPubMedPubMedCentralGoogle Scholar
  71. McDonald JJ, Green JJ, Jannati A, Di Lollo V (2013) On the electrophysiological evidence for the capture of visual attention. J Exp Psychol Hum Percept Perform 39:849–860.  https://doi.org/10.1037/a0030510 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Moran R, Zehetleitner M, Müller HJ, Usher M (2013) Competitive guided search: meeting the challenge of benchmark RT distributions. J Vis 13(8):24.  https://doi.org/10.1167/13.8.24 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Moran R, Zehetleitner M, Liesefeld HR, Müller HJ, Usher M (2016) Serial vs. parallel models of attention in visual search: accounting for benchmark RT-distributions. Psychon Bull Rev 23:1300–1315.  https://doi.org/10.3758/s13423-015-0978-1 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Moran R, Liesefeld HR, Usher M, Müller HJ (2017) An appeal against the item's death sentence: accounting for diagnostic data patterns with an item-based model of visual search. Behav Brain Sci 40:e148.  https://doi.org/10.1017/S0140525X16000182 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Mortier K, van Zoest W, Meeter M, Theeuwes J (2010) Word cues affect detection but not localization responses. Atten Percept Psychophys 72:65–75.  https://doi.org/10.3758/APP.72.1.65 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Müller HJ, Krummenacher J (2006) Locus of dimension weighting: preattentive or postselective? Vis Cogn 14:490–513.  https://doi.org/10.1080/13506280500194154 CrossRefGoogle Scholar
  77. Müller HJ, Heller D, Ziegler J (1995) Visual search for singleton feature targets within and across feature dimensions. Percept Psychophys 57:1–17.  https://doi.org/10.3758/BF03211845 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Müller HJ, Reimann B, Krummenacher J (2003) Visual search for singleton feature targets across dimensions: stimulus- and expectancy-driven effects in dimensional weighting. J Exp Psychol Hum Percept Perform 29:1021–1035.  https://doi.org/10.1037/0096-1523.29.5.1021 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Müller HJ, Krummenacher J, Heller D (2004) Dimension-specific intertrial facilitation in visual search for pop-out targets: evidence for a top-down modulable visual short-term memory effect. Vis Cogn 11:577–602.  https://doi.org/10.1080/13506280344000419 CrossRefGoogle Scholar
  80. Müller HJ, Liesefeld HR, Moran R, Usher M (2017) Parallel attentive processing and pre-attentive guidance. Behav Brain Sci 40:e149.  https://doi.org/10.1017/S0140525X16000194 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Nothdurft H (1993) Saliency effects across dimensions in visual search. Vis Res 33:839–844.  https://doi.org/10.1016/0042-6989(93)90202-8 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Pollmann S (2004) Anterior prefrontal cortex contributions to attention control. Exp Psychol 51:270–278.  https://doi.org/10.1027/1618-3169.51.4.270 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Pollmann S (2016) Frontopolar resource allocation in human and nonhuman primates. Trends Cogn Sci 20:84–86.  https://doi.org/10.1016/j.tics.2015.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Pollmann S, Weidner R, Müller HJ, von Cramon DY (2000) A fronto-posterior network involved in visual dimension changes. J Cogn Neurosci 12:480–494.  https://doi.org/10.1162/089892900562156 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Pollmann S, Weidner R, Müller HJ et al (2006a) Selective and interactive neural correlates of visual dimension changes and response changes. NeuroImage 30:254–265.  https://doi.org/10.1016/j.neuroimage.2005.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Pollmann S, Weidner R, Müller HJ, von Cramon DY (2006b) Neural correlates of visual dimension weighting. Vis Cogn 14:877–897.  https://doi.org/10.1080/13506280500196142 CrossRefGoogle Scholar
  87. Pollmann S, Mahn K, Reimann B et al (2007) Selective visual dimension weighting deficit after left lateral frontopolar lesions. J Cogn Neurosci 19:365–375.  https://doi.org/10.1162/jocn.2007.19.3.365 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Raja Beharelle A, Polanía R, Hare TA, Ruff CC (2015) Transcranial stimulation over frontopolar cortex elucidates the choice attributes and neural mechanisms used to resolve exploration–exploitation trade-offs. J Neurosci 35:14544–14556.  https://doi.org/10.1523/JNEUROSCI.2322-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Rangelov D, Müller HJ, Zehetleitner M (2011a) Dimension-specific intertrial priming effects are task-specific: evidence for multiple weighting systems. J Exp Psychol Hum Percept Perform 37:100–114.  https://doi.org/10.1037/a0020364 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Rangelov D, Müller HJ, Zehetleitner M (2011b) Independent dimension-weighting mechanisms for visual selection and stimulus identification. J Exp Psychol Hum Percept Perform 37:1369–1382.  https://doi.org/10.1037/a0024265 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Rangelov D, Müller HJ, Zehetleitner M (2013) Visual search for feature singletons: multiple mechanisms produce sequence effects in visual search. J Vis 13(3):22.  https://doi.org/10.1167/13.3.22 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Rangelov D, Müller HJ, Zehetleitner M (2017) Failure to pop out: feature singletons do not capture attention under low signal-to-noise ratio conditions. J Exp Psychol Gen 146:651–671.  https://doi.org/10.1037/xge0000284 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Sauter M, Liesefeld HR, Zehetleitner M, Müller HJ (2018) Region-based shielding of visual search from salient distractors: target detection is impaired with same- but not different-dimension distractors. Atten Percept Psychophys 80:622–642.  https://doi.org/10.3758/s13414-017-1477-4 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Sauter M, Liesefeld HR, Müller HJ (in press). Learning to suppress salient distractors in the target dimension: region-based inhibition is persistent and transfers to distractors in a non-target dimension. J Exp Psychol Learn Mem Cogn.  https://doi.org/10.1037/xlm0000691 PubMedGoogle Scholar
  95. Sawaki R, Geng JJ, Luck SJ (2012) A common neural mechanism for preventing and terminating the allocation of attention. J Neurosci 32:10725–10736.  https://doi.org/10.1523/JNEUROSCI.1864-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Schledde B, Galashan FO, Przybyla M et al (2017) Task-specific, dimension-based attentional shaping of motion processing in monkey area MT. J Neurophysiol 118:1542–1555.  https://doi.org/10.1152/jn.00183.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Schubö A, Müller HJ (2009) Selecting and ignoring salient objects within and across dimensions in visual search. Brain Res 1283:84–101.  https://doi.org/10.1016/j.brainres.2009.05.077 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Serences JT, Shomstein S, Leber AB et al (2005) Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol Sci 16:114–122.  https://doi.org/10.1111/j.0956-7976.2005.00791.x CrossRefPubMedPubMedCentralGoogle Scholar
  99. Theeuwes J (1991) Cross-dimensional perceptual selectivity. Percept Psychophys 50:184–193.  https://doi.org/10.3758/BF03212219 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Theeuwes J (1992) Perceptual selectivity for color and form. Percept Psychophys 51:599–606.  https://doi.org/10.3758/BF03211656 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Theeuwes J (2018) Visual selection: usually fast and automatic; seldom slow and volitional. J Cogn 1:29.  https://doi.org/10.5334/joc.13 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Theeuwes J, Reimann B, Mortier K (2006) Visual search for featural singletons: no top-down modulation, only bottom-up priming. Vis Cogn 14:466–489.  https://doi.org/10.1080/13506280500195110 CrossRefGoogle Scholar
  103. Toffanin P, de Jong R, Johnson A (2011) The P4pc: An electrophysiological marker of attentional disengagement? Int J Psychophysiol 81:72–81.  https://doi.org/10.1016/j.ijpsycho.2011.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Töllner T, Gramann K, Müller HJ et al (2008) Electrophysiological markers of visual dimension changes and response changes. J Exp Psychol Hum Percept Perform 34:531–542.  https://doi.org/10.1037/0096-1523.34.3.531 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Töllner T, Gramann K, Müller HJ, Eimer M (2009) The anterior N1 component as an index of modality shifting. J Cogn Neurosci 21:1653–1669.  https://doi.org/10.1162/jocn.2009.21108 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Töllner T, Zehetleitner M, Gramann K, Müller HJ (2010) Top-down weighting of visual dimensions: behavioral and electrophysiological evidence. Vis Res 50:1372–1381.  https://doi.org/10.1016/j.visres.2009.11.009 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Töllner T, Zehetleitner M, Gramann K, Müller HJ (2011) Stimulus saliency modulates pre-attentive processing speed in human visual cortex. PLoS One 6:e16276.  https://doi.org/10.1371/journal.pone.0016276 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Töllner T, Rangelov D, Müller HJ (2012a) How the speed of motor-response decisions, but not focal-attentional selection, differs as a function of task set and target prevalence. Proc Natl Acad Sci U S A 109:e1990–e1999.  https://doi.org/10.1073/pnas.1206382109 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Töllner T, Müller HJ, Zehetleitner M (2012b) Top-down dimensional weight set determines the capture of visual attention: evidence from the PCN component. Cereb Cortex 22:1554–1563.  https://doi.org/10.1093/cercor/bhr231 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Treisman A (1988) Features and objects: the fourteenth Bartlett memorial lecture. Q J Exp Psychol A 40:201–237.  https://doi.org/10.1080/02724988843000104 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Treisman A (2006) How the deployment of attention determines what we see. Vis Cogn 14:411–443.  https://doi.org/10.1080/13506280500195250 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Utz S, Humphreys GW, Chechlacz M (2013) Parietal substrates for dimensional effects in visual search: evidence from lesion-symptom mapping. Brain 136:751–760.  https://doi.org/10.1093/brain/awt003 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Weichselbaum H, Ansorge U (2018) Bottom-up attention capture with distractor and target singletons defined in the same (color) dimension is not a matter of feature uncertainty. Atten Percept Psychophys 80:1350–1361.  https://doi.org/10.3758/s13414-018-1538-3 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Weidner R, Müller HJ (2013) Dimensional weighting in cross-dimensional singleton conjunction search. J Vis 13(3):25.  https://doi.org/10.1167/13.3.25 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Weidner R, Pollmann S, Müller HJ, von Cramon DY (2002) Top-down controlled visual dimension weighting: an event-related fMRI study. Cereb Cortex 12:318–328.  https://doi.org/10.1093/cercor/12.3.318 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Weidner R, Krummenacher J, Reimann B et al (2009) Sources of top–down control in visual search. J Cogn Neurosci 21:2100–2113.  https://doi.org/10.1162/jocn.2008.21173 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Wolfe JM (1998) What can 1 million trials tell us about visual search? Psychol Sci 9:33–39.  https://doi.org/10.1111/1467-9280.00006 CrossRefGoogle Scholar
  118. Wolfe JM (2007) Guided search 4.0: current progress with a model of visual search. In: Gray W (ed) Integrated models of cognitive systems. Oxford University Press, New York, pp 99–119CrossRefGoogle Scholar
  119. Wolfe JM, Horowitz TS (2004) What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci 5:495–501.  https://doi.org/10.1038/nrn1411 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Wolfe JM, Horowitz TS (2017) Five factors that guide attention in visual search. Nat Hum Behav 1:58.  https://doi.org/10.1038/s41562-017-0058 CrossRefGoogle Scholar
  121. Wolfe JM, Butcher SJ, Lee C, Hyle M (2003) Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons. J Exp Psychol Hum Percept Perform 29:483–502.  https://doi.org/10.1037/0096-1523.29.2.483 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Wolfe JM, Palmer EM, Horowitz TS (2010) Reaction time distributions constrain models of visual search. Vis Res 50:1304–1311.  https://doi.org/10.1016/j.visres.2009.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Zehetleitner M, Krummenacher J, Geyer T et al (2011) Dimension intertrial and cueing effects in localization: support for pre-attentively weighted one-route models of saliency. Atten Percept Psychophys 73:349–363.  https://doi.org/10.3758/s13414-010-0035-0 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Zehetleitner M, Rangelov D, Müller HJ (2012) Partial repetition costs persist in nonsearch compound tasks: evidence for multiple-weighting-systems hypothesis. Atten Percept Psychophys 74:879–890.  https://doi.org/10.3758/s13414-012-0287-y CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Heinrich René Liesefeld
    • 1
    • 2
    Email author
  • Anna M. Liesefeld
    • 1
  • Stefan Pollmann
    • 3
  • Hermann J. Müller
    • 1
    • 4
  1. 1.Department PsychologieLudwig-Maximilians-UniversitätMunichGermany
  2. 2.Graduate School of Systemic Neurosciences, Ludwig-Maximilians-UniversitätMunichGermany
  3. 3.Institute of Psychology and Center for Behavioral Brain Sciences, Otto von Guericke UniversityMagdeburgGermany
  4. 4.Department of Psychological SciencesBirkbeck College, University of LondonLondonUK

Personalised recommendations