Advertisement

Oxytocin Modulation of Neural Circuits

  • Mariela Mitre
  • Jessica Minder
  • Egzona X. Morina
  • Moses V. Chao
  • Robert C. Froemke
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 35)

Abstract

Oxytocin is a hypothalamic neuropeptide first recognized as a regulator of parturition and lactation which has recently gained attention for its ability to modulate social behaviors. In this chapter, we review several aspects of the oxytocinergic system, focusing on evidence for release of oxytocin and its receptor distribution in the cortex as the foundation for important networks that control social behavior. We examine the developmental timeline of the cortical oxytocin system as demonstrated by RNA, autoradiographic binding, and protein immunohistochemical studies, and describe how that might shape brain development and behavior. Many recent studies have implicated oxytocin in cognitive processes such as processing of sensory stimuli, social recognition, social memory, and fear. We review these studies and discuss the function of oxytocin in the young and adult cortex as a neuromodulator of central synaptic transmission and mediator of plasticity.

Keywords

Cortex Inhibition Neuromodulation Oxytocin Synaptic plasticity 

References

  1. Bales KL, Carter CS (2003a) Developmental exposure to oxytocin facilitates partner preferences in male prairie voles (Microtus ochrogaster). Behav Neurosci 117(4):854–859CrossRefPubMedGoogle Scholar
  2. Bales KL, Carter CS (2003b) Sex differences and developmental effects of oxytocin on aggression and social behavior in prairie voles (Microtus ochrogaster). Horm Behav 44(3):178–184CrossRefPubMedGoogle Scholar
  3. Bales KL, Pfeifer LA, Carter CS (2004) Sex differences and developmental effects of manipulations of oxytocin on alloparenting and anxiety in prairie voles. Dev Psychobiol 44(2):123–131. doi: 10.1002/dev.10165CrossRefPubMedGoogle Scholar
  4. Bartz JA, Zaki J, Bolger N, Ochsner KN (2011) Social effects of oxytocin in humans: context and person matter. Trends Cogn Sci 15(7):301–309. doi: 10.1016/j.tics.2011.05.002CrossRefPubMedGoogle Scholar
  5. Braida D, Donzelli A, Martucci R, Capurro V, Busnelli M, Chini B, Sala M (2012) Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish. Psychopharmacology 220(2):319–330. doi: 10.1007/s00213-011-2482-2CrossRefPubMedGoogle Scholar
  6. Brownstein MJ, Russell JT, Gainer H (1980) Synthesis, transport, and release of posterior pituitary hormones. Science 207(4429):373–378CrossRefPubMedGoogle Scholar
  7. Caldwell HK, Young WS (2006) Oxytocin and vasopressin: genetics and behavioral implications. In: Neuroactive proteins and peptides. Springer, New York, pp 573–607Google Scholar
  8. Champagne F, Diorio J, Sharma S, Meaney MJ (2001) Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc Natl Acad Sci U S A 98(22):12736–12741. doi: 10.1073/pnas.221224598CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen Q, Schreiber SS, Brinton RD (2000) Vasopressin and oxytocin receptor mRNA expression during rat telencephalon development. Neuropeptides 34(3–4):173–180. doi: 10.1054/npep.2000.0809CrossRefPubMedGoogle Scholar
  10. Dale HH (1906) On some physiological actions of ergot. J Physiol 34(3):163–206CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dale HH (1909) The action of extracts of the pituitary body. Biochem J 4(9):427–447CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dierickx K, Vandesande F (1979) Immunocytochemical demonstration of separate vasopressin-neurophysin and oxytocin-neurophysin neurons in the human hypothalamus. Cell Tissue Res 196(2):203–212CrossRefPubMedGoogle Scholar
  13. Dolen G, Darvishzadeh A, Huang KW, Malenka RC (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501(7466):179–184. doi: 10.1038/nature12518CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dulac C, O’Connell LA, Wu Z (2014) Neural control of maternal and paternal behaviors. Science 345(6198):765–770. doi: 10.1126/science.1253291CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dumais KM, Veenema AH (2016) Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol 40:1–23. doi: 10.1016/j.yfrne.2015.04.003CrossRefGoogle Scholar
  16. Dumais KM, Bredewold R, Mayer TE, Veenema AH (2013) Sex differences in oxytocin receptor binding in forebrain regions: correlations with social interest in brain region- and sex-specific ways. Horm Behav 64(4):693–701. doi: 10.1016/j.yhbeh.2013.08.012CrossRefPubMedGoogle Scholar
  17. Eliava M, Melchior M, Knobloch-Bollmann HS, Wahis J, da Silva Gouveia M, Tang Y, Ciobanu AC, Triana Del Rio R, Roth LC, Althammer F, Chavant V, Goumon Y, Gruber T, Petit-Demouliere N, Busnelli M, Chini B, Tan LL, Mitre M, Froemke RC, Chao MV, Giese G, Sprengel R, Kuner R, Poisbeau P, Seeburg PH, Stoop R, Charlet A, Grinevich V (2016) A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89(6):1291–1304. doi: 10.1016/j.neuron.2016.01.041CrossRefPubMedPubMedCentralGoogle Scholar
  18. Farina Lipari E, Valentino B, Lipari D (1995) Immunohistochemical research on oxytocin in the hypothalamic accessory nuclei. Ital J Anat Embryol 100(4):189–193PubMedGoogle Scholar
  19. Ferguson JN, Young LJ, Hearn EF, Matzuk MM, Insel TR, Winslow JT (2000) Social amnesia in mice lacking the oxytocin gene. Nat Genet 25(3):284–288. doi: 10.1038/77040CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ferris CF, Yee JR, Kenkel WM, Dumais KM, Moore K, Veenema AH, Kulkarni P, Perkybile AM, Carter CS (2015) Distinct BOLD activation profiles following central and peripheral oxytocin administration in awake rats. Front Behav Neurosci 9:245. doi: 10.3389/fnbeh.2015.00245CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fields RL, Gainer H (2015) The -216- to -100-bp sequence in the 5′-flanking region of the oxytocin gene contains a cell-type specific regulatory element for its selective expression in oxytocin magnocellular neurones. J Neuroendocrinol 27(9):702–707. doi: 10.1111/jne.12299CrossRefPubMedGoogle Scholar
  22. Francis DD, Young LJ, Meaney MJ, Insel TR (2002) Naturally occurring differences in maternal care are associated with the expression of oxytocin and vasopressin (V1a) receptors: gender differences. J Neuroendocrinol 14(5):349–353CrossRefPubMedGoogle Scholar
  23. Freund-Mercier MJ, Moos F, Poulain DA, Richard P, Rodriguez F, Theodosis DT, Vincent JD (1988) Role of central oxytocin in the control of the milk ejection reflex. Brain Res Bull 20(6):737–741CrossRefPubMedGoogle Scholar
  24. Froemke RC, Carcea I (2016) Oxytocin and brain plasticity. In: Textbook of gender-specific medicine, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  25. Froemke RC, Jones BJ (2011) Development of auditory cortical synaptic receptive fields. Neurosci Biobehav Rev 35(10):2105–2113. doi: 10.1016/j.neubiorev.2011.02.006CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gainer H (1998) Cell-specific gene expression in oxytocin and vasopressin magnocellular neurons. Adv Exp Med Biol 449:15–27CrossRefPubMedGoogle Scholar
  27. Gainer H (2012) Cell-type specific expression of oxytocin and vasopressin genes: an experimental odyssey. J Neuroendocrinol 24(4):528–538. doi: 10.1111/j.1365-2826.2011.02236.xCrossRefPubMedPubMedCentralGoogle Scholar
  28. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683CrossRefPubMedGoogle Scholar
  29. Gimpl G, Reitz J, Brauer S, Trossen C (2008) Oxytocin receptors: ligand binding, signalling and cholesterol dependence. Prog Brain Res 170:193–204. doi: 10.1016/s0079-6123(08)00417-2CrossRefPubMedGoogle Scholar
  30. Gregory SG, Connelly JJ, Towers AJ, Johnson J, Biscocho D, Markunas CA, Lintas C, Abramson RK, Wright HH, Ellis P, Langford CF, Worley G, Delong GR, Murphy SK, Cuccaro ML, Persico A, Pericak-Vance MA (2009) Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med 7:62. doi: 10.1186/1741-7015-7-62CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grinevich V, Desarmenien MG, Chini B, Tauber M, Muscatelli F (2014) Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders. Front Neuroanat 8:164. doi: 10.3389/fnana.2014.00164CrossRefPubMedGoogle Scholar
  32. Grinevich V, Knobloch-Bollmann HS, Eliava M, Busnelli M, Chini B (2016) Assembling the puzzle: pathways of oxytocin signaling in the brain. Biol Psychiatry 79(3):155–164. doi: 10.1016/j.biopsych.2015.04.013CrossRefPubMedPubMedCentralGoogle Scholar
  33. Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ, Hickie IB (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67(7):692–694. doi: 10.1016/j.biopsych.2009.09.020CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hammock EA (2015) Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology 40(1):24–42. doi: 10.1038/npp.2014.120CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hammock EA, Levitt P (2013) Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse. Front Behav Neurosci 7:195. doi: 10.3389/fnbeh.2013.00195CrossRefPubMedPubMedCentralGoogle Scholar
  36. Harony-Nicolas H, Mamrut S, Brodsky L, Shahar-Gold H, Barki-Harrington L, Wagner S (2014) Brain region-specific methylation in the promoter of the murine oxytocin receptor gene is involved in its expression regulation. Psychoneuroendocrinology 39:121–131. doi: 10.1016/j.psyneuen.2013.10.004CrossRefPubMedGoogle Scholar
  37. Insel TR (1990) Regional changes in brain oxytocin receptors post-partum: time-course and relationship to maternal behaviour. J Neuroendocrinol 2(4):539–545. doi: 10.1111/j.1365-2826.1990.tb00445.xCrossRefPubMedGoogle Scholar
  38. Insel TR, Shapiro LE (1992) Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc Natl Acad Sci U S A 89(13):5981–5985CrossRefPubMedPubMedCentralGoogle Scholar
  39. Insel TR, Young LJ (2001) The neurobiology of attachment. Nat Rev Neurosci 2(2):129–136. doi: 10.1038/35053579CrossRefPubMedGoogle Scholar
  40. Insel TR, Young L, Wang Z (1997) Central oxytocin and reproductive behaviours. Rev Reprod 2(1):28–37CrossRefPubMedGoogle Scholar
  41. Jack A, Connelly JJ, Morris JP (2012) DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Front Hum Neurosci 6. doi: 10.3389/fnhum.2012.00280
  42. Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, Shnayder NA, Yamada K, Noda M, Seike T, Fujita K, Takasawa S, Yokoyama S, Koizumi K, Shiraishi Y, Tanaka S, Hashii M, Yoshihara T, Higashida K, Islam MS, Yamada N, Hayashi K, Noguchi N, Kato I, Okamoto H, Matsushima A, Salmina A, Munesue T, Shimizu N, Mochida S, Asano M, Higashida H (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446(7131):41–45. doi: 10.1038/nature05526CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jones PM, Robinson IC (1982) Differential clearance of neurophysin and neurohypophysial peptides from the cerebrospinal fluid in conscious guinea pigs. Neuroendocrinology 34(4):297–302CrossRefPubMedGoogle Scholar
  44. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73(3):553–566. doi: 10.1016/j.neuron.2011.11.030CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lambert RC, Dayanithi G, Moos FC, Richard P (1994) A rise in the intracellular Ca2+ concentration of isolated rat supraoptic cells in response to oxytocin. J Physiol 478(Pt 2):275–287CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lipari EF, Lipari D, Gerbino A, Di Liberto D, Bellafiore M, Catalano M, Valentino B (2001) The hypothalamic magnocellular neurosecretory system in developing rats. Eur J Histochem 45(2):163–168CrossRefPubMedGoogle Scholar
  47. Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7(2):126–136. doi: 10.1038/nrn1845CrossRefPubMedGoogle Scholar
  48. Marlin BJ, Mitre M, D'Amour JA, Chao MV, Froemke RC (2015) Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature 520(7548):499–504. doi: 10.1038/nature14402CrossRefPubMedPubMedCentralGoogle Scholar
  49. Matsumoto H, Rogi T, Yamashiro K, Kodama S, Tsuruoka N, Hattori A, Takio K, Mizutani S, Tsujimoto M (2000) Characterization of a recombinant soluble form of human placental leucine aminopeptidase/oxytocinase expressed in Chinese hamster ovary cells. Eur J Biochem/FEBS 267(1):46–52CrossRefGoogle Scholar
  50. McCarthy MM (1990) Oxytocin inhibits infanticide in female house mice (Mus domesticus). Horm Behav 24(3):365–375CrossRefPubMedGoogle Scholar
  51. Mens WB, Witter A, van Wimersma Greidanus TB (1983) Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain Res 262(1):143–149CrossRefPubMedGoogle Scholar
  52. Mitre M, Marlin BJ, Schiavo JK, Morina E, Norden SE, Hackett TA, Aoki CJ, Chao MV, Froemke RC (2016) A distributed network for social cognition enriched for oxytocin receptors. J Neurosci 36(8):2517–2535. doi: 10.1523/jneurosci.2409-15.2016CrossRefPubMedPubMedCentralGoogle Scholar
  53. Modi ME, Young LJ (2012) The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies. Horm Behav 61(3):340–350. doi: 10.1016/j.yhbeh.2011.12.010CrossRefPubMedPubMedCentralGoogle Scholar
  54. Moos F, Freund-Mercier MJ, Guerne Y, Guerne JM, Stoeckel ME, Richard P (1984) Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J Endocrinol 102(1):63–72CrossRefPubMedGoogle Scholar
  55. Moos F, Poulain DA, Rodriguez F, Guerne Y, Vincent JD, Richard P (1989) Release of oxytocin within the supraoptic nucleus during the milk ejection reflex in rats. Exp Brain Res 76(3):593–602CrossRefPubMedGoogle Scholar
  56. Mor M, Nardone S, Sams DS, Elliott E (2015) Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism 6:46. doi: 10.1186/s13229-015-0040-1CrossRefPubMedPubMedCentralGoogle Scholar
  57. Morris JF, Pow DV (1991) Widespread release of peptides in the central nervous system: quantitation of tannic acid-captured exocytoses. Anat Rec 231(4):437–445. doi: 10.1002/ar.1092310406CrossRefPubMedGoogle Scholar
  58. Munesue T, Yokoyama S, Nakamura K, Anitha A, Yamada K, Hayashi K, Asaka T, Liu HX, Jin D, Koizumi K, Islam MS, Huang JJ, Ma WJ, Kim UH, Kim SJ, Park K, Kim D, Kikuchi M, Ono Y, Nakatani H, Suda S, Miyachi T, Hirai H, Salmina A, Pichugina YA, Soumarokov AA, Takei N, Mori N, Tsujii M, Sugiyama T, Yagi K, Yamagishi M, Sasaki T, Yamasue H, Kato N, Hashimoto R, Taniike M, Hayashi Y, Hamada J, Suzuki S, Ooi A, Noda M, Kamiyama Y, Kido MA, Lopatina O, Hashii M, Amina S, Malavasi F, Huang EJ, Zhang J, Shimizu N, Yoshikawa T, Matsushima A, Minabe Y, Higashida H (2010) Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neurosci Res 67(2):181–191. doi: 10.1016/j.neures.2010.03.004CrossRefPubMedGoogle Scholar
  59. Neumann ID, Maloumby R, Beiderbeck DI, Lukas M, Landgraf R (2013) Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinology 38(10):1985–1993. doi: 10.1016/j.psyneuen.2013.03.003CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nishimori K, Young LJ, Guo Q, Wang Z, Insel TR, Matzuk MM (1996) Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci U S A 93(21):11699–11704CrossRefPubMedPubMedCentralGoogle Scholar
  61. Oettl LL, Ravi N, Schneider M, Scheller MF, Schneider P, Mitre M, da Silva Gouveia M, Froemke RC, Chao MV, Young WS, Meyer-Lindenberg A, Grinevich V, Shusterman R, Kelsch W (2016) Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron 90(3):609–621. doi: 10.1016/j.neuron.2016.03.033CrossRefPubMedPubMedCentralGoogle Scholar
  62. Oumi T, Ukena K, Matsushima O, Ikeda T, Fujita T, Minakata H, Nomoto K (1994) Annetocin: an oxytocin-related peptide isolated from the earthworm, Eisenia foetida. Biochem Biophys Res Commun 198(1):393–399. doi: 10.1006/bbrc.1994.1055CrossRefPubMedGoogle Scholar
  63. Owen SF, Tuncdemir SN, Bader PL, Tirko NN, Fishell G, Tsien RW (2013) Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 500(7463):458–462. doi: 10.1038/nature12330CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pedersen CA, Ascher JA, Monroe YL, Prange AJ Jr (1982) Oxytocin induces maternal behavior in virgin female rats. Science 216(4546):648–650CrossRefPubMedGoogle Scholar
  65. Puglia MH, Lillard TS, Morris JP, Connelly JJ (2015) Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proc Natl Acad Sci U S A 112(11):3308–3313. doi: 10.1073/pnas.1422096112CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ramos L, Hicks C, Kevin R, Caminer A, Narlawar R, Kassiou M, McGregor IS (2013) Acute prosocial effects of oxytocin and vasopressin when given alone or in combination with 3,4-methylenedioxymethamphetamine in rats: involvement of the V1A receptor. Neuropsychopharmacology 38(11):2249–2259. doi: 10.1038/npp.2013.125CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rault JL, Carter CS, Garner JP, Marchant-Forde JN, Richert BT, Lay DC Jr (2013) Repeated intranasal oxytocin administration in early life dysregulates the HPA axis and alters social behavior. Physiol Behav 112–113:40–48. doi: 10.1016/j.physbeh.2013.02.007CrossRefPubMedGoogle Scholar
  68. Reiner I, Van IMH, Bakermans-Kranenburg MJ, Bleich S, Beutel M, Frieling H (2015) Methylation of the oxytocin receptor gene in clinically depressed patients compared to controls: the role of OXTR rs53576 genotype. J Psychiatr Res 65:9–15. doi: 10.1016/j.jpsychires.2015.03.012CrossRefPubMedGoogle Scholar
  69. Rilling JK, Young LJ (2014) The biology of mammalian parenting and its effect on offspring social development. Science 345(6198):771–776. doi: 10.1126/science.1252723CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sanchez-Andrade G, Kendrick KM (2009) The main olfactory system and social learning in mammals. Behav Brain Res 200(2):323–335. doi: 10.1016/j.bbr.2008.12.021CrossRefPubMedGoogle Scholar
  71. Sasaki T, Hashimoto K, Oda Y, Ishima T, Kurata T, Takahashi J, Kamata Y, Kimura H, Niitsu T, Komatsu H, Ishikawa M, Hasegawa T, Shiina A, Hashimoto T, Kanahara N, Shiraishi T, Iyo M (2015) Decreased levels of serum oxytocin in pediatric patients with attention deficit/hyperactivity disorder. Psychiatry Res 228(3):746–751. doi: 10.1016/j.psychres.2015.05.029CrossRefPubMedGoogle Scholar
  72. Schaschl H, Huber S, Schaefer K, Windhager S, Wallner B, Fieder M (2015) Signatures of positive selection in the cis-regulatory sequences of the human oxytocin receptor (OXTR) and arginine vasopressin receptor 1a (AVPR1A) genes. BMC Evol Biol 15:85. doi: 10.1186/s12862-015-0372-7CrossRefPubMedPubMedCentralGoogle Scholar
  73. Shapiro LE, Insel TR (1989) Ontogeny of oxytocin receptors in rat forebrain: a quantitative study. Synapse 4(3):259–266. doi: 10.1002/syn.890040312CrossRefPubMedGoogle Scholar
  74. Simmons ML, Terman GW, Gibbs SM, Chavkin C (1995) L-type calcium channels mediate dynorphin neuropeptide release from dendrites but not axons of hippocampal granule cells. Neuron 14(6):1265–1272CrossRefPubMedGoogle Scholar
  75. Smearman EL, Almli LM, Conneely KN, Brody GH, Sales JM, Bradley B, Ressler KJ, Smith AK (2016) Oxytocin receptor genetic and epigenetic variations: association with child abuse and adult psychiatric symptoms. Child Dev 87(1):122–134. doi: 10.1111/cdev.12493CrossRefPubMedPubMedCentralGoogle Scholar
  76. Smeltzer MD, Curtis JT, Aragona BJ, Wang Z (2006) Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neurosci Lett 394(2):146–151. doi: 10.1016/j.neulet.2005.10.019CrossRefPubMedGoogle Scholar
  77. Stoop R, Hegoburu C, van den Burg E (2015) New opportunities in vasopressin and oxytocin research: a perspective from the amygdala. Annu Rev Neurosci 38:369–388. doi: 10.1146/annurev-neuro-071714-033904CrossRefPubMedGoogle Scholar
  78. Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, Yanagisawa T, Kimura T, Matzuk MM, Young LJ, Nishimori K (2005) Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci U S A 102(44):16096–16101. doi: 10.1073/pnas.0505312102CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tamborski S, Mintz EM, Caldwell HK (2016) Sex differences in the embryonic development of the central oxytocin system in mice. J Neuroendocrinol 28(4). doi: 10.1111/jne.12364
  80. Tribollet E, Charpak S, Schmidt A, Dubois-Dauphin M, Dreifuss JJ (1989) Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiology. J Neurosci 9(5):1764–1773CrossRefPubMedGoogle Scholar
  81. Tsujimoto M, Mizutani S, Adachi H, Kimura M, Nakazato H, Tomoda Y (1992) Identification of human placental leucine aminopeptidase as oxytocinase. Arch Biochem Biophys 292(2):388–392CrossRefPubMedGoogle Scholar
  82. Unternaehrer E, Meyer AH, Burkhardt SC, Dempster E, Staehli S, Theill N, Lieb R, Meinlschmidt G (2015) Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women. Stress 18(4):451–461. doi: 10.3109/10253890.2015.1038992CrossRefPubMedPubMedCentralGoogle Scholar
  83. Vaidyanathan R, Hammock EA (2016) Oxytocin receptor dynamics in the brain across development and species. Dev Neurobiol 77:143–157. doi: 10.1002/dneu.22403CrossRefPubMedGoogle Scholar
  84. Vandesande F, Dierickx K (1975) Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretroy system of the rat. Cell Tissue Res 164(2):153–162CrossRefPubMedGoogle Scholar
  85. Walum H, Waldman ID, Young LJ (2016) Statistical and methodological considerations for the interpretation of intranasal oxytocin studies. Biol Psychiatry 79(3):251–257. doi: 10.1016/j.biopsych.2015.06.016CrossRefPubMedPubMedCentralGoogle Scholar
  86. Winslow JT, Hearn EF, Ferguson J, Young LJ, Matzuk MM, Insel TR (2000) Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm Behav 37(2):145–155. doi: 10.1006/hbeh.1999.1566CrossRefPubMedPubMedCentralGoogle Scholar
  87. Witt DM, Carter CS, Walton DM (1990) Central and peripheral effects of oxytocin administration in prairie voles (Microtus ochrogaster). Pharmacol Biochem Behav 37(1):63–69CrossRefPubMedGoogle Scholar
  88. Yamamoto Y, Cushing BS, Kramer KM, Epperson PD, Hoffman GE, Carter CS (2004) Neonatal manipulations of oxytocin alter expression of oxytocin and vasopressin immunoreactive cells in the paraventricular nucleus of the hypothalamus in a gender-specific manner. Neuroscience 125(4):947–955CrossRefPubMedGoogle Scholar
  89. Yoshida M, Takayanagi Y, Inoue K, Kimura T, Young LJ, Onaka T, Nishimori K (2009) Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 29(7):2259–2271. doi: 10.1523/jneurosci.5593-08.2009CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yoshimura R, Kimura T, Watanabe D, Kiyama H (1996) Differential expression of oxytocin receptor mRNA in the developing rat brain. Neurosci Res 24(3):291–304CrossRefPubMedGoogle Scholar
  91. Zheng JJ, Li SJ, Zhang XD, Miao WY, Zhang D, Yao H, Yu X (2014) Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices. Nat Neurosci 17(3):391–399. doi: 10.1038/nn.3634CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mariela Mitre
    • 1
    • 2
    • 3
  • Jessica Minder
    • 1
    • 2
    • 3
  • Egzona X. Morina
    • 1
    • 2
    • 4
  • Moses V. Chao
    • 1
    • 3
  • Robert C. Froemke
    • 1
    • 2
    • 4
  1. 1.Skirball Institute for Biomolecular Medicine, New York University School of MedicineNew YorkUSA
  2. 2.Departments of Otolaryngology, Neuroscience and PhysiologyNew York University School of MedicineNew YorkUSA
  3. 3.Departments of Cell Biology, PsychiatryNew York University School of MedicineNew YorkUSA
  4. 4.Center for Neural ScienceNew York UniversityNew YorkUSA

Personalised recommendations