Genomic and Imaging Biomarkers in Schizophrenia

  • J. T. Reddaway
  • J. L. Doherty
  • T. Lancaster
  • D. Linden
  • J. T. Walters
  • J. HallEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 40)


Recent large-scale genomic studies have confirmed that schizophrenia is a polygenic syndrome and have implicated a number of biological pathways in its aetiology. Both common variants individually of small effect and rarer but more penetrant genetic variants have been shown to play a role in the pathogenesis of the disorder. No simple Mendelian forms of the condition have been identified, but progress has been made in stratifying risk on the basis of the polygenic burden of common variants individually of small effect, and the contribution of rarer variants of larger effect such as Copy Number Variants (CNVs). Pathway analysis of risk-associated variants has begun to identify specific biological processes implicated in risk for the disorder, including elements of the glutamatergic NMDA receptor complex and post synaptic density, voltage-gated calcium channels, targets of the Fragile X Mental Retardation Protein (FMRP targets) and immune pathways. Genetic studies have also been used to drive genomic imaging approaches to the investigation of brain markers associated with risk for the disorder. Genomic imaging approaches have been applied both to investigate the effect of polygenic risk and to study the impact of individual higher-penetrance variants such as CNVs. Both genomic and genomic imaging approaches offer potential for the stratification of patients and at-risk groups and the development of better biomarkers of risk and treatment response; however, further research is needed to integrate this work and realise the full potential of these approaches.


Copy number variant Genomic Imaging Polygenic Schizophrenia 


  1. Allardyce J et al (2018) Association between schizophrenia-related polygenic liability and the occurrence and level of mood-incongruent psychotic symptoms in bipolar disorder. JAMA Psychiat 75(1):28–35Google Scholar
  2. Andersson F et al (2008) Impaired activation of face processing networks revealed by functional magnetic resonance imaging in 22q11.2 deletion syndrome. Biol Psychiatry 63(1):49–57Google Scholar
  3. Arnone D et al (2008) Meta-analysis of magnetic resonance imaging studies of the corpus callosum in bipolar disorder. Acta Psychiatr Scand 118(5):357–362PubMedPubMedCentralGoogle Scholar
  4. Atkinson RJ et al (2012) Duration mismatch negativity and P3a in first-episode psychosis and individuals at ultra-high risk of psychosis. Biol Psychiatry 71(2):98–104Google Scholar
  5. Azuma R et al (2009) Visuospatial working memory in children and adolescents with 22q11.2 deletion syndrome; an fMRI study. J Neurodev Disord 1(1):46PubMedPubMedCentralGoogle Scholar
  6. Baker K et al (2005) COMT Val108/158Met modifies mismatch negativity and cognitive function in 22q11 deletion syndrome. Biol Psychiatry 58(1):23–31Google Scholar
  7. Bakker G et al (2016) Cortical morphology differences in subjects at increased vulnerability for developing a psychotic disorder: a comparison between subjects with ultra-high risk and 22q11.2 deletion syndrome. PLoS One 11(11):e0159928PubMedPubMedCentralGoogle Scholar
  8. Barnea-Goraly N et al (2003) Investigation of white matter structure in velocardiofacial syndrome: a diffusion tensor imaging study. Am J Psychiatr 160(10):1863–1869Google Scholar
  9. Bearden CE et al (2006) Mapping cortical thickness in children with 22q11.2 deletions. Cereb Cortex 17(8):1889–1898PubMedPubMedCentralGoogle Scholar
  10. Bearden CE et al (2008) Alterations in midline cortical thickness and gyrification patterns mapped in children with 22q11.2 deletions. Cereb Cortex 19(1):115–126PubMedPubMedCentralGoogle Scholar
  11. Bergen SE et al (2012) Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry 17(9):880PubMedPubMedCentralGoogle Scholar
  12. Bernier R et al (2016) Clinical phenotype of the recurrent 1q21. 1 copy-number variant. Genet Med 18(4):341Google Scholar
  13. Blackmon K et al (2017) Focal cortical anomalies and language impairment in 16p11. 2 deletion and duplication syndrome. Cereb Cortex:1–9. Google Scholar
  14. Blackwood DHR et al (2001) Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 69(2):428–433PubMedPubMedCentralGoogle Scholar
  15. Bradshaw NJ, Porteous DJ (2012) DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 62(3):1230–1241PubMedPubMedCentralGoogle Scholar
  16. Bulik-Sullivan BK et al (2015) LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47(3):291–295. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Carter CS et al (2017) Enhancing the informativeness and replicability of imaging genomics studies. Biol Psychiatry 82(3):157–164. CrossRefGoogle Scholar
  18. Catts SV et al (1995) Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Am J Psychiatry 152(2):213Google Scholar
  19. Chang H et al (2017) Rare and common variants at 16p11.2 are associated with schizophrenia. Schizophr Res 184:105–108Google Scholar
  20. Chen J et al (2018a) Shared genetic risk of schizophrenia and gray matter reduction in 6p22.1. Schizophr Bull. Google Scholar
  21. Chen Q et al (2018b) Schizophrenia polygenic risk score predicts mnemonic hippocampal activity. Brain 141(4):1218–1228Google Scholar
  22. Cheniaux E et al (2009) The diagnoses of schizophrenia, schizoaffective disorder, bipolar disorder and unipolar depression: interrater reliability and congruence between DSM-IV and ICD-10. Psychopathology 42(5):293–298Google Scholar
  23. Chow EWC et al (1999) Qualitative MRI findings in adults with 22q11 deletion syndrome and schizophrenia. Biol Psychiatry 46(10):1436–1442PubMedPubMedCentralGoogle Scholar
  24. Chubb JE et al (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13(1):36Google Scholar
  25. Coman IL et al (2010) The effects of gender and catechol O-methyltransferase (COMT) Val108/158Met polymorphism on emotion regulation in velo-cardio-facial syndrome (22q11.2 deletion syndrome): an fMRI study. NeuroImage 53(3):1043–1050PubMedPubMedCentralGoogle Scholar
  26. Corbin LJ et al (2018) Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nat Commun 9(1):711. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cosgrove D et al (2018) Effects of MiR-137 genetic risk score on brain volume and cortical measures in patients with schizophrenia and controls. Am J Med Genet B Neuropsychiatr Genet 177(3):369–376. CrossRefGoogle Scholar
  28. da Silva Alves F et al (2011a) Proton magnetic resonance spectroscopy in 22q11 deletion syndrome. PLoS One 6(6):e21685PubMedPubMedCentralGoogle Scholar
  29. da Silva Alves F et al (2011b) White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia. Schizophr Res 132(1):75–83Google Scholar
  30. Debbané M et al (2008) Source monitoring for actions in adolescents with 22q11.2 deletion syndrome (22q11DS). Psychol Med 38(6):811–820Google Scholar
  31. Debbané M et al (2010) Monitoring of self-generated speech in adolescents with 22q11.2 deletion syndrome. Br J Clin Psychol 49(3):373–386Google Scholar
  32. Debbané M et al (2012) Resting-state networks in adolescents with 22q11.2 deletion syndrome: associations with prodromal symptoms and executive functions. Schizophr Res 139(1):33–39Google Scholar
  33. Devine MJ et al (2016) DISC1 is a coordinator of intracellular trafficking to shape neuronal development and connectivity. J Physiol 594(19):5459–5469PubMedPubMedCentralGoogle Scholar
  34. Dudbridge F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genet 9(3):e1003348. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ehara H et al (2005) Pachygyria and polymicrogyria in 22q11 deletion syndrome. Am J Med Genet A 136((2):224–224Google Scholar
  36. Eliez S et al (2000) Children and adolescents with velocardiofacial syndrome: a volumetric MRI study. Am J Psychiatr 157(3):409–415Google Scholar
  37. Erk S et al (2014) Replication of brain function effects of a genome-wide supported psychiatric risk variant in the CACNA1C gene and new multi-locus effects. NeuroImage 94:147–154. CrossRefGoogle Scholar
  38. Erk S et al (2017) Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains. Transl Psychiatry 7(1):e997PubMedPubMedCentralGoogle Scholar
  39. Flahault A et al (2012) Hippocampal volume reduction in chromosome 22q11.2 deletion syndrome (22q11.2DS): a longitudinal study of morphometry and symptomatology. Psychiatry Res Neuroimaging 203(1):1–5Google Scholar
  40. Franke B et al (2016) Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nat Neurosci 19(3):420–431. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Fromer M et al (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506(7487):179PubMedPubMedCentralGoogle Scholar
  42. Gage SH et al (2017) Investigating causality in associations between smoking initiation and schizophrenia using Mendelian randomization. Sci Rep 7:40653. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ghariani S et al (2002) Polymicrogyria in chromosome 22q11 deletion syndrome. Eur J Paediatr Neurol 6(1):73–77Google Scholar
  44. Gothelf D et al (2007a) Abnormal cortical activation during response inhibition in 22q11.2 deletion syndrome. Hum Brain Mapp 28(6):533–542Google Scholar
  45. Gothelf D et al (2007b) Developmental trajectories of brain structure in adolescents with 22q11.2 deletion syndrome: a longitudinal study. Schizophr Res 96(1):72–81PubMedPubMedCentralGoogle Scholar
  46. Gothelf D et al (2011) Developmental changes in multivariate neuroanatomical patterns that predict risk for psychosis in 22q11.2 deletion syndrome. J Psychiatr Res 45(3):322–331PubMedPubMedCentralGoogle Scholar
  47. Gottesman II, Shields J (1967) A polygenic theory of schizophrenia. Proc Natl Acad Sci U S A 58(1):199–205PubMedPubMedCentralGoogle Scholar
  48. Gottesman II, Shields J (1972) A polygenic theory of schizophrenia. Int J Ment Health 1(1–2):107–115Google Scholar
  49. Hagenaars SP et al (2016) Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N = 112 151) and 24 GWAS consortia. Mol Psychiatry 21:1624–1632. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hall J et al (2015) Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry 77(1):52–58. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Harrell W et al (2017) Frontal hypoactivation during a working memory task in children with 22q11 deletion syndrome. J Child Neurol 32(1):94–99Google Scholar
  52. Harris JM et al (2004) Abnormal cortical folding in high-risk individuals: a predictor of the development of schizophrenia? Biol Psychiatry 56(3):182–189Google Scholar
  53. Harrisberger F et al (2016) Impact of polygenic schizophrenia-related risk and hippocampal volumes on the onset of psychosis. Transl Psychiatry 6(8):e868PubMedPubMedCentralGoogle Scholar
  54. Henry JC et al (2002) An investigation of the neuropsychological profile in adults with velo-cardio-facial syndrome (VCFS). Neuropsychologia 40(5):471–478Google Scholar
  55. International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455(7210):237Google Scholar
  56. International Schizophrenia Consortium et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jalbrzikowski M et al (2013) Structural abnormalities in cortical volume, thickness, and surface area in 22q11.2 microdeletion syndrome: relationship with psychotic symptoms. NeuroImage Clin 3:405–415PubMedPubMedCentralGoogle Scholar
  58. Jalbrzikowski M et al (2014) Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome. Front Behav Neurosci 8:393PubMedPubMedCentralGoogle Scholar
  59. Javitt DC et al (2008) Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov 7(1):68PubMedPubMedCentralGoogle Scholar
  60. Jessen F et al (2001) Amplitude reduction of the mismatch negativity in first-degree relatives of patients with schizophrenia. Neurosci Lett 309(3):185–188Google Scholar
  61. Jones HJ et al (2016) Phenotypic manifestation of genetic risk for schizophrenia during adolescence in the general population. JAMA Psychiat 73(3):221–228. CrossRefGoogle Scholar
  62. Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuro-Psychopharmacol Biol Psychiatry 27(7):1081–1090Google Scholar
  63. Kates WR et al (2001) Regional cortical white matter reductions in velocardiofacial syndrome: a volumetric MRI analysis. Biol Psychiatry 49(8):677–684Google Scholar
  64. Kates WR et al (2007) The neural correlates of non-spatial working memory in velocardiofacial syndrome (22q11.2 deletion syndrome). Neuropsychologia 45(12):2863–2873PubMedPubMedCentralGoogle Scholar
  65. Kates WR et al (2011) Neuroanatomic predictors to prodromal psychosis in velocardiofacial syndrome (22q11.2 deletion syndrome): a longitudinal study. Biol Psychiatry 69(10):945–952Google Scholar
  66. Kates WR et al (2015) White matter microstructural abnormalities of the cingulum bundle in youths with 22q11.2 deletion syndrome: associations with medication, neuropsychological function, and prodromal symptoms of psychosis. Schizophr Res 161(1):76–84Google Scholar
  67. Kauppi K et al (2014) Polygenic risk for schizophrenia associated with working memory-related prefrontal brain activation in patients with schizophrenia and healthy controls. Schizophr Bull 41(3):736–743PubMedPubMedCentralGoogle Scholar
  68. Kikinis Z et al (2012) Reduced fractional anisotropy and axial diffusivity in white matter in 22q11.2 deletion syndrome: a pilot study. Schizophr Res 141(1):35–39PubMedPubMedCentralGoogle Scholar
  69. Kikinis Z et al (2017) Abnormalities in brain white matter in adolescents with 22q11.2 deletion syndrome and psychotic symptoms. Brain Imaging Behav 11(5):1353–1364PubMedPubMedCentralGoogle Scholar
  70. Kirov G et al (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17(2):142Google Scholar
  71. Kirov G et al (2014) The penetrance of copy number variations for schizophrenia and developmental delay. Biol Psychiatry 75(5):378–385Google Scholar
  72. Kirov G et al (2015) What a psychiatrist needs to know about copy number variants. BJPsych Adv 21(3):157–163Google Scholar
  73. Klar AJS (2002) The chromosome 1; 11 translocation provides the best evidence supporting genetic etiology for schizophrenia and bipolar affective disorders. Genetics 160(4):1745–1747PubMedPubMedCentralGoogle Scholar
  74. Koolen DA et al (2004) Chromosome 22q11 deletion and pachygyria characterized by array-based comparative genomic hybridization. Am J Med Genet A 131(3):322–324Google Scholar
  75. Kunwar A et al (2012) Cortical gyrification in velo-cardio-facial (22q11.2 deletion) syndrome: a longitudinal study. Schizophr Res 137(1):20–25PubMedPubMedCentralGoogle Scholar
  76. Lancaster TM et al (2016a) Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals. Hum Brain Mapp 37(2):491–500Google Scholar
  77. Lancaster TM et al (2016b) Polygenic risk of psychosis and ventral striatal activation during reward processing in healthy adolescents. JAMA Psychiat 73(8):852–861Google Scholar
  78. Lancaster T et al (2018) Structural and functional neuroimaging of polygenic risk for schizophrenia. Schizophr Bull.
  79. Larøi F et al (2004) The effects of emotional salience, cognitive effort and meta-cognitive beliefs on a reality monitoring task in hallucination-prone subjects. Br J Clin Psychol 43(3):221–233Google Scholar
  80. Larsen KM et al (2017) 22q11.2 deletion syndrome is associated with impaired auditory steady-state gamma response. Schizophr Bull 44(2):388–397PubMedPubMedCentralGoogle Scholar
  81. Larsen KM et al (2018) Altered auditory processing and effective connectivity in 22q11.2 deletion syndrome. Schizophr Res. Google Scholar
  82. Lee SH et al (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45(9):ng-2711Google Scholar
  83. Lin A et al (2017) Mapping 22q11.2 gene dosage effects on brain morphometry. J Neurosci 37(26):3759–3716Google Scholar
  84. Liu M et al (2017) Psychophysiological endophenotypes to characterize mechanisms of known schizophrenia genetic loci. Psychol Med 47(6):1116–1125Google Scholar
  85. Maillard AM et al (2015) The 16p11. 2 locus modulates brain structures common to autism, schizophrenia and obesity. Mol Psychiatry 20(1):140Google Scholar
  86. Marshall CR et al (2017) Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet 49(1):27Google Scholar
  87. Mattiaccio LM et al (2016) Atypical functional connectivity in resting-state networks of individuals with 22q11.2 deletion syndrome: associations with neurocognitive and psychiatric functioning. J Neurodev Disord 8(1):2PubMedPubMedCentralGoogle Scholar
  88. McIntosh AM et al (2013) Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biol Psychiatry 73(10):938–943. CrossRefGoogle Scholar
  89. Meechan DW et al (2012) Cxcr4 regulation of interneuron migration is disrupted in 22q11.2 deletion syndrome. Proc Natl Acad Sci 109(45):18601–18606Google Scholar
  90. Michie PT (2001) What has MMN revealed about the auditory system in schizophrenia? Int J Psychophysiol 42(2):177–194Google Scholar
  91. Michie PT et al (2002) Duration mismatch negativity in biological relatives of patients with schizophrenia spectrum disorders. Biol Psychiatry 52(7):749–758Google Scholar
  92. Miller JA et al (2017) Effects of schizophrenia polygenic risk scores on brain activity and performance during working memory subprocesses in healthy young adults. Schizophr Bull. Google Scholar
  93. Mistry S et al (2017) The use of polygenic risk scores to identify phenotypes associated with genetic risk of schizophrenia: systematic review. Schizophr Res. Google Scholar
  94. Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37(1):4–15Google Scholar
  95. Mokhtari R, Lachman HM (2016) The major histocompatibility complex (MHC) in schizophrenia: a review. J Clin Cell Immunol 7(6).
  96. Murphy KC et al (1999) High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 56(10):940–945Google Scholar
  97. Näätänen R, Kähkönen S (2009) Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol 12(1):125–135Google Scholar
  98. Natarajan P et al (2017) Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 135(22):2091–2101PubMedPubMedCentralGoogle Scholar
  99. Neilson E et al (2017) Effects of environmental risks and polygenic loading for schizophrenia on cortical thickness. Schizophr Res 184:128–136Google Scholar
  100. Nguyen HT et al (2017) Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Med 9(1):114PubMedPubMedCentralGoogle Scholar
  101. Niarchou M et al (2014) Psychopathology and cognition in children with 22q11.2 deletion syndrome. Br J Psychiatry 204(1):46–54PubMedPubMedCentralGoogle Scholar
  102. Nuninga JO et al (2017) White matter abnormalities in 22q11.2 deletion syndrome patients showing cognitive decline. Psychol Med:1–9. Google Scholar
  103. O’Donovan MC et al (2008) Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40(9):1053Google Scholar
  104. Oertel-Knöchel V et al (2015) Schizophrenia risk variants modulate white matter volume across the psychosis spectrum: evidence from two independent cohorts. NeuroImage Clin 7:764–770PubMedPubMedCentralGoogle Scholar
  105. Ohi K et al (2014) Genetic risk variants of schizophrenia associated with left superior temporal gyrus volume. Cortex 58:23–26Google Scholar
  106. Olszewski AK et al (2017) The social brain network in 22q11.2 deletion syndrome: a diffusion tensor imaging study. Behav Brain Funct 13(1):4PubMedPubMedCentralGoogle Scholar
  107. Oskarsdottir S et al (2004) Incidence and prevalence of the 22q11 deletion syndrome: a population-based study in western Sweden. Arch Dis Child 89(2):148–151PubMedPubMedCentralGoogle Scholar
  108. Ottet M-C et al (2013) Graph theory reveals dysconnected hubs in 22q11DS and altered nodal efficiency in patients with hallucinations. Front Hum Neurosci 7:402PubMedPubMedCentralGoogle Scholar
  109. Owen MJ et al (2016) Schizophrenia. Lancet 388(10039):86–97. CrossRefPubMedPubMedCentralGoogle Scholar
  110. Padula MC et al (2015) Structural and functional connectivity in the default mode network in 22q11.2 deletion syndrome. J Neurodev Disord 7(1):23PubMedPubMedCentralGoogle Scholar
  111. Papiol S et al (2014) Polygenic determinants of white matter volume derived from GWAS lack reproducibility in a replicate sample. Transl Psychiatry 4(2):e362PubMedPubMedCentralGoogle Scholar
  112. Pardiñas AF et al (2018) Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet 50(3):381–389PubMedPubMedCentralGoogle Scholar
  113. Pergola G et al (2017) DRD2 co-expression network and a related polygenic index predict imaging, behavioral and clinical phenotypes linked to schizophrenia. Transl Psychiatry 7(1):e1006. CrossRefPubMedPubMedCentralGoogle Scholar
  114. Perlstein MD et al (2014) White matter abnormalities in 22q11.2 deletion syndrome: preliminary associations with the Nogo-66 receptor gene and symptoms of psychosis. Schizophr Res 152(1):117–123Google Scholar
  115. Pickard BS (2015) Schizophrenia biomarkers: translating the descriptive into the diagnostic. J Psychopharmacol 29(2):138–143PubMedPubMedCentralGoogle Scholar
  116. Pickard BS et al (2005) Cytogenetics and gene discovery in psychiatric disorders. Pharmacogenomics J 5(2):81Google Scholar
  117. Pocklington AJ et al (2015) Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia. Neuron 86(5):1203–1214PubMedPubMedCentralGoogle Scholar
  118. Poletti M et al (2017) Schizophrenia polygenic risk score and psychotic risk detection. Lancet Psychiatry 4(3):188Google Scholar
  119. Purcell SM et al (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506(7487):185PubMedPubMedCentralGoogle Scholar
  120. Qureshi AY et al (2014) Opposing brain differences in 16p11. 2 deletion and duplication carriers. J Neurosci 34(34):11199–11211PubMedPubMedCentralGoogle Scholar
  121. Radoeva PD et al (2012) Atlas-based white matter analysis in individuals with velo-cardio-facial syndrome (22q11.2 deletion syndrome) and unaffected siblings. Behav Brain Funct 8(1):38PubMedPubMedCentralGoogle Scholar
  122. Ranlund S et al (2018) A polygenic risk score analysis of psychosis endophenotypes across brain functional, structural, and cognitive domains. Am J Med Genet B Neuropsychiatr Genet 177(1):21–34Google Scholar
  123. Rees E et al (2014a) Evidence that duplications of 22q11.2 protect against schizophrenia. Mol Psychiatry 19(1):37Google Scholar
  124. Rees E et al (2014b) Analysis of copy number variations at 15 schizophrenia-associated loci. Br J Psychiatry 204(2):108–114PubMedPubMedCentralGoogle Scholar
  125. Rees E et al (2015) Genetics of schizophrenia. Curr Opinion Behav Sci 2:8–14Google Scholar
  126. Rees E et al (2016) Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA Psychiat 73(9):963–969Google Scholar
  127. Ripke S et al (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421PubMedPubMedCentralGoogle Scholar
  128. Roalf DR et al (2017) White matter microstructural deficits in 22q11.2 deletion syndrome. Psychiatry Res Neuroimaging 268:35–44Google Scholar
  129. Roussos P et al (2015) The relationship of common risk variants and polygenic risk for schizophrenia to sensorimotor gating. Biol Psychiatry. Google Scholar
  130. Sallet PC et al (2003) Reduced cortical folding in schizophrenia: an MRI morphometric study. Am J Psychiatr 160(9):1606–1613Google Scholar
  131. Scariati E et al (2014) Identifying 22q11.2 deletion syndrome and psychosis using resting-state connectivity patterns. Brain Topogr 27(6):808–821Google Scholar
  132. Schaer M et al (2006) Abnormal patterns of cortical gyrification in velo-cardio-facial syndrome (deletion 22q11.2): an MRI study. Psychiatry Res Neuroimaging 146(1):1–11Google Scholar
  133. Schaer M et al (2009) Deviant trajectories of cortical maturation in 22q11.2 deletion syndrome (22q11DS): a cross-sectional and longitudinal study. Schizophr Res 115(2):182–190Google Scholar
  134. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427. CrossRefPubMedPubMedCentralGoogle Scholar
  135. Schneider M et al (2012) Comparing the neural bases of self-referential processing in typically developing and 22q11.2 adolescents. Dev Cogn Neurosci 2(2):277–289Google Scholar
  136. Schneider M et al (2014) Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the international consortium on brain and behavior in 22q11.2 deletion syndrome. Am J Psychiatr 171(6):627–639Google Scholar
  137. Schreiner MJ et al (2013) Default mode network connectivity and reciprocal social behavior in 22q11.2 deletion syndrome. Soc Cogn Affect Neurosci 9(9):1261–1267PubMedPubMedCentralGoogle Scholar
  138. Sekar A et al (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530(7589):177PubMedPubMedCentralGoogle Scholar
  139. Shashi V et al (2004) Abnormalities of the corpus callosum in nonpsychotic children with chromosome 22q11 deletion syndrome. NeuroImage 21(4):1399–1406Google Scholar
  140. Shashi V et al (2012a) Increased corpus callosum volume in children with chromosome 22q11.2 deletion syndrome is associated with neurocognitive deficits and genetic polymorphisms. Eur J Hum Genet 20(10):1051PubMedPubMedCentralGoogle Scholar
  141. Shashi V et al (2012b) Altered development of the dorsolateral prefrontal cortex in chromosome 22q11.2 deletion syndrome: an in vivo proton spectroscopy study. Biol Psychiatry 72(8):684–691PubMedPubMedCentralGoogle Scholar
  142. Simon TJ et al (2005) Volumetric, connective, and morphologic changes in the brains of children with chromosome 22q11.2 deletion syndrome: an integrative study. NeuroImage 25(1):169–180Google Scholar
  143. Simon TJ et al (2008) Atypical cortical connectivity and visuospatial cognitive impairments are related in children with chromosome 22q11.2 deletion syndrome. Behav Brain Funct 4(1):25PubMedPubMedCentralGoogle Scholar
  144. Singh T et al (2016) Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci 19(4):571Google Scholar
  145. Singh T et al (2017) The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat Genet 49(8):1167PubMedPubMedCentralGoogle Scholar
  146. Smeland OB et al (2017) Genetic overlap between schizophrenia and volumes of hippocampus, putamen, and intracranial volume indicates shared molecular genetic mechanisms. Schizophr Bull. Google Scholar
  147. Srivastava S et al (2012) Atypical developmental trajectory of functionally significant cortical areas in children with chromosome 22q11.2 deletion syndrome. Hum Brain Mapp 33(1):213–223Google Scholar
  148. Stefansson H et al (2014) CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 505(7483):361Google Scholar
  149. Sullivan PF et al (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60(12):1187–1192Google Scholar
  150. Sullivan PF (2017) Schizophrenia and the dynamic genome. Genome Med 9(1):22PubMedPubMedCentralGoogle Scholar
  151. Sundram F et al (2010) White matter microstructure in 22q11 deletion syndrome: a pilot diffusion tensor imaging and voxel-based morphometry study of children and adolescents. J Neurodev Disord 2(2):77PubMedPubMedCentralGoogle Scholar
  152. Szatkiewicz JP et al (2014) Copy number variation in schizophrenia in Sweden. Mol Psychiatry 19(7):762PubMedPubMedCentralGoogle Scholar
  153. Sztriha L et al (2004) Clinical, MRI, and pathological features of polymicrogyria in chromosome 22q11 deletion syndrome. Am J Med Genet A 127(3):313–317Google Scholar
  154. Tan GM et al (2009) Meta-analysis of magnetic resonance imaging studies in chromosome 22q11.2 deletion syndrome (velocardiofacial syndrome). Schizophr Res 115(2):173–181Google Scholar
  155. Thompson PM et al (2017) ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide. NeuroImage 145(Pt B):389–408. CrossRefGoogle Scholar
  156. Thuné H et al (2016) The 40-Hz auditory steady-state response in patients with schizophrenia: a meta-analysis. JAMA Psychiat 73(11):1145–1153Google Scholar
  157. Tomescu MI et al (2014) Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: a vulnerability marker of schizophrenia? Schizophr Res 157(1):175–181Google Scholar
  158. Tylee DS et al (2017) Machine-learning classification of 22q11.2 deletion syndrome: a diffusion tensor imaging study. NeuroImage Clin 15:832–842PubMedPubMedCentralGoogle Scholar
  159. Umbricht D, Krljes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76(1):1–23Google Scholar
  160. Van Amelsvoort T et al (2001) Structural brain abnormalities associated with deletion at chromosome 22q11: quantitative neuroimaging study of adults with velo-cardio-facial syndrome. Br J Psychiatry 178(5):412–419Google Scholar
  161. Van Amelsvoort T et al (2008) Effects of a functional COMT polymorphism on brain anatomy and cognitive function in adults with velo-cardio-facial syndrome. Psychol Med 38(1):89–100PubMedPubMedCentralGoogle Scholar
  162. Van der Auwera S et al (2015) No association between polygenic risk for schizophrenia and brain volume in the general population. Biol Psychiatry 78(11):e41-e42Google Scholar
  163. Van Duin EDA et al (2016) Neural correlates of reward processing in adults with 22q11 deletion syndrome. J Neurodev Disord 8(1):25PubMedPubMedCentralGoogle Scholar
  164. van Erp TG et al (2015) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. PubMedPubMedCentralGoogle Scholar
  165. van Os J et al (2010) The environment and schizophrenia. Nature 468(7321):203Google Scholar
  166. van Scheltinga AFT et al (2013) Genetic schizophrenia risk variants jointly modulate total brain and white matter volume. Biol Psychiatry 73(6):525–531Google Scholar
  167. Villalon-Reina J et al (2013) White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or turner syndrome as evidenced by diffusion tensor imaging. NeuroImage 81:441–454Google Scholar
  168. Vingerhoets C et al (2018) Dopamine in high-risk populations: a comparison of subjects with 22q11.2 deletion syndrome and subjects at ultra high-risk for psychosis. Psychiatry Res Neuroimaging 272:65–70Google Scholar
  169. Walton E et al (2012) Cumulative genetic risk and prefrontal activity in patients with schizophrenia. Schizophr Bull 39(3):703–711PubMedPubMedCentralGoogle Scholar
  170. Walton E et al (2013) Prefrontal inefficiency is associated with polygenic risk for schizophrenia. Schizophr Bull 40(6):1263–1271PubMedPubMedCentralGoogle Scholar
  171. Wang T et al (2017) Polygenic risk for five psychiatric disorders and cross-disorder and disorder-specific neural connectivity in two independent populations. Neuroimage Clin 14:441–449. CrossRefPubMedPubMedCentralGoogle Scholar
  172. Wenger TL et al (2016) 22q11.2 duplication syndrome: elevated rate of autism spectrum disorder and need for medical screening. Mol Autism 7(1):27PubMedPubMedCentralGoogle Scholar
  173. Whalley HC et al (2015) Impact of cross-disorder polygenic risk on frontal brain activation with specific effect of schizophrenia risk. Schizophr Res 161(2):484–489PubMedPubMedCentralGoogle Scholar
  174. Wimberley T et al (2017) Polygenic risk score for schizophrenia and treatment-resistant schizophrenia. Schizophr Bull 43(5):1064–1069PubMedPubMedCentralGoogle Scholar
  175. Zarchi O et al (2013) Schizophrenia-like neurophysiological abnormalities in 22q11.2 deletion syndrome and their association to COMT and PRODH genotypes. J Psychiatr Res 47(11):1623–1629Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • J. T. Reddaway
    • 1
  • J. L. Doherty
    • 1
    • 2
  • T. Lancaster
    • 1
    • 2
    • 3
  • D. Linden
    • 1
    • 2
    • 3
  • J. T. Walters
    • 3
  • J. Hall
    • 1
    • 3
    Email author
  1. 1.Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
  2. 2.Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUK
  3. 3.MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of MedicineCardiff UniversityCardiffUK

Personalised recommendations