Advertisement

pp 1-20 | Cite as

Visual Search in Progressive Supranuclear Palsy

  • Daniel T. SmithEmail author
  • Neil Archibald
Chapter
Part of the Current Topics in Behavioral Neurosciences book series

Abstract

Progressive supranuclear palsy is often considered a disease of the motor system and is characterised by a profound oculomotor impairment. The oculomotor system is also known to be fundamentally important in cognitive processes such as attention and working memory, but the way in which these functions are affected by PSP is not well understood. In this chapter we outline the pathology and typical presentation of PSP, with a focus on the oculomotor impairment, briefly outline the role of the oculomotor system in spatial cognition and discuss some key studies examining spatial attention and memory in PSP. We then present new data from a study that specifically examined the effect of PSP on visual search. Our results demonstrated a profound impairment of visual search which is most severe for feature search along the vertical axis. These findings are interpreted with respect to the biased-competition theory of attention, and we discuss possible clinical applications of our results.

Keywords

Attention Oculomotor Parkinson’s-basal ganglia PSP Vision 

References

  1. Awh E, Armstrong KM, Moore T (2006) Visual and oculomotor selection: links, causes and implications for spatial attention. Trends Cogn Sci 10(3):124–130.  https://doi.org/10.1016/j.tics.2006.01.001 CrossRefGoogle Scholar
  2. Ball K, Pearson DG, Smith DT (2013) Oculomotor involvement in spatial working memory is task-specific. Cognition 129(2):439–446.  https://doi.org/10.1016/j.cognition.2013.08.006 CrossRefGoogle Scholar
  3. Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA (1991) Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J Neurophysiol 66(3):1095–1108.  https://doi.org/10.1152/jn.1991.66.3.1095 CrossRefGoogle Scholar
  4. Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci 33:1–21Google Scholar
  5. Bisley JW, Mirpour K, Arcizet F, Ong WS (2011) The role of the lateral intraparietal area in orienting attention and its implications for visual search. Eur J Neurosci 33(11):1982–1990.  https://doi.org/10.1111/j.1460-9568.2011.07700.x CrossRefGoogle Scholar
  6. Bower JH, Maraganore DM, McDonnell SK, Rocca WA (1997) Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology 49(5):1284–1288Google Scholar
  7. Boxer AL, Yu JT, Golbe LI, Litvan I, Lang AE, Hoglinger GU (2017) Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 16(7):552–563.  https://doi.org/10.1016/s1474-4422(17)30157-6 CrossRefGoogle Scholar
  8. Brown RG, Lacomblez L, Landwehrmeyer BG, Bak T, Uttner I, Dubois B et al (2010) Cognitive impairment in patients with multiple system atrophy and progressive supranuclear palsy. Brain 133(Pt 8):2382–2393.  https://doi.org/10.1093/brain/awq158 CrossRefGoogle Scholar
  9. Burrell JR, Hodges JR, Rowe JB (2014) Cognition in corticobasal syndrome and progressive supranuclear palsy: a review. Mov Disord 29(5):684–693.  https://doi.org/10.1002/mds.25872 CrossRefGoogle Scholar
  10. Carrasco M, Ling S, Read S (2004) Attention alters appearance. Nat Neurosci 7(3):308–313Google Scholar
  11. Chambers CD, Stokes MG, Mattingley JB (2004) Modality-specific control of strategic spatial attention in parietal cortex. Neuron 44(6):925–930.  https://doi.org/10.1016/j.neuron.2004.12.009 CrossRefGoogle Scholar
  12. Chen AL, Riley DE, King SA, Joshi AC, Serra A, Liao K et al (2010) The disturbance of gaze in progressive supranuclear palsy: implications for pathogenesis. Front Neurol 1:147.  https://doi.org/10.3389/fneur.2010.00147 CrossRefGoogle Scholar
  13. Chun MM, Wolfe JM (1996) Just say no: how are visual searches terminated when there is no target present? Cogn Psychol 30(1):39–78.  https://doi.org/10.1006/cogp.1996.0002 CrossRefGoogle Scholar
  14. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Neurosci Rev 3:201–215Google Scholar
  15. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA et al (1998) A common network of functional areas for attention and eye movements. Neuron 21(4):761–773Google Scholar
  16. Cousineau D (2005) Confidence intervals in within-subject designs: a simpler solution to Loftus and Masson’s method. Tutor Quant Methods Psychol 1(1):4–45Google Scholar
  17. Cowey A, Alexander I, Stoerig P (2011) Transneuronal retrograde degeneration of retinal ganglion cells and optic tract in hemianopic monkeys and humans. Brain 134:2149–2157.  https://doi.org/10.1093/brain/awr125 CrossRefGoogle Scholar
  18. Craighero L, Carta A, Fadiga L (2001) Peripheral oculomotor palsy affects orienting of visuospatial attention. Neuroreport 12(15):3283–3286Google Scholar
  19. Craighero L, Nascimben M, Fadiga L (2004) Eye position affects orienting of visuospatial attention. Curr Biol 14(4):331–333Google Scholar
  20. de Haan B, Morgan PS, Rorden C (2008) Covert orienting of attention and overt eye movements activate identical brain regions. Brain Res 1204:102–111.  https://doi.org/10.1016/j.brainres.2008.01.105 CrossRefGoogle Scholar
  21. Desimone R (1998) Visual attention mediated by biased competition in extrastriate visual cortex. Philos Trans R Soc Lond Ser B Biol Sci 353(1373):1245–1255Google Scholar
  22. Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36(12):1827–1837Google Scholar
  23. Dickson DW, Ahmed Z, Algom AA, Tsuboi Y, Josephs KA (2010) Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol 23(4):394–400.  https://doi.org/10.1097/WCO.0b013e32833be924 CrossRefGoogle Scholar
  24. Dinkin M (2017) Trans-synaptic retrograde degeneration in the human visual system: slow, silent, and real. Curr Neurol Neurosci Rep 17(2):15.  https://doi.org/10.1007/s11910-017-0725-2 CrossRefGoogle Scholar
  25. Fecteau JH, Munoz DP (2006) Salience, relevance, and firing: a priority map for target selection. Trends Cogn Sci 10(8):382–390Google Scholar
  26. Fierro B, Brighina F, Oliveri M, Piazza A, La Bua V, Buffa D, Bisiach E (2000) Contralateral neglect induced by right posterior parietal rTMS in healthy subjects. Neuroreport 11(7):1519–1521Google Scholar
  27. Gabay S, Henik A, Gradstein L (2010) Ocular motor ability and covert attention in patients with Duane Retraction Syndrome. Neuropsychologia 48(10):3102–3109Google Scholar
  28. Gerstenecker A, Mast B, Duff K, Ferman TJ, Litvan I (2013) Executive dysfunction is the primary cognitive impairment in progressive supranuclear palsy. Arch Clin Neuropsychol 28(2):104–113.  https://doi.org/10.1093/arclin/acs098 CrossRefGoogle Scholar
  29. Ghosh BCP, Calder AJ, Peers PV, Lawrence AD, Acosta-Cabronero J, Pereira JM et al (2012) Social cognitive deficits and their neural correlates in progressive supranuclear palsy. Brain 135:2089–2102.  https://doi.org/10.1093/brain/aws128 CrossRefGoogle Scholar
  30. Glasmacher SA, Leigh PN, Saha RA (2017) Predictors of survival in progressive supranuclear palsy and multiple system atrophy: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 88(5):402–411.  https://doi.org/10.1136/jnnp-2016-314956 CrossRefGoogle Scholar
  31. Golbe LI (2014) Progressive supranuclear palsy. Semin Neurol 34(2):151–159.  https://doi.org/10.1055/s-0034-1381736 CrossRefGoogle Scholar
  32. Goldberg ME, Bisley J, Powell KD, Gottlieb J, Kusunoki M (2002) The role of the lateral intraparietal area of the monkey in the generation of saccades and visuospatial attention. Neurobiol Eye Mov Mol Behav 956:205–215Google Scholar
  33. Grosbras M-H, Paus T (2002) Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J Cogn Neurosci 14(7):1109–1120Google Scholar
  34. Hilchey MD, Klein RM, Satel J (2014) Returning to “inhibition of return” by dissociating long-term oculomotor ior from short-term sensory adaptation and other nonoculomotor “inhibitory” cueing effects. J Exp Psychol Hum Percept Perform 40(4):1603–1616.  https://doi.org/10.1037/a0036859 CrossRefGoogle Scholar
  35. Hillyard SA, Vogel EK, Luck SJ (1998) Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Lond B Biol Sci 353(1373):1257–1270.  https://doi.org/10.1098/rstb.1998.0281 CrossRefGoogle Scholar
  36. Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, Movement Disorder Society-endorsed PSP Study Group et al (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32:853–864.  https://doi.org/10.1002/mds.26987 CrossRefGoogle Scholar
  37. Ikkai A, Curtis CE (2011) Common neural mechanisms supporting spatial working memory, attention and motor intention. Neuropsychologia 49(6):1428–1434Google Scholar
  38. Jackson SR, Newport R, Osborne F, Wakely R, Smith DT, Walsh V (2005) Saccade-contingent spatial and temporal errors are absent for saccadic head movements. Cortex 41(2):205–212Google Scholar
  39. Kimura D, Barnett HJM, Burkhart G (1981) The psychological test pattern in progressive supranuclear palsy. Neuropsychologia 19(2):301–306.  https://doi.org/10.1016/0028-3932(81)90113-5 CrossRefGoogle Scholar
  40. Kisvarday ZF, Cowey A, Stoerig P, Somogyi P (1991) Direct and indirect retinal input into degenerated dorsal lateral geniculate-nucleus after striate cortical removal in monkey - implications for residual vision. Exp Brain Res 86(2):271–292Google Scholar
  41. Klein RM (2000) Inhibition of return. Trends Cogn Sci 4(4):138–147Google Scholar
  42. Lane AR, Smith DT, Ellison A, Schenk T (2010) Visual exploration training is no better than attention training for treating hemianopia. Brain 133(6):1717–1728.  https://doi.org/10.1093/brain/awq088 CrossRefGoogle Scholar
  43. Lane AR, Smith DT, Schenk T, Ellison A (2012a) The involvement of posterior parietal cortex and frontal eye fields in spatially primed visual search. Brain Stimul 5(1):11–17Google Scholar
  44. Lane AR, Smith DT, Schenk T, Ellison A (2012b) The involvement of posterior parietal cortex in feature and conjunction visuomotor search. J Cogn Neurosci 23(8):1964–1972.  https://doi.org/10.1162/jocn.2010.21576 CrossRefGoogle Scholar
  45. Litvan I, Bhatia KP, Burn DJ, Goetz CG, Lang AE, McKeith I et al (2003) Movement disorders society scientific issues committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord 18(5):467–486.  https://doi.org/10.1002/mds.10459 CrossRefGoogle Scholar
  46. Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77(1):24–42Google Scholar
  47. Michalczyk Ł, Paszulewicz J, Bielas J, Wolski P (2018) Is saccade preparation required for inhibition of return (IOR)? Neurosci Lett 665:13–17.  https://doi.org/10.1016/j.neulet.2017.11.035 CrossRefGoogle Scholar
  48. Monza DD, Soliveri PP, Radice DD et al (1998) Cognitive dysfunction and impaired organization of complex motility in degenerative parkinsonian syndromes. Arch Neurol 55(3):372–378.  https://doi.org/10.1001/archneur.55.3.372 CrossRefGoogle Scholar
  49. Morgan EJ, Ball K, Smith DT (2014) The role of the oculomotor system in covert social attention. Atten Percept Psychophys 76(5):1265–1270.  https://doi.org/10.3758/s13414-014-0716-1 CrossRefGoogle Scholar
  50. Muggleton NG, Juan CH, Cowey A, Walsh V (2003) Human frontal eye fields and visual search. J Neurophysiol 89(6):3340–3343Google Scholar
  51. Muller HJ, Rabbitt PMA (1989) Reflexive and voluntary orienting of visual-attention - time course of activation and resistance to interruption. J Exp Psychol Hum Percept Perform 15(2):315–330Google Scholar
  52. Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5(3):218–228Google Scholar
  53. Nath U, Ben-Shlomo Y, Thomson RG, Morris HR, Wood NW, Lees AJ, Burn DJ (2001) The prevalence of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome) in the UK. Brain 124(7):1438–1449.  https://doi.org/10.1093/brain/124.7.1438 CrossRefGoogle Scholar
  54. Nobre AC, Gitelman DR, Dias EC, Mesulam MM (2000) Covert visual spatial orienting and saccades: overlapping neural systems. NeuroImage 11(3):210–216Google Scholar
  55. Pearson DG, Ball K, Smith DT (2014) Oculomotor preparation as a rehearsal mechanism in spatial working memory. Cognition 132(3):416–428.  https://doi.org/10.1016/j.cognition.2014.05.006 CrossRefGoogle Scholar
  56. Pinching AJ, Powell TPS (1971) Ultrastructural features of transneuronal cell degeneration in olfactory system. J Cell Sci 8(1):253Google Scholar
  57. Posner MI (1978) Chronometric explorations of mind. Lawrence Erlbaum Associates, HillsdaleGoogle Scholar
  58. Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25Google Scholar
  59. Posner MI, Cohen Y (1984) Components of visual orienting. In: Bouma H, Bouwhuis D (eds) Attention and performance X. Lawrence Erlbaum Associates, London, pp 531–556Google Scholar
  60. Posner MI, Cohen Y, Rafal RD (1982) Neural systems control of spatial orienting. Philos Trans R Soc Lond Ser B Biol Sci 298(1089):187–198Google Scholar
  61. Posner MI, Rafal RD, Choate LS, Vaughan J (1985) Inhibition of return - neural basis and function. Cogn Neuropsychol 2(3):211–228Google Scholar
  62. Rafal RD, Posner MI, Friedman JH, Inhoff AW, Bernstein E (1988) Orienting of visual-attention in progressive supranuclear palsy. Brain 111:267–280Google Scholar
  63. Ristic J, Friesen CK, Kingstone A (2002) Are eyes special? It depends on how you look at it. Psychon Bull Rev 9(3):507–513.  https://doi.org/10.3758/bf03196306 CrossRefGoogle Scholar
  64. Rizzolatti G, Riggio L, Sheliga BM (1994) Space and selective attention. Atten Perform 15:231–265Google Scholar
  65. Robbins TW, James M, Owen AM, Lange KW, Lees AJ, Leigh PN et al (1994) Cognitive deficits in progressive supranuclear palsy, Parkinson’s disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. J Neurol Neurosurg Psychiatry 57(1):79–88Google Scholar
  66. Schall JD, Cohen JY (2011) The neural basis of saccade target selection. In: Liversedge SP, Gilchrist I, Everling S (eds) The Oxford handbook of eye movements. Oxford University Press, Oxford, pp 357–381Google Scholar
  67. Schrag A, Ben-Shlomo Y, Quinn NP (1999) Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 354(9192):1771–1775Google Scholar
  68. Shepherd M, Findlay JM, Hockey RJ (1986) The relationship between eye-movements and spatial attention. Q J Exp Psychol A Hum Exp Psychol 38(3):475–491Google Scholar
  69. Sigurdsson EM (2016) Tau immunotherapy. Neurodegener Dis 16:34–38.  https://doi.org/10.1159/000440842 CrossRefGoogle Scholar
  70. Smith DT, Archibald N (2018) Spatial working memory in Progressive Supranuclear Palsy. Cortex.  https://doi.org/10.1016/j.cortex.2018.07.004
  71. Smith DT, Schenk T (2012) The premotor theory of attention: time to move on? Neuropsychologia 50(6):1104–1114Google Scholar
  72. Smith DT, Rorden C, Jackson SR (2004) Exogenous orienting of attention depends upon the ability to execute eye movements. Curr Biol 14(9):792–795Google Scholar
  73. Smith DT, Jackson SR, Rorden C (2005) Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia 43(9):1288–1296Google Scholar
  74. Smith DT, Jackson SR, Rorden C (2009a) An intact eye-movement system is not required to generate inhibition of return. J Neuropsychol 3:267–271Google Scholar
  75. Smith DT, Jackson SR, Rorden C (2009b) Repetitive TMS over frontal eye fields disrupts visually cued auditory attention. Brain Stimul 2:81–87Google Scholar
  76. Smith DT, Ball K, Ellison A, Schenk T (2010) Deficits of reflexive attention induced by abduction of the eye. Neuropsychologia 48:1269–1276Google Scholar
  77. Smith DT, Rorden C, Schenk T (2012) Saccade preparation is required for exogenous attention but not endogenous attention or IOR. J Exp Psychol Hum Percept Perform 36(6):1438–1447.  https://doi.org/10.1037/a0027794 CrossRefGoogle Scholar
  78. Smith DT, Ball K, Ellison A (2014) Covert visual search within and beyond the effective oculomotor range. Vis Res 95:11–17.  https://doi.org/10.1016/j.visres.2013.12.003 CrossRefGoogle Scholar
  79. Soliveri P, Monza D, Paridi D, Carella F, Genitrini S, Testa D, Girotti F (2000) Neuropsychological follow up in patients with Parkinson’s disease, striatonigral degeneration-type multisystem atrophy, and progressive supranuclear palsy. J Neurol Neurosurg Psychiat 69(3):313–318.  https://doi.org/10.1136/jnnp.69.3.313 CrossRefGoogle Scholar
  80. Sparks DL, Mays LE (1990) Signal transformations required for the generation of saccadic eye movements. Annu Rev Neurosci 13:309–336Google Scholar
  81. Steele JC, Richardson JC, Olszewski J (1964) Progressive Supranuclear Palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10:333–359Google Scholar
  82. Thomas NW, Pare M (2007) Temporal processing of saccade targets in parietal cortex area LIP during visual search. J Neurophysiol 97(1):942–947.  https://doi.org/10.1152/jn.00413.2006 CrossRefGoogle Scholar
  83. Tipples J (2002) Eye gaze is not unique: automatic orienting in response to uninformative arrows. Psychon Bull Rev 9(2):314–318Google Scholar
  84. White BJ, Munoz DP (2011) The superior colliculus. In: Liversedge SP, Gilchrist I, Everling S (eds) The Oxford handbook of eye movements. Oxford University Press, Oxford, pp 195–215Google Scholar
  85. Williams DR, de Silva R, Paviour DC, Pittman A, Watt HC, Kilford L et al (2005) Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain 128(Pt 6):1247–1258.  https://doi.org/10.1093/brain/awh488 CrossRefGoogle Scholar
  86. Wolfe JM (1994) Guided search 2.0 A revised model of visual search. Psychon Bull Rev 1(2):202–238.  https://doi.org/10.3758/bf03200774 CrossRefGoogle Scholar
  87. Wolfe JM (1998) Visual search. In: Pashler H (ed) Attention. Psychology Press, Hove, pp 13–56Google Scholar
  88. Wolfe JM (2003) Moving towards solutions to some enduring controversies in visual search. Trends Cogn Sci 7(2):70–76Google Scholar
  89. Yeshurun Y, Carrasco M (1998) Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396(6706):72–75Google Scholar
  90. Yoshida K, Hata Y, Kinoshita K, Takashima S, Tanaka K, Nishida N (2017) Incipient progressive supranuclear palsy is more common than expected and may comprise clinicopathological subtypes: a forensic autopsy series. Acta Neuropathol 133(5):809–823.  https://doi.org/10.1007/s00401-016-1665-7 CrossRefGoogle Scholar
  91. Zangemeister WH, Canavan AGM, Hoemberg V (1995) Frontal and parietal transcranial magnetic stimulation (TMS) disturbs programming of saccadic eye-movements. J Neurol Sci 133(1–2):42–52Google Scholar
  92. Zhang J, Rittman T, Nombela C, Fois A, Coyle-Gilchrist I, Barker RA et al (2016) Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease. Brain 139(1):161–173.  https://doi.org/10.1093/brain/awv331 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PsychologyDurham UniversityDurhamUK
  2. 2.South Tees Hospitals NHS Foundation Trust, The James Cook University HospitalMiddlesbroughUK

Personalised recommendations