Functional Imaging of Visuospatial Attention in Complex and Naturalistic Conditions

  • Emiliano MacalusoEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 41)


One of the ultimate goals of cognitive neuroscience is to understand how the brain works in the real world. Functional imaging with naturalistic stimuli provides us with the opportunity to study the brain in situations similar to the everyday life. This includes the processing of complex stimuli that can trigger many types of signals related both to the physical characteristics of the external input and to the internal knowledge that we have about natural objects and environments. In this chapter, I will first outline different types of stimuli that have been used in naturalistic imaging studies. These include static pictures, short video clips, full-length movies, and virtual reality, each comprising specific advantages and disadvantages. Next, I will turn to the main issue of visual-spatial orienting in naturalistic conditions and its neural substrates. I will discuss different classes of internal signals, related to objects, scene structure, and long-term memory. All of these, together with external signals about stimulus salience, have been found to modulate the activity and the connectivity of the frontoparietal attention networks. I will conclude by pointing out some promising future directions for functional imaging with naturalistic stimuli. Despite this field of research is still in its early days, I consider that it will play a major role in bridging the gap between standard laboratory paradigms and mechanisms of brain functioning in the real world.


Attention fMRI Knowledge Naturalistic Salience Space 


  1. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676PubMedCrossRefGoogle Scholar
  2. Arrington CM, Carr TH, Mayer AR, Rao SM (2000) Neural mechanisms of visual attention: object-based selection of a region in space. J Cogn Neurosci 12(Suppl 2):106–117PubMedCrossRefGoogle Scholar
  3. Baldassano C, Esteva A, Fei-Fei L, Beck DM (2016) Two distinct scene-processing networks connecting vision and memory. eNeuro 3(5):1–14CrossRefGoogle Scholar
  4. Bar M (2004) Visual objects in context. Nat Rev Neurosci 5(8):617–629PubMedCrossRefGoogle Scholar
  5. Bartels A, Zeki S (2005) Brain dynamics during natural viewing conditions--a new guide for mapping connectivity in vivo. NeuroImage 24(2):339–349PubMedCrossRefGoogle Scholar
  6. Bartels A, Zeki S, Logothetis NK (2008) Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb Cortex 18(3):705–717PubMedCrossRefGoogle Scholar
  7. Battistoni E, Stein T, Peelen MV (2017) Preparatory attention in visual cortex. Ann N Y Acad Sci 1396(1):92–107PubMedCrossRefGoogle Scholar
  8. Bogler C, Bode S, Haynes JD (2011) Decoding successive computational stages of saliency processing. Curr Biol 21(19):1667–1671PubMedCrossRefGoogle Scholar
  9. Bordier C, Macaluso E (2015) Time-resolved detection of stimulus/task-related networks, via clustering of transient intersubject synchronization. Hum Brain Mapp 36(9):3404–3425PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bordier C, Puja F, Macaluso E (2013) Sensory processing during viewing of cinematographic material: computational modeling and functional neuroimaging. NeuroImage 67:213–226PubMedCrossRefGoogle Scholar
  11. Borji A, Sihite DN, Itti L (2013) Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study. IEEE Trans Image Process 22(1):55–69PubMedCrossRefGoogle Scholar
  12. Burgess N, Maguire EA, Spiers HJ, O’Keefe J (2001) A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. NeuroImage 14(2):439–453PubMedCrossRefGoogle Scholar
  13. Buschman TJ, Kastner S (2015) From behavior to neural dynamics: an integrated theory of attention. Neuron 88(1):127–144PubMedPubMedCentralCrossRefGoogle Scholar
  14. Calhoun VD, Pearlson GD (2012) A selective review of simulated driving studies: combining naturalistic and hybrid paradigms, analysis approaches, and future directions. NeuroImage 59(1):25–35PubMedCrossRefGoogle Scholar
  15. Carmi R, Itti L (2006) Visual causes versus correlates of attentional selection in dynamic scenes. Vis Res 46(26):4333–4345PubMedCrossRefGoogle Scholar
  16. Chun MM (2000) Contextual cueing of visual attention. Trends Cogn Sci 4(5):170–178PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chun MM, Turk-Browne NB (2007) Interactions between attention and memory. Curr Opin Neurobiol 17(2):177–184CrossRefGoogle Scholar
  18. Ciaramelli E, Grady CL, Moscovitch M (2008) Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia 46(7):1828–1851PubMedCrossRefGoogle Scholar
  19. Cichy RM, Teng S (2017) Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach. Philos Trans R Soc Lond Ser B Biol Sci 372(1714):20160108CrossRefGoogle Scholar
  20. Cong F, Puolivali T, Alluri V, Sipola T, Burunat I, Toiviainen P et al (2014) Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis. J Neurosci Methods 223:74–84PubMedCrossRefGoogle Scholar
  21. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):215–229CrossRefGoogle Scholar
  22. Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13(3):1202–1226PubMedPubMedCentralCrossRefGoogle Scholar
  23. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3):306–324PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cukur T, Nishimoto S, Huth AG, Gallant JL (2013) Attention during natural vision warps semantic representation across the human brain. Nat Neurosci 16(6):763–770PubMedPubMedCentralCrossRefGoogle Scholar
  25. Daffron JL, Davis G (2016) Target templates specify visual, not semantic, features to guide search: a marked asymmetry between seeking and ignoring. Atten Percept Psychophys 78(7):2049–2065PubMedPubMedCentralCrossRefGoogle Scholar
  26. DeCesarei A, Loftus GR, Mastria S, Codispoti M (2017) Understanding natural scenes: contributions of image statistics. Neurosci Biobehav Rev 74(Pt A):44–57CrossRefGoogle Scholar
  27. DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron 73(3):415–434PubMedPubMedCentralCrossRefGoogle Scholar
  28. Doricchi F, Macci E, Silvetti M, Macaluso E (2010) Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Cereb Cortex 20(7):1574–1585PubMedCrossRefGoogle Scholar
  29. Draschkow D, Wolfe JM, Vo ML (2014) Seek and you shall remember: scene semantics interact with visual search to build better memories. J Vis 14(8):10PubMedPubMedCentralCrossRefGoogle Scholar
  30. Einhauser W, Spain M, Perona P (2008) Objects predict fixations better than early saliency. J Vis 8(14):18–26PubMedCrossRefGoogle Scholar
  31. Elazary L, Itti L (2008) Interesting objects are visually salient. J Vis 8(3):3–15PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fagioli S, Macaluso E (2016) Neural correlates of divided attention in natural scenes. J Cogn Neurosci 28(9):1392–1405PubMedCrossRefGoogle Scholar
  33. Geng JJ, Mangun GR (2011) Right temporoparietal junction activation by a salient contextual cue facilitates target discrimination. NeuroImage 54(1):594–601PubMedCrossRefGoogle Scholar
  34. Goldfarb EV, Chun MM, Phelps EA (2016) Memory-guided attention: independent contributions of the hippocampus and striatum. Neuron 89(2):317–324PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gottlieb J (2012) Attention, learning, and the value of information. Neuron 76(2):281–295PubMedPubMedCentralCrossRefGoogle Scholar
  36. Groen II, Silson EH, Baker CI (2017) Contributions of low- and high-level properties to neural processing of visual scenes in the human brain. Philos Trans R Soc Lond Ser B Biol Sci 372(1714):20160102CrossRefGoogle Scholar
  37. Guclu U, van Gerven MAJ (2017) Increasingly complex representations of natural movies across the dorsal stream are shared between subjects. NeuroImage 145.(Pt B:329–336PubMedCrossRefGoogle Scholar
  38. Guo F, Preston TJ, Das K, Giesbrecht B, Eckstein MP (2012) Feature-independent neural coding of target detection during search of natural scenes. J Neurosci 32(28):9499–9510PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hannula DE, Greene AJ (2012) The hippocampus reevaluated in unconscious learning and memory: at a tipping point? Front Hum Neurosci 6:80PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hasson U, Honey CJ (2012) Future trends in neuroimaging: neural processes as expressed within real-life contexts. NeuroImage 62(2):1272–1278PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject synchronization of cortical activity during natural vision. Science 303(5664):1634–1640PubMedCrossRefGoogle Scholar
  42. Hasson U, Yang E, Vallines I, Heeger DJ, Rubin N (2008) A hierarchy of temporal receptive windows in human cortex. J Neurosci 28(10):2539–2550PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hasson U, Malach R, Heeger DJ (2010) Reliability of cortical activity during natural stimulation. Trends Cogn Sci 14(1):40–48PubMedCrossRefGoogle Scholar
  44. Hayhoe M, Ballard D (2005) Eye movements in natural behavior. Trends Cogn Sci 9(4):188–194PubMedPubMedCentralCrossRefGoogle Scholar
  45. Henderson JM (2017) Gaze control as prediction. Trends Cogn Sci 21(1):15–23PubMedCrossRefGoogle Scholar
  46. Henderson JM, Hayes TR (2017) Meaning-based guidance of attention in scenes as revealed by meaning maps. Nat Hum Behav 1:743–747CrossRefGoogle Scholar
  47. Henderson JM, Hollingworth A (1999) High-level scene perception. Annu Rev Psychol 50:243–271PubMedCrossRefGoogle Scholar
  48. Hollingworth A, Henderson JM (1998) Does consistent scene context facilitate object perception? J Exp Psychol Gen 127(4):398–415PubMedCrossRefGoogle Scholar
  49. Howard LR, Kumaran D, Olafsdottir HF, Spiers HJ (2011) Double dissociation between hippocampal and parahippocampal responses to object-background context and scene novelty. J Neurosci 31(14):5253–5261PubMedPubMedCentralCrossRefGoogle Scholar
  50. Howard LR, Kumaran D, Olafsdottir HF, Spiers HJ (2013) Dissociation between dorsal and ventral posterior parietal cortical responses to incidental changes in natural scenes. PLoS One 8(7):e67988PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hutchinson JB, Turk-Browne NB (2012) Memory-guided attention: control from multiple memory systems. Trends Cogn Sci 16(12):576–579PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80:360–378PubMedCrossRefGoogle Scholar
  53. Huth AG, Nishimoto S, Vu AT, Gallant JL (2012) A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76(6):1210–1224PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hwang AD, Wang HC, Pomplun M (2011) Semantic guidance of eye movements in real-world scenes. Vis Res 51(10):1192–1205PubMedCrossRefGoogle Scholar
  55. Iaria G, Fox CJ, Chen JK, Petrides M, Barton JJ (2008) Detection of unexpected events during spatial navigation in humans: bottom-up attentional system and neural mechanisms. Eur J Neurosci 27(4):1017–1025PubMedCrossRefGoogle Scholar
  56. Indovina I, Macaluso E (2007) Dissociation of stimulus relevance and saliency factors during shifts of visuospatial attention. Cereb Cortex 17(7):1701–1711PubMedCrossRefGoogle Scholar
  57. Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2(3):194–203PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jang H, Plis SM, Calhoun VD, Lee JH (2017) Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: evaluation using sensorimotor tasks. NeuroImage 145.(Pt B:314–328PubMedCrossRefGoogle Scholar
  59. Jansen L, Onat S, Konig P (2009) Influence of disparity on fixation and saccades in free viewing of natural scenes. J Vis 9(1):29–19PubMedCrossRefGoogle Scholar
  60. Kaiser D, Stein T, Peelen MV (2014) Object grouping based on real-world regularities facilitates perception by reducing competitive interactions in visual cortex. Proc Natl Acad Sci U S A 111(30):11217–11222PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kaiser D, Oosterhof NN, Peelen MV (2016) The neural dynamics of attentional selection in natural scenes. J Neurosci 36(41):10522–10528PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341PubMedCrossRefGoogle Scholar
  63. Kauttonen J, Hlushchuk Y, Jaaskelainen IP, Tikka P (2018) Brain mechanisms underlying cue-based memorizing during free viewing of movie Memento. NeuroImage 172:313–325PubMedCrossRefGoogle Scholar
  64. Kayser C, Petkov CI, Lippert M, Logothetis NK (2005) Mechanisms for allocating auditory attention: an auditory saliency map. Curr Biol 15(21):1943–1947PubMedCrossRefGoogle Scholar
  65. Khaligh-Razavi SM, Henriksson L, Kay K, Kriegeskorte N (2017) Fixed versus mixed RSA: explaining visual representations by fixed and mixed feature sets from shallow and deep computational models. J Math Psychol 76.(Pt B:184–197PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kim D, Kay K, Shulman GL, Corbetta M (2018) A new modular brain organization of the BOLD signal during natural vision. Cereb Cortex 28:3065–3081PubMedCrossRefGoogle Scholar
  67. Kwok SC, Macaluso E (2015) Exogenous features versus prior experiences modulate different subregions of the right IPL during episodic memory retrieval. Sci Rep 5:11248PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lahnakoski JM, Salmi J, Jaaskelainen IP, Lampinen J, Glerean E, Tikka P et al (2012) Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film. PLoS One 7(4):e35215PubMedPubMedCentralCrossRefGoogle Scholar
  69. Le-Hoa VM, Wolfe JM (2015) The role of memory for visual search in scenes. Ann N Y Acad Sci 1339:72–81CrossRefGoogle Scholar
  70. Li FF, VanRullen R, Koch C, Perona P (2002) Rapid natural scene categorization in the near absence of attention. Proc Natl Acad Sci U S A 99(14):9596–9601PubMedPubMedCentralCrossRefGoogle Scholar
  71. Macaluso E, Doricchi F (2013) Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy. Front Hum Neurosci 7:685PubMedPubMedCentralCrossRefGoogle Scholar
  72. Macaluso E, Ogawa A (2018) Visuo-spatial orienting during active exploratory behavior: processing of task-related and stimulus-related signals. Cortex 102:26–44PubMedCrossRefGoogle Scholar
  73. Mack SC, Eckstein MP (2011) Object co-occurrence serves as a contextual cue to guide and facilitate visual search in a natural viewing environment. J Vis 11(9):1–16PubMedCrossRefGoogle Scholar
  74. Maguire EA (2012) Studying the freely-behaving brain with fMRI. NeuroImage 62(2):1170–1176PubMedCrossRefGoogle Scholar
  75. Malcolm GL, Groen IIA, Baker CI (2016a) Making sense of real-world scenes. Trends Cogn Sci 20(11):843–856PubMedPubMedCentralCrossRefGoogle Scholar
  76. Malcolm GL, Rattinger M, Shomstein S (2016b) Intrusive effects of semantic information on visual selective attention. Atten Percept Psychophys 78(7):2066–2078PubMedPubMedCentralCrossRefGoogle Scholar
  77. Manelis A, Reder LM (2012) Procedural learning and associative memory mechanisms contribute to contextual cueing: evidence from fMRI and eye-tracking. Learn Mem 19(11):527–534PubMedPubMedCentralCrossRefGoogle Scholar
  78. Martin CR, Khosla A, Pantazis D, Oliva A (2017) Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. NeuroImage 153:346–358CrossRefGoogle Scholar
  79. Nardo D, Santangelo V, Macaluso E (2011) Stimulus-driven orienting of visuo-spatial attention in complex dynamic environments. Neuron 69(5):1015–1028PubMedCrossRefGoogle Scholar
  80. Nardo D, Santangelo V, Macaluso E (2014) Spatial orienting in complex audiovisual environments. Hum Brain Mapp 35(4):1597–1614PubMedCrossRefGoogle Scholar
  81. Nardo D, Console P, Reverberi C, Macaluso E (2016) Competition between visual events modulates the influence of salience during free-viewing of naturalistic videos. Front Hum Neurosci 10:320PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nastase SA, Connolly AC, Oosterhof NN, Halchenko YO, Guntupalli JS, Visconti di Oleggio CM et al (2017) Attention selectively reshapes the geometry of distributed semantic representation. Cereb Cortex 27(8):4277–4291PubMedPubMedCentralCrossRefGoogle Scholar
  83. Nobre AC, Coull JT, Frith CD, Mesulam MM (1999) Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nat Neurosci 2(1):11–12PubMedCrossRefGoogle Scholar
  84. O’Craven KM, Downing PE, Kanwisher N (1999) fMRI evidence for objects as the units of attentional selection. Nature 401(6753):584–587PubMedCrossRefGoogle Scholar
  85. Ogawa A, Bordier C, Macaluso E (2013) Audio-visual perception of 3D cinematography: an fMRI study using condition-based and computation-based analyses. PLoS One 8(10):e76003PubMedPubMedCentralCrossRefGoogle Scholar
  86. Peelen MV, Kastner S (2014) Attention in the real world: toward understanding its neural basis. Trends Cogn Sci 18(5):242–250PubMedPubMedCentralCrossRefGoogle Scholar
  87. Posner MI (1980) Orienting of attention. Q J Exp Psychol 32(1):3–25PubMedPubMedCentralCrossRefGoogle Scholar
  88. Poulsen AT, Kamronn S, Dmochowski J, Parra LC, Hansen LK (2017) EEG in the classroom: synchronised neural recordings during video presentation. Sci Rep 7:43916PubMedPubMedCentralCrossRefGoogle Scholar
  89. Preston TJ, Guo F, Das K, Giesbrecht B, Eckstein MP (2013) Neural representations of contextual guidance in visual search of real-world scenes. J Neurosci 33(18):7846–7855PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ptak R (2012) The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment. Neuroscientist 18(5):502–515PubMedCrossRefGoogle Scholar
  91. Reeder RR, Peelen MV (2013) The contents of the search template for category-level search in natural scenes. J Vis 13(3):13PubMedCrossRefGoogle Scholar
  92. Rosen ML, Stern CE, Michalka SW, Devaney KJ, Somers DC (2016) Cognitive control network contributions to memory-guided visual attention. Cereb Cortex 26(5):2059–2073PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sabatinelli D, Frank DW, Wanger TJ, Dhamala M, Adhikari BM, Li X (2014) The timing and directional connectivity of human frontoparietal and ventral visual attention networks in emotional scene perception. Neuroscience 277:229–238PubMedCrossRefGoogle Scholar
  94. Santangelo V, Macaluso E (2013) Visual salience improves spatial working memory via enhanced parieto-temporal functional connectivity. J Neurosci 33(9):4110–4117PubMedPubMedCentralCrossRefGoogle Scholar
  95. Santangelo V, Di Francesco SA, Mastroberardino S, Macaluso E (2015) Parietal cortex integrates contextual and saliency signals during the encoding of natural scenes in working memory. Hum Brain Mapp 36(12):5003–5017PubMedCrossRefGoogle Scholar
  96. Scalf PE, Ahn J, Beck DM, Lleras A (2014) Trial history effects in the ventral attentional network. J Cogn Neurosci 26(12):2789–2797PubMedCrossRefGoogle Scholar
  97. Seidl KN, Peelen MV, Kastner S (2012) Neural evidence for distracter suppression during visual search in real-world scenes. J Neurosci 32(34):11812–11819PubMedPubMedCentralCrossRefGoogle Scholar
  98. Seidl-Rathkopf KN, Turk-Browne NB, Kastner S (2015) Automatic guidance of attention during real-world visual search. Atten Percept Psychophys 77(6):1881–1895PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sestieri C, Shulman GL, Corbetta M (2010) Attention to memory and the environment: functional specialization and dynamic competition in human posterior parietal cortex. J Neurosci 30(25):8445–8456PubMedPubMedCentralCrossRefGoogle Scholar
  100. Shomstein S (2012) Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control. Front Integr Neurosci 6:38PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sprague TC, Itthipuripat S, Vo VA, Serences JT (2018) Dissociable signatures of visual salience and behavioral relevance across attentional priority maps in human cortex. J Neurophysiol 119(6):2153–2165PubMedPubMedCentralCrossRefGoogle Scholar
  102. Stirk JA, Underwood G (2007) Low-level visual saliency does not predict change detection in natural scenes. J Vis 7(10):3–10PubMedCrossRefGoogle Scholar
  103. Stoll J, Thrun M, Nuthmann A, Einhauser W (2015) Overt attention in natural scenes: objects dominate features. Vis Res 107:36–48PubMedPubMedCentralCrossRefGoogle Scholar
  104. Summerfield JJ, Lepsien J, Gitelman DR, Mesulam MM, Nobre AC (2006) Orienting attention based on long-term memory experience. Neuron 49(6):905–916PubMedPubMedCentralCrossRefGoogle Scholar
  105. Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27(20):5326–5337PubMedPubMedCentralCrossRefGoogle Scholar
  106. Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381(6582):520–522PubMedCrossRefGoogle Scholar
  107. Todd RM, Manaligod MGM (2018) Implicit guidance of attention: the priority state space framework. Cortex 102:121–138PubMedCrossRefGoogle Scholar
  108. Torralba A (2003) Modeling global scene factors in attention. J Opt Soc Am A Opt Image Sci Vis 20(7):1407–1418PubMedCrossRefGoogle Scholar
  109. van Kesteren MT, Ruiter DJ, Fernandez G, Henson RN (2012) How schema and novelty augment memory formation. Trends Neurosci 35(4):211–219PubMedCrossRefGoogle Scholar
  110. Veale R, Hafed ZM, Yoshida M (2017) How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philos Trans R Soc Lond Ser B Biol Sci 372(1714):20160113CrossRefGoogle Scholar
  111. Vossel S, Mathys C, Stephan KE, Friston KJ (2015) Cortical coupling reflects Bayesian belief updating in the deployment of spatial attention. J Neurosci 35(33):11532–11542PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wagner AD, Shannon BJ, Kahn I, Buckner RL (2005) Parietal lobe contributions to episodic memory retrieval. Trends Cogn Sci 9(9):445–453PubMedCrossRefGoogle Scholar
  113. Wen H, Shi J, Zhang Y, Lu KH, Cao J, Liu Z (2017) Neural encoding and decoding with deep learning for dynamic natural vision. Cereb Cortex:1–25Google Scholar
  114. Wolfe JM, Horowitz TS (2004) What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci 5(6):495–501PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wolfe JM, Vo ML, Evans KK, Greene MR (2011) Visual search in scenes involves selective and nonselective pathways. Trends Cogn Sci 15(2):77–84PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wu CC, Wang HC, Pomplun M (2014a) The roles of scene gist and spatial dependency among objects in the semantic guidance of attention in real-world scenes. Vis Res 105:10–20PubMedCrossRefGoogle Scholar
  117. Wu CC, Wick FA, Pomplun M (2014b) Guidance of visual attention by semantic information in real-world scenes. Front Psychol 5:54PubMedPubMedCentralGoogle Scholar
  118. Zacks JM, Speer NK, Swallow KM, Maley CJ (2010) The Brain’s cutting-room floor: segmentation of narrative cinema. Front Hum Neurosci 4:168PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Lyon Neuroscience Research CenterBronFrance

Personalised recommendations