Advertisement

Network Neuroscience: A Framework for Developing Biomarkers in Psychiatry

  • David M. Lydon-Staley
  • Danielle S. BassettEmail author
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 40)

Abstract

Psychiatric disorders are disturbances of cognitive and behavioral processes mediated by the brain. Emerging evidence suggests that accurate biomarkers for psychiatric disorders might benefit from incorporating information regarding multiple brain regions and their interactions with one another, rather than considering local perturbations in brain structure and function alone. Recent advances in the field of applied mathematics generally – and network science specifically – provide a language to capture the complexity of interacting brain regions, and the application of this language to fundamental questions in neuroscience forms the emerging field of network neuroscience. This chapter provides an overview of the use and utility of network neuroscience for building biomarkers in psychiatry. The chapter begins with an overview of the theoretical frameworks and tools that encompass network neuroscience before describing applications of network neuroscience to the study of schizophrenia and major depressive disorder. With reference to work on genetic, molecular, and environmental correlates of network neuroscience features, the promises and challenges of network neuroscience for providing tools that aid in the diagnosis and the evaluation of treatment response in psychiatric disorders are discussed.

Keywords

Cognitive neuroscience Depression Graph theory Network neuroscience Schizophrenia 

References

  1. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17PubMedPubMedCentralGoogle Scholar
  2. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore ED (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72PubMedGoogle Scholar
  3. Akdeniz C, Tost H, Meyer-Lindenberg A (2014) The neurobiology of social environmental risk for schizophrenia: an evolving research field. Soc Psychiatry Psychiatr Epidemiol 49(4):507–517PubMedGoogle Scholar
  4. Alexander-Bloch AF, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F et al (2010) Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci 4:147PubMedPubMedCentralGoogle Scholar
  5. Alexander-Bloch A, Lambiotte R, Roberts B, Giedd J, Gogtay N, Bullmore E (2012) The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia. NeuroImage 59(4):3889–3900PubMedGoogle Scholar
  6. Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14:322–336PubMedPubMedCentralGoogle Scholar
  7. Anderson A, Cohen MS (2013) Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial. Front Hum Neurosci 7:520PubMedPubMedCentralGoogle Scholar
  8. Andreasen NC, Paradiso S, O’leary DS (1998) “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull 24(2):203–218PubMedGoogle Scholar
  9. Anticevic A, Gancsos M, Murray JD, Repovs G, Driesen NR, Ennis DJ et al (2012) NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci 109(41):16720–16725PubMedGoogle Scholar
  10. Arias B, Fabbri C, Serretti A, Drago A, Mitjans M, Gastó C et al (2014) DISC1-TSNAX and DAOA genes in major depression and citalopram efficacy. J Affect Disord 168:91–97PubMedGoogle Scholar
  11. Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450PubMedGoogle Scholar
  12. Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci 108(18):7641–7646PubMedGoogle Scholar
  13. Bassett DS, Bullmore ED (2006) Small-world brain networks. Neuroscientist 12(6):512–523Google Scholar
  14. Bassett DS, Bullmore ET (2016) Small-world brain networks revisited. Neuroscientist 1073858416667720Google Scholar
  15. Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20(3):353–364PubMedPubMedCentralGoogle Scholar
  16. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248PubMedPubMedCentralGoogle Scholar
  17. Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger DR, Moore SW, Bullmore ET (2010) Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput Biol 6(4):e1000748PubMedPubMedCentralGoogle Scholar
  18. Bassett DS, Yang M, Wymbs NF, Grafton ST (2015) Learning-induced autonomy of sensorimotor systems. Nat Neurosci 18(5):744–751PubMedGoogle Scholar
  19. Bedenbender J, Paulus FM, Krach S, Pyka M, Sommer J, Krug A et al (2011) Functional connectivity analyses in imaging genetics: considerations on methods and data interpretation. PLoS One 6(12):e26354PubMedPubMedCentralGoogle Scholar
  20. Bergman LR, Magnusson D (1997) A person-oriented approach in research on developmental psychopathology. Dev Psychopathol 9(2):291–319PubMedGoogle Scholar
  21. Betzel RF, Bassett DS (2017) Multi-scale brain networks. NeuroImage 160:73–83PubMedGoogle Scholar
  22. Betzel RF, Satterthwaite TD, Gold JI, Bassett DS (2017) Positive affect, surprise, and fatigue are correlates of network flexibility. Sci Rep 7:520PubMedPubMedCentralGoogle Scholar
  23. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95Google Scholar
  24. Bohlken MM, Mandl RC, Brouwer RM, den Heuvel MP, Hedman AM, Kahn RS et al (2014) Heritability of structural brain network topology: a DTI study of 156 twins. Hum Brain Mapp 35(10):5295–5305PubMedGoogle Scholar
  25. Bolger N, Davis A, Rafaeli E (2003) Diary methods: capturing life as it is lived. Annu Rev Psychol 54:579–616PubMedGoogle Scholar
  26. Borsboom D (2017) A network theory of mental disorders. World Psychiatry 16:5–13PubMedPubMedCentralGoogle Scholar
  27. Braun U, Schäfer A, Bassett DS, Rausch F, Schweiger JI, Bilek E et al (2016) Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function. Proc Natl Acad Sci 113(44):12568–12573PubMedGoogle Scholar
  28. Braveman PA, Cubbin C, Egerter S, Chideya S, Marchi KS, Metzler M, Posner S (2005) Socioeconomic status in health research: one size does not fit all. J Am Med Assoc 294(22):2879–2888Google Scholar
  29. Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, De Girolamo G et al (2011) Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 9(1):90PubMedPubMedCentralGoogle Scholar
  30. Brown AS (2011) The environment and susceptibility to schizophrenia. Prog Neurobiol 93(1):23–58PubMedPubMedCentralGoogle Scholar
  31. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedGoogle Scholar
  32. Bush WS, Moore JH (2012) Genome-wide association studies. PLoS Comput Biol 8(12):e1002822PubMedPubMedCentralGoogle Scholar
  33. Calhoun VD, Miller R, Pearlson G, Adali T (2014) The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84(2):262–274PubMedPubMedCentralGoogle Scholar
  34. Cannon TD, Kaprio J, Lönnqvist J, Huttunen M, Koskenvuo M (1998) The genetic epidemiology of schizophrenia in a Finnish twin cohort: a population-based modeling study. Arch Gen Psychiatry 55(1):67–74PubMedGoogle Scholar
  35. Capaldi DM, Conger RD, Hops H, Thornberry TP (2003) Introduction to special section on three-generation studies. J Abnorm Child Psychol 31(2):123–125PubMedGoogle Scholar
  36. Carbonell F, Nagano-Saito A, Leyton M, Cisek P, Benkelfat C, He Y, Dagher A (2014) Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks. Neuropharmacology 84:90–100PubMedGoogle Scholar
  37. Carlén M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D et al (2012) A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry 17(5):537–548PubMedGoogle Scholar
  38. Cechnicki A, Wojciechowska A, Valdez M (2008) The social network and the quality of life of people suffering from schizophrenia seven years after the first hospitalisation. Arch Psychiatry Psychother 10(2):31–38Google Scholar
  39. Chalancon G, Kruse K, Babu M (2013) Clustering coefficient. In: Dubitzky W, Wolkenhauer O, Yokota H, Cho KH (eds) Encyclopedia of systems biology. Springer, New York, pp 422–424Google Scholar
  40. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex 18(10):2374–2381PubMedPubMedCentralGoogle Scholar
  41. Chen SY, Huang PH, Cheng HJ (2011) Disrupted-in-schizophrenia 1–mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling. Proc Natl Acad Sci 108(14):5861–5866PubMedGoogle Scholar
  42. Chen T, Cai W, Ryali S, Supekar K, Menon V (2016) Distinct global brain dynamics and spatiotemporal organization of the salience network. PLoS Biol 14(6):e1002469PubMedPubMedCentralGoogle Scholar
  43. Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K et al (2017) Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage 154(1):174–187PubMedPubMedCentralGoogle Scholar
  44. Cohen JR (2017) The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity. NeuroImageGoogle Scholar
  45. Cohen JR, D’Esposito M (2016) The segregation and integration of distinct brain networks and their relationship to cognition. J Neurosci 36(48):12083–12094PubMedPubMedCentralGoogle Scholar
  46. Cohen S, Wills TA (1985) Stress, social support, and the buffering hypothesis. Psychol Bull 98(2):310–357PubMedGoogle Scholar
  47. Conger RD, Donnellan MB (2007) An interactionist perspective on the socioeconomic context of human development. Annu Rev Psychol 58:175–199PubMedGoogle Scholar
  48. Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7:415–423PubMedGoogle Scholar
  49. Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon DH et al (2014) Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage Clin 5:298–308PubMedPubMedCentralGoogle Scholar
  50. Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213(6):525–533PubMedGoogle Scholar
  51. David AS (1994) Dysmodularity: a neurocognitive model for schizophrenia. Schizophr Bull 20(2):249–255PubMedGoogle Scholar
  52. De Domenico M (2017) Multilayer modeling and analysis of human brain networks. GigaScience 6(5):1–8PubMedPubMedCentralGoogle Scholar
  53. Dejean C, Gross CE, Bioulac B, Boraud T (2008) Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. J Neurophysiol 100(1):385–396PubMedGoogle Scholar
  54. Demirtaş M, Tornador C, Falcon C, López-Solà M, Hernández-Ribas R, Pujol J et al (2016) Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder. Hum Brain Mapp 37(8):2918–2930PubMedPubMedCentralGoogle Scholar
  55. DeRosse P, Hodgkinson CA, Lencz T, Burdick KE, Kane JM, Goldman D, Malhotra AK (2007) Disrupted in schizophrenia 1 genotype and positive symptoms in schizophrenia. Biol Psychiatry 61(10):1208–1210PubMedGoogle Scholar
  56. Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94(1):018102PubMedGoogle Scholar
  57. Eldar E, Cohen JD, Niv Y (2013) The effects of neural gain on attention and learning. Nat Neurosci 16(8):1146–1153PubMedPubMedCentralGoogle Scholar
  58. España RA, Schmeichel BE, Berridge CW (2016) Norepinephrine at the nexus of arousal, motivation and relapse. Brain Res 1641:207–216PubMedPubMedCentralGoogle Scholar
  59. Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C et al (2009) Neural mechanisms of a genome-wide supported psychosis variant. Science 324(5927):605–605PubMedPubMedCentralGoogle Scholar
  60. Falk EB, Bassett DS (2017) Brain and social networks: fundamental building blocks of human experience. Trends Cogn Sci 21(9):674–690PubMedGoogle Scholar
  61. Fornito A, Bullmore ET (2012) Connectomic intermediate phenotypes for psychiatric disorders. Front Psych 3:32Google Scholar
  62. Fornito A, Bullmore ET (2015) Connectomics: a new paradigm for understanding brain disease. Eur Neuropsychopharmacol 25(5):733–748PubMedPubMedCentralGoogle Scholar
  63. Fornito A, Yoon J, Zalesky A, Bullmore ET, Carter CS (2011a) General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance. Biol Psychiatry 70(1):64–72PubMedPubMedCentralGoogle Scholar
  64. Fornito A, Zalesky A, Bassett DS, Meunier D, Ellison-Wright I, Yücel M et al (2011b) Genetic influences on cost-efficient organization of human cortical functional networks. J Neurosci 31(9):3261–3270PubMedGoogle Scholar
  65. Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16(3):159–172PubMedPubMedCentralGoogle Scholar
  66. Fornito A, Zalesky A, Bullmore E (2016) Fundamentals of brain network analysis. Academic, LondonGoogle Scholar
  67. Fried EI, Cramer AO (2016) Moving forward: challenges and directions for psychopathological network theory and methodology. Perspect Psychol Sci 12:999–1020Google Scholar
  68. Fried EI, Nesse RM (2015) Depression sum-scores don’t add up: why analyzing specific depression symptoms is essential. BMC Med 13(1):72PubMedPubMedCentralGoogle Scholar
  69. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36PubMedGoogle Scholar
  70. Friston KJ, Frith CD (1995) Schizophrenia: a disconnection syndrome. Clin Neurosci 3(2):89–97Google Scholar
  71. Friston K, Brown HR, Siemerkus J, Stephan KE (2016) The dysconnection hypothesis (2016). Schizophr Res 176(2):83–94PubMedPubMedCentralGoogle Scholar
  72. Frith CD, Frith U (2006) The neural basis of mentalizing. Neuron 50(4):531–534PubMedGoogle Scholar
  73. Galatzer-Levy IR, Bryant RA (2013) 636,120 ways to have posttraumatic stress disorder. Perspect Psychol Sci 8(6):651–662PubMedGoogle Scholar
  74. Gao W, Alcauter S, Elton A, Hernandez-Castillo CR, Smith JK, Ramirez J, Lin W (2015) Functional network development during the first year: relative sequence and socioeconomic correlations. Cereb Cortex 25(9):2919–2928PubMedGoogle Scholar
  75. Gariepy JL (1996) The question of continuity and change in development. In: Cairns RB, Elder GH Jr, Costello EJ (eds) Developmental science. Cambridge University Press, Cambridge, pp 78–96Google Scholar
  76. Gianaros PJ, Manuck SB, Sheu LK, Kuan DC, Votruba-Drzal E, Craig AE, Hariri AR (2011) Parental education predicts corticostriatal functionality in adulthood. Cereb Cortex 21(4):896–910PubMedGoogle Scholar
  77. Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA et al (2010) Genetic control over the resting brain. Proc Natl Acad Sci 107(3):1223–1228PubMedGoogle Scholar
  78. Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE (2014) Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb Cortex 26(1):288–303PubMedPubMedCentralGoogle Scholar
  79. Greenberg PE, Fournier AA, Sisitsky T, Pike CT, Kessler RC (2015) The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry 76(2):155–162PubMedGoogle Scholar
  80. Hackman DA, Farah MJ, Meaney MJ (2010) Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat Rev Neurosci 11(9):651–659PubMedPubMedCentralGoogle Scholar
  81. Hamilton JP, Furman DJ, Chang C, Thomason ME, Dennis E, Gotlib IH (2011) Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination. Biol Psychiatry 70(4):327–333PubMedPubMedCentralGoogle Scholar
  82. Hamilton JP, Chen MC, Gotlib IH (2013) Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiol Dis 52:4–11PubMedGoogle Scholar
  83. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419PubMedGoogle Scholar
  84. He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H et al (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4(4):e5226PubMedPubMedCentralGoogle Scholar
  85. He H, Sui J, Yu Q, Turner JA, Ho BC, Sponheim SR et al (2012) Altered small-world brain networks in schizophrenia patients during working memory performance. PLoS One 7(6):e38195PubMedPubMedCentralGoogle Scholar
  86. Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the human brain? NeuroImage 52(3):766–776PubMedGoogle Scholar
  87. Hurlbert JS, Haines VA, Beggs JJ (2000) Core networks and tie activation: what kinds of routine networks allocate resources in nonroutine situations? Am Sociol Rev 65:598–618Google Scholar
  88. Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR et al (2016) Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nature 48:1031–1036. https://doi.org/10.1038/ng.3623 CrossRefGoogle Scholar
  89. Insel TR, Cuthbert BN, Garvey MA, Heinssen RK, Pine DS, Quinn KJ et al (2010) Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 167:748–751Google Scholar
  90. Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-Gómez Y, Melie-García L (2008) Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40(3):1064–1076PubMedGoogle Scholar
  91. Jaaro-Peled H, Hayashi-Takagi A, Seshadri S, Kamiya A, Brandon NJ, Sawa A (2009) Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1–ErbB4 and DISC1. Trends Neurosci 32(9):485–495PubMedPubMedCentralGoogle Scholar
  92. Jahanshad N, Prasad G, Toga A, McMahon K, de Zubicaray G, Martin N et al (2012) Genetics of path lengths in brain connectivity networks: HARDI-based maps in 457 adults. Multimodal Brain Image Anal 7509:29–40Google Scholar
  93. Jiang Y, Kanwisher N (2003) Common neural substrates for response selection across modalities and mapping paradigms. J Cogn Neurosci 15:1080–1094PubMedGoogle Scholar
  94. Jin C, Gao C, Chen C, Ma S, Netra R, Wang Y et al (2011) A preliminary study of the dysregulation of the resting networks in first-episode medication-naive adolescent depression. Neurosci Lett 503(2):105–109PubMedGoogle Scholar
  95. Joshi S, Li Y, Kalwani RM, Gold JI (2016) Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89(1):221–234PubMedGoogle Scholar
  96. Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD et al (2015) Schizophrenia. Nat Rev Dis Primers 1:15067. https://doi.org/10.1038/nrdp.2015.67 CrossRefPubMedGoogle Scholar
  97. Kaiser RH, Whitfield-Gabrieli S, Dillon DG, Goer F, Beltzer M, Minkel J et al (2016) Dynamic resting-state functional connectivity in major depression. Neuropsychopharmacology 41(7):1822–1830PubMedGoogle Scholar
  98. Kana RK, Libero LE, Moore MS (2011) Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Phys Life Rev 8(4):410–437PubMedGoogle Scholar
  99. Kendler KS, Kessler RC, Walters EE, MacLean C, Neale MC, Heath AC, Eaves LJ (1995) Stressful life events, genetic liability, and onset of an episode of major depression in women. Am J Psychiatry 152(6):833–842PubMedGoogle Scholar
  100. Kessler RC (2012) The costs of depression. Psychiatr Clin North Am 35(1):1–14PubMedGoogle Scholar
  101. Khambhati AN, Sizemore AE, Betzel RF, Bassett DS (2017) Modeling and interpreting mesoscale network dynamics. NeuroImage. pii: S1053-8119(17)30500-1Google Scholar
  102. Kishiyama MM, Boyce WT, Jimenez AM, Perry LM, Knight RT (2009) Socioeconomic disparities affect prefrontal function in children. J Cogn Neurosci 21(6):1106–1115PubMedGoogle Scholar
  103. Kohn R, Dohrenwend BP, Mirotznik J (1998) Epidemiological findings on selected psychiatric disorders in the general population. In: Dohrenwend BP (ed) Adversity, stress, and psychopathology. Oxford University Press, London, pp 235–284Google Scholar
  104. Korgaonkar MS, Fornito A, Williams LM, Grieve SM (2014) Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiatry 76(7):567–574PubMedGoogle Scholar
  105. Krieger N, Williams DR, Moss NE (1997) Measuring social class in US public health research: concepts, methodologies, and guidelines. Annu Rev Public Health 18(1):341–378PubMedGoogle Scholar
  106. Krishnadas R, Kim J, McLean J, Batty GD, McLean JS, Millar K et al (2013) The envirome and the connectome: exploring the structural noise in the human brain associated with socioeconomic deprivation. Front Hum Neurosci 7:722PubMedPubMedCentralGoogle Scholar
  107. Krystal JH, D'Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169(3–4):215–233PubMedGoogle Scholar
  108. Lerman-Sinkoff DB, Barch DM (2016) Network community structure alterations in adult schizophrenia: identification and localization of alterations. NeuroImage Clin 10:96–106PubMedGoogle Scholar
  109. Li Y, Liu B, Hou B, Qin W, Wang D, Yu C, Jiang T (2013) Less efficient information transfer in Cys-allele carriers of DISC1: a brain network study based on diffusion MRI. Cereb Cortex 23(7):1715–1723PubMedGoogle Scholar
  110. Li J, Shi Y, Toga AW (2016) Mapping brain anatomical connectivity using diffusion magnetic resonance imaging: structural connectivity of the human brain. IEEE Signal Process Mag 33(3):36–51PubMedPubMedCentralGoogle Scholar
  111. Lin N, Ensel WM, Simeone RS, Kuo W (1979) Social support, stressful life events, and illness: a model and an empirical test. J Health Soc Behav 20(2):108–119PubMedGoogle Scholar
  112. Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M et al (2008) Disrupted small-world networks in schizophrenia. Brain 131(4):945–961Google Scholar
  113. Lohoff FW (2010) Overview of the genetics of major depressive disorder. Curr Psychiatry Rep 12(6):539–546PubMedPubMedCentralGoogle Scholar
  114. Lorant V, Deliège D, Eaton W, Robert A, Philippot P, Ansseau M (2003) Socioeconomic inequalities in depression: a meta-analysis. Am J Epidemiol 157(2):98–112PubMedGoogle Scholar
  115. Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30(28):9477–9487PubMedPubMedCentralGoogle Scholar
  116. Ma S, Calhoun VD, Eichele T, Du W, Adalı T (2012) Modulations of functional connectivity in the healthy and schizophrenia groups during task and rest. NeuroImage 62(3):1694–1704PubMedPubMedCentralGoogle Scholar
  117. Magnusson D, Cairns RB (1996) Developmental science: toward a unified framework. In: Cairns RB, Elder GH Jr, Costello EJ (eds) Developmental science. Cambridge University Press, Cambridge, pp 7–30Google Scholar
  118. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium (2013) A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 18(4):497–511Google Scholar
  119. Markett S, de Reus MA, Reuter M, Montag C, Weber B, Schoene-Bake JC, van den Heuvel MP (2016) Serotonin and the Brain’s Rich Club—association between molecular genetic variation on the TPH2 gene and the structural connectome. Cereb Cortex 27(3):2166–2174Google Scholar
  120. Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 9(3):471–481PubMedGoogle Scholar
  121. Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houdé O et al (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54:287–298PubMedGoogle Scholar
  122. McGrath J, Saha S, Chant D, Welham J (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30(1):67–76PubMedGoogle Scholar
  123. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A (2003) The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 60(5):497–502Google Scholar
  124. Mechelli A, Friston KJ, Frackowiak RS, Price CJ (2005) Structural covariance in the human cortex. J Neurosci 25(36):8303–8310PubMedGoogle Scholar
  125. Medaglia JD, Lynall ME, Bassett DS (2015a) Cognitive network neuroscience. J Cogn Neurosci 27:1471–1491PubMedPubMedCentralGoogle Scholar
  126. Medaglia JD, Satterthwaite TD, Kelkar A, Ciric R, Moore TM, Ruparel K, Gur RC, Gur RE, Bassett DS (2018) Brain state expression and transitions are related to complex executive cognition in normative neurodevelopment. NeuroImage 166:293–306PubMedGoogle Scholar
  127. Menon V (2013) Developmental pathways to functional brain networks: emerging principles. Trends Cogn Sci 17(12):627–640PubMedGoogle Scholar
  128. Menon V (2015) Salience network. In: Toga AW (ed) Brain mapping: an encyclopedic reference, vol 2. Academic/Elsevier, London, pp 597–611Google Scholar
  129. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667PubMedPubMedCentralGoogle Scholar
  130. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain functional networks. Front Neuroinform 3:37PubMedPubMedCentralGoogle Scholar
  131. Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200PubMedPubMedCentralGoogle Scholar
  132. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7(10):818–827PubMedGoogle Scholar
  133. Mohammed AH, Zhu SW, Darmopil S, Hjerling-Leffler J, Ernfors P, Winblad B et al (2002) Environmental enrichment and the brain. In: Hofman MA, Boer GJ, Holtmaat AJGD, Van Someren EJW, Verhaagen J, Swaab DF (eds) Progress in brain research, vol 138. Elsevier Science, AmsterdamGoogle Scholar
  134. Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM (2003) Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C] raclopride PET study. Am J Psychiatr 160(10):1887–1889PubMedGoogle Scholar
  135. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980):876–878PubMedGoogle Scholar
  136. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. Am J Neuroradiol 29(4):632–641PubMedGoogle Scholar
  137. Nelson SM, Cohen AL, Power JD, Wig GS, Miezin FM, Wheeler ME et al (2010) A parcellation scheme for human left lateral parietal cortex. Neuron 67:156–170PubMedPubMedCentralGoogle Scholar
  138. O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al (2008) Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40(9):1053–1055PubMedGoogle Scholar
  139. Okbay A, Baselmans BM, De Neve JE, Turley P, Nivard MG, Fontana MA et al (2016) Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet 48(6):624–633PubMedPubMedCentralGoogle Scholar
  140. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M et al (2016) Major depressive disorder. Nat Rev Dis Primers 2:16065–16065PubMedGoogle Scholar
  141. Pahwa R, Smith ME, McCullagh CA, Hoe M, Brekke JS (2016) Social support-centered versus symptom-centered models in predicting functional outcomes for individuals with schizophrenia. J Society Social Work Res 7(2):247–268Google Scholar
  142. Perälä J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsä E, Pirkola S et al (2007) Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry 64(1):19–28PubMedGoogle Scholar
  143. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA et al (2011) Functional network organization of the human brain. Neuron 72:665–678PubMedPubMedCentralGoogle Scholar
  144. Qu M, Tang F, Yue W, Ruan Y, Lu T, Liu Z et al (2007) Positive association of the Disrupted-in-Schizophrenia-1 gene (DISC1) with schizophrenia in the Chinese han population. Am J Med Genet B Neuropsychiatr Genet 144(3):266–270Google Scholar
  145. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci 98:676–682PubMedPubMedCentralGoogle Scholar
  146. Richiardi J, Altmann A, Milazzo AC, Chang C, Chakravarty MM, Banaschewski T et al (2015) Correlated gene expression supports synchronous activity in brain networks. Science 348(6240):1241–1244PubMedPubMedCentralGoogle Scholar
  147. Ridderinkhof KR, Van Den Wildenberg WP, Segalowitz SJ, Carter CS (2004) Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn 56:129–140PubMedGoogle Scholar
  148. Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AW, Williams LM, Breakspear M (2009) Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30(2):403–416PubMedPubMedCentralGoogle Scholar
  149. Rutter M (2000) Psychosocial influences: critiques, findings, and research needs. Dev Psychopathol 12(3):375–405PubMedGoogle Scholar
  150. Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH (2014) Elucidating brain connectivity networks in major depressive disorder using classification-based scoring. In: 2014 I.E. 11th international symposium on biomedical imaging (ISBI), IEEE, pp 246–249Google Scholar
  151. Sadaghiani S, Poline JB, Kleinschmidt A, D’Esposito M (2015) Ongoing dynamics in large-scale functional connectivity predict perception. Proc Natl Acad Sci 112(27):8463–8468PubMedGoogle Scholar
  152. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore ED (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342PubMedGoogle Scholar
  153. Satterthwaite TD, Kable JW, Vandekar L, Katchmar N, Bassett DS, Baldassano CF et al (2015) Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacology 40(9):2258–2268PubMedPubMedCentralGoogle Scholar
  154. Savitz JB, Rauch SL, Drevets WC (2013) Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play. Mol Psychiatry 18(5):528–539PubMedPubMedCentralGoogle Scholar
  155. Scheuch K, Lautenschlager M, Grohmann M, Stahlberg S, Kirchheiner J, Zill P et al (2007) Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonergic raphe neurons. Biol Psychiatry 62(11):1288–1294PubMedGoogle Scholar
  156. Schmälzle R, O’Donnell MB, Garcia JO, Cascio CN, Bayer J, Bassett DS et al (2017) Brain connectivity dynamics during social interaction reflect social network structure. Proc Natl Acad Sci 114(20):5153–5158PubMedGoogle Scholar
  157. Schmitt JE, Lenroot RK, Wallace GL, Ordaz S, Taylor KN, Kabani N et al (2008) Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cereb Cortex 18(8):1737–1747PubMedPubMedCentralGoogle Scholar
  158. Schnell K, Bluschke S, Konradt B, Walter H (2011) Functional relations of empathy and mentalizing: an fMRI study on the neural basis of cognitive empathy. NeuroImage 54(2):1743–1754PubMedGoogle Scholar
  159. Schreiber F (2013) Characteristic path length. In: Dubitzky W, Wolkenhauer O, Yokota H, Cho KH (eds) Encyclopedia of systems biology. Springer, New York, p 395Google Scholar
  160. Seeman TE, McEwen BS (1996) Impact of social environment characteristics on neuroendocrine regulation. Psychosom Med 58(5):459–471PubMedGoogle Scholar
  161. Sharma A, Wolf DH, Ciric R, Kable JW, Moore TM, Vandekar SN et al (2017) Common dimensional reward deficits across mood and psychotic disorders: a connectome-wide association study. Am J Psychiatry 174(7):657–666PubMedPubMedCentralGoogle Scholar
  162. Shiffman S, Stone AA, Hufford MR (2008) Ecological momentary assessment. Annu Rev Clin Psychol 4:1–32PubMedGoogle Scholar
  163. Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ et al (2016) The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92(2):544–554PubMedPubMedCentralGoogle Scholar
  164. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663PubMedGoogle Scholar
  165. Simon HA (1962) The architecture of complexity. Proc Am Philos Soc 106:467–482Google Scholar
  166. Sizemore AE, Bassett DS (2017) Dynamic graph metrics: tutorial, toolbox, and tale. NeuroImage. pii: S1053-8119(17)30564-5Google Scholar
  167. Slavich GM, Irwin MR (2014) From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull 140(3):774–815PubMedPubMedCentralGoogle Scholar
  168. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci 106(31):13040–13045PubMedGoogle Scholar
  169. Sporns O (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15:247–262PubMedPubMedCentralGoogle Scholar
  170. Sporns O (2014) Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 17(5):652–660PubMedGoogle Scholar
  171. Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640Google Scholar
  172. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425PubMedGoogle Scholar
  173. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci 105:12569–12574PubMedGoogle Scholar
  174. Stephan KE, Friston KJ (2010) Analyzing effective connectivity with functional magnetic resonance imaging. Wiley Interdiscip Rev Cogn Sci 1(3):446–459PubMedPubMedCentralGoogle Scholar
  175. Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35(3):509–527PubMedPubMedCentralGoogle Scholar
  176. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466PubMedPubMedCentralGoogle Scholar
  177. Sugisawa H, Shibata H, Hougham GW, Sugihara Y, Liang J (2002) The impact of social ties on depressive symptoms in US and Japanese elderly. J Soc Issues 58(4):785–804Google Scholar
  178. Sullivan PF, Neale MC, Kendler KS (2000) Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatr 157(10):1552–1562PubMedGoogle Scholar
  179. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60(12):1187–1192Google Scholar
  180. Takeuchi H, Sekiguchi A, Taki Y, Yokoyama S, Yomogida Y, Komuro N et al (2010) Training of working memory impacts structural connectivity. J Neurosci 30(9):3297–3303PubMedGoogle Scholar
  181. Taubert M, Draganski B, Anwander A, Müller K, Horstmann A, Villringer A, Ragert P (2010) Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci 30(35):11670–11677PubMedGoogle Scholar
  182. Taylor SE (2011) Social support: a review. In: Friedman HS (ed) Oxford handbook of health psychology. Oxford University Press, New York, pp 189–214Google Scholar
  183. Thomason ME, Chang CE, Glover GH, Gabrieli JD, Greicius MD, Gotlib IH (2008) Default-mode function and task-induced deactivation have overlapping brain substrates in children. NeuroImage 41:1493–1503PubMedPubMedCentralGoogle Scholar
  184. Thompson PM, Ge T, Glahn DC, Jahanshad N, Nichols TE (2013) Genetics of the connectome. NeuroImage 80:475–488PubMedPubMedCentralGoogle Scholar
  185. Trakhtenberg EF, Goldberg JL (2012) The role of serotonin in axon and dendrite growth. In: Goldberg JL, Trakhtenberg EF (eds) International review of neurobiology: axon growth and regeneration: part 2. Academic, London, pp 105–121Google Scholar
  186. Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61PubMedGoogle Scholar
  187. Uhlhaas PJ (2013) Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Curr Opin Neurobiol 23(2):283–290PubMedGoogle Scholar
  188. van den Brink RHS, Schutter N, Hanssen DJC, Elzinga BM, Rabeling-Keus IM, Stek ML et al (2017) Prognostic significance of social network, social support and loneliness for course of major depressive disorder in adulthood and old age. Epidemiol Psychiatr Sci. https://doi.org/10.1017/S2045796017000014 PubMedGoogle Scholar
  189. Van Den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786Google Scholar
  190. Van Den Heuvel MP, Mandl RC, Kahn RS, Pol H, Hilleke E (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30(10):3127–3141PubMedGoogle Scholar
  191. van den Heuvel MP, Mandl RC, Stam CJ, Kahn RS, Pol HEH (2010) Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci 30(47):15915–15926Google Scholar
  192. Van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1(3):191–198PubMedGoogle Scholar
  193. Viding E, Williamson DE, Hariri AR (2006) Developmental imaging genetics: challenges and promises for translational research. Dev Psychopathol 18(3):877–892PubMedGoogle Scholar
  194. Volkow ND, Wolf AP, Brodie JD, Cancro R, Overall JE, Rhoades H, Van Gelder P (1988) Brain interactions in chronic schizophrenics under resting and activation conditions. Schizophr Res 1(1):47–53PubMedGoogle Scholar
  195. Wade TD, Kendler KS (2000) The relationship between social support and major depression: cross-sectional, longitudinal, and genetic perspectives. J Nerv Ment Dis 188(5):251–258PubMedGoogle Scholar
  196. Walters JR, Ruskin DN, Allers KA, Bergstrom DA (2000) Pre-and postsynaptic aspects of dopamine-mediated transmission. Trends Neurosci 23:S41–S47PubMedGoogle Scholar
  197. Wang L, Metzak PD, Honer WG, Woodward TS (2010) Impaired efficiency of functional networks underlying episodic memory-for-context in schizophrenia. J Neurosci 30(39):13171–13179PubMedGoogle Scholar
  198. Wang Q, Su TP, Zhou Y, Chou KH, Chen IY, Jiang T, Lin CP (2012) Anatomical insights into disrupted small-world networks in schizophrenia. NeuroImage 59(2):1085–1093PubMedGoogle Scholar
  199. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small world’ networks. Nature 393:440–442Google Scholar
  200. Werling LL, Keller A, Frank JG, Nuwayhid SJ (2007) A comparison of the binding profiles of dextromethorphan, memantine, fluoxetine and amitriptyline: treatment of involuntary emotional expression disorder. Exp Neurol 207(2):248–257PubMedGoogle Scholar
  201. Werner S, Malaspina D, Rabinowitz J (2007) Socioeconomic status at birth is associated with risk of schizophrenia: population-based multilevel study. Schizophr Bull 33(6):1373–1378PubMedPubMedCentralGoogle Scholar
  202. Wernicke C (1906) Grundrisse der Psychiatrie. Thieme, LeipzigGoogle Scholar
  203. Williams KD, Cheung CK, Choi W (2000) Cyberostracism: effects of being ignored over the Internet. J Pers Soc Psychol 79(5):748–762PubMedGoogle Scholar
  204. Wills TA (1991) Social support and interpersonal relationships. In: Clark MS (ed) Prosocial behavior. Sage, Newbury Park, pp 265–289Google Scholar
  205. Wise T, Marwood L, Perkins AM, Herane-Vives A, Joules R, Lythgoe DJ et al (2017) Instability of default mode network connectivity in major depression: a two-sample confirmation study. Transl Psychiatry 7(4):e1105PubMedPubMedCentralGoogle Scholar
  206. Woodward ND, Cascio CJ (2015) Resting-state functional connectivity in psychiatric disorders. JAMA Psychiat 72(8):743–744Google Scholar
  207. Ye M, Yang T, Qing P, Lei X, Qiu J, Liu G (2015) Changes of functional brain networks in major depressive disorder: a graph theoretical analysis of resting-state fMRI. PLoS One 10(9):e0133775PubMedPubMedCentralGoogle Scholar
  208. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363):171–178PubMedPubMedCentralGoogle Scholar
  209. Young C, Majolo B, Heistermann M, Schülke O, Ostner J (2014) Responses to social and environmental stress are attenuated by strong male bonds in wild macaques. Proc Natl Acad Sci 111(51):18195–18200PubMedGoogle Scholar
  210. Yu Q, Plis SM, Erhardt EB, Allen EA, Sui J, Kiehl KA et al (2012) Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state. Front Syst Neurosci 5:103PubMedPubMedCentralGoogle Scholar
  211. Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305(5681):217–217PubMedGoogle Scholar
  212. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70(4):334–342PubMedGoogle Scholar
  213. Zhang Z, Telesford QK, Giusti C, Lim KO, Bassett DS (2016) Choosing wavelet methods, filters, and lengths for functional brain network construction. PLoS One 11(6):e0157243PubMedPubMedCentralGoogle Scholar
  214. Zhu J, Zhuo C, Liu F, Qin W, Xu L, Yu C (2016) Distinct disruptions of resting-state functional brain networks in familial and sporadic schizophrenia. Sci Rep 6:23577PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David M. Lydon-Staley
    • 1
  • Danielle S. Bassett
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Electrical & Systems EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations