Chemistry and Structure–Activity Relationships of Psychedelics

  • David E. NicholsEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 36)


This chapter will summarize structure–activity relationships (SAR) that are known for the classic serotonergic hallucinogens (aka psychedelics), focusing on the three chemical types: tryptamines, ergolines, and phenethylamines. In the brain, the serotonin 5-HT2A receptor plays a key role in regulation of cortical function and cognition, and also appears to be the principal target for hallucinogenic/psychedelic drugs such as LSD. It is one of the most extensively studied of the 14 known types of serotonin receptors. Important structural features will be identified for activity and, where possible, those that the psychedelics have in common will be discussed. Because activation of the 5-HT2A receptor is the principal mechanism of action for psychedelics, compounds with 5-HT2A agonist activity generally are quickly discarded by the pharmaceutical industry. Thus, most of the research on psychedelics can be related to activation of 5-HT2A receptors. Therefore, much of the discussion will include not only clinical or anecdotal studies, but also will consider data from animal models as well as a certain amount of molecular pharmacology where it is known.


Hallucinogen Psychedelic Structure–activity relationships Serotonin 5-HT2A receptor Tryptamines Phenethylamines Ergolines LSD 


  1. Aldous FA, Barrass BC, Brewster K, Buxton DA, Green DM, Pinder RM, Rich P, Skeels M, Tutt KJ (1974) Structure-activity relationships in psychotomimetic phenylalkylamines. J Med Chem 17:1100–1111PubMedCrossRefGoogle Scholar
  2. Bach NJ, Hall DA, Kornfeld EC (1974) Descarboxylysergic acid (9,10-didehydro-6-methylergoline). J Med Chem 17:312–314PubMedCrossRefGoogle Scholar
  3. Barfknecht CF, Nichols DE (1975) Correlation of psychotomimetic activity of phenethylamines and amphetamines with 1-octanol-water partition coefficients. J Med Chem 18:208–210PubMedCrossRefGoogle Scholar
  4. Baxter GS, Murphy OE, Blackburn TP (1994) Further characterization of 5-hydroxytryptamine receptors (putative 5-HT2B) in rat stomach fundus longitudinal muscle. Br J Pharmacol 112:323–331PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bennett JP Jr, Snyder SH (1976) Serotonin and lysergic acid diethylamide binding in rat brain membranes: relationship to postsynaptic serotonin receptors. Mol Pharmacol 12:373–389PubMedGoogle Scholar
  6. Blaazer AR, Smid P, Kruse CG (2008) Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT(2A) receptors. ChemMedChem 3:1299–1309PubMedCrossRefGoogle Scholar
  7. Blair JB, Marona-Lewicka D, Kanthasamy A, Lucaites VL, Nelson DL, Nichols DE (1999) Thieno[3,2-b]- and thieno[2,3-b]pyrrole bioisosteric analogues of the hallucinogen and serotonin agonist N, N-dimethyltryptamine. J Med Chem 42:1106–1111PubMedCrossRefGoogle Scholar
  8. Blair JB, Kurrasch-Orbaugh D, Marona-Lewicka D, Cumbay MG, Watts VJ, Barker EL, Nichols DE (2000) Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. J Med Chem 43:4701–4710PubMedCrossRefGoogle Scholar
  9. Braden MR (2007) Towards a biophysical understanding of hallucinogen action. PhD DissertationGoogle Scholar
  10. Braden MR, Nichols DE (2007) Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol Pharmacol 72:1200–1209PubMedCrossRefGoogle Scholar
  11. Braden MR, Parrish JC, Naylor JC, Nichols DE (2006) Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol Pharmacol 70:1956–1964PubMedCrossRefGoogle Scholar
  12. Brandt SD, Kavanagh PV, Westphal F, Stratford A, Elliott SP, Hoang K, Wallach J, Halberstadt AL (2016) Return of the lysergamides. Part I: Analytical and behavioural characterization of 1-propionyl-d-lysergic acid diethylamide (1P-LSD). Drug Test Anal 8:891–902PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brandt SD, Kavanagh PV, Westphal F, Elliott SP, Wallach J, Colestock T, Burrow TE, Chapman SJ, Stratford A, Nichols DE, Halberstadt AL (2017) Return of the lysergamides. Part II: Analytical and behavioural characterization of N6 -allyl-6-norlysergic acid diethylamide (AL-LAD) and (2′S,4′S)-lysergic acid 2,4-dimethylazetidide (LSZ). Drug Test Anal 9:38–50PubMedPubMedCentralCrossRefGoogle Scholar
  14. Braun U, Shulgin AT, Braun G, Sargent T III (1977) Synthesis and body distribution of several iodine-131 labeled centrally acting drugs. J Med Chem 20:1543–1546PubMedCrossRefGoogle Scholar
  15. Brimblecombe RW, Pinder RM (1975) Hallucinogenic agents. Wright-Scientechnica, BristolGoogle Scholar
  16. Chambers JJ, Nichols DE (2001) A model of the human 5-HT2A receptor based on constrained homology. Great Lakes/Central Regional American Chemical Society MeetingGoogle Scholar
  17. Chambers JJ, Nichols DE (2002) A homology-based model of the human 5-HT2A receptor derived from an in silico activated G-protein coupled receptor. J Comput Aided Mol Des 16:511–520PubMedCrossRefGoogle Scholar
  18. Chambers JJ, Kurrasch-Orbaugh DM, Parker MA, Nichols DE (2001) Enantiospecific synthesis and pharmacological evaluation of a series of super-potent, conformationally restricted 5-HT(2A/2C) receptor agonists. J Med Chem 44:1003–1010PubMedCrossRefGoogle Scholar
  19. Chambers JJ, Kurrasch-Orbaugh DM, Nichols DE (2002) Translocation of the 5-alkoxy substituent of 2,5-dialkoxyarylalkylamines to the 6-position: effects on 5-HT(2A/2C) receptor affinity. Bioorg Med Chem Lett 12:1997–1999PubMedCrossRefGoogle Scholar
  20. Cheng HC, Long JP, Nichols DE, Barfknecht CF (1974) Effects of psychotomimetics on vascular strips: studies of methoxylated amphetamines and optical isomers of 2,5-dimethoxy-4-methylamphetamine and 2,5-dimethoxy-4-bromoamphetamine. J Pharmacol Exp Ther 188:114–123PubMedGoogle Scholar
  21. Cooper PD, Walters GC (1972) Stereochemical requirements of the mescaline receptor. Nature 238:96–98PubMedCrossRefGoogle Scholar
  22. Corkery JM, Durkin E, Elliott S, Schifano F, Ghodse AH (2012) The recreational tryptamine 5-MeO-DALT (N, N-diallyl-5-methoxytryptamine): a brief review. Prog Neuropsychopharmacol Biol Psychiatry 39:259–262PubMedCrossRefGoogle Scholar
  23. Costanzi S, Wang K (2014) The GPCR crystallography boom: providing an invaluable source of structural information and expanding the scope of homology modeling. Adv Exp Med Biol 796:3–13PubMedCrossRefGoogle Scholar
  24. Coutts RT, Malicky JL (1974) The synthesis of Analogus of the Hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM). II. Some ring-methoxylated 1-amino-and 2-aminoindanes. Can J Chem 52:381–389CrossRefGoogle Scholar
  25. Cozzi NV, Daley PF (2016) Receptor binding profiles and quantitative structure-affinity relationships of some 5-substituted-N, N-diallyltryptamines. Bioorg Med Chem Lett 26:959–964PubMedCrossRefGoogle Scholar
  26. Daldrup T, Heller C, Matthiesen U, Honus S, Bresges A, Haarhoff K (1986) Etryptamine, a new designer drug with a fatal effect. Z Rechtsmed 97:61–68PubMedCrossRefGoogle Scholar
  27. Dowd CS, Herrick-Davis K, Egan C, Dupre A, Smith C, Teitler M, Glennon RA (2000) 1-[4-(3-Phenylalkyl)phenyl]-2-aminopropanes as 5-HT(2A) partial agonists. J Med Chem 43:3074–3084PubMedCrossRefGoogle Scholar
  28. Elz S, Klass T, Heim R, Wamke U, Pertz HH (2002) Development of highly potent partial agonists and chiral antagonists as tools for the study of 5-HT2A-receptor mediated functions. Nauynn-Schmiedeberg’s Arch Pharmacol 365(Suppl 1):R29Google Scholar
  29. Ettrup A, Palner M, Gillings N, Santini MA, Hansen M, Kornum BR, Rasmussen LK, Nagren K, Madsen J, Begtrup M, Knudsen GM (2010) Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET. J Nucl Med 51:1763–1770PubMedCrossRefGoogle Scholar
  30. Ettrup A, Hansen M, Santini MA, Paine J, Gillings N, Palner M, Lehel S, Herth MM, Madsen J, Kristensen J, Begtrup M, Knudsen GM (2011) Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT (2A) agonist PET tracers. Eur J Nucl Med Mol Imaging 38:681–693PubMedCrossRefGoogle Scholar
  31. Fantegrossi WE, Gray BW, Bailey JM, Smith DA, Hansen M, Kristensen JL (2015) Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT(2)A receptors, in mice. Psychopharmacology 232:1039–1047PubMedCrossRefGoogle Scholar
  32. Feng Z, Mohapatra S, Klimko PG, Hellberg MR, May JA, Kelly C, Williams G, McLaughlin MA, Sharif NA (2007) Novel benzodifuran analogs as potent 5-HT2A receptor agonists with ocular hypotensive activity. Bioorg Med Chem Lett 17:2998–3002PubMedCrossRefGoogle Scholar
  33. Ginzel KH, Mayer-Gross W (1956) Prevention ofpsychological effects of d-lysergic acid diethylamide (LSD 25) by its 2-brom derivative (BOL 148). Nature 178:210PubMedCrossRefGoogle Scholar
  34. Glennon RA, Rosecrans JA (1982) Indolealkylamine and phenalkylamine hallucinogens: a brief overview. Neurosci Biobehav Rev 6:489–497PubMedCrossRefGoogle Scholar
  35. Glennon RA, Doot DL, Young R (1981) DOM and related 2,5-dimethoxy-4-alkylphenylisopropylamines: behavioral and serotonin receptor properties. Pharmacol Biochem Behav 14:287–292PubMedCrossRefGoogle Scholar
  36. Glennon RA, Young R, Rosecrans JA (1982a) A comparison of the behavioral effects of DOM homologs. Pharmacol Biochem Behav 16:557–559PubMedCrossRefGoogle Scholar
  37. Glennon RA, Young R, Rosecrans JA (1982b) Discriminative stimulus properties of DOM and several molecular modifications. Pharmacol Biochem Behav 16:553–556PubMedCrossRefGoogle Scholar
  38. Glennon RA, Seggel MR, Soine WH, Herrick-Davis K, Lyon RA, Titeler M (1988) [125I]-1-(2,5-dimethoxy-4-iodophenyl)-2-amino-propane: an iodinated radioligand that specifically labels the agonist high-affinity state of 5-HT2 serotonin receptors. J Med Chem 31:5–7PubMedCrossRefGoogle Scholar
  39. Glennon RA, Teitler M, Sanders-Bush E (1992) Hallucinogens and serotonergic mechanisms. NIDA Res Monogr 119:131–135PubMedGoogle Scholar
  40. Glennon RA, Bondarev ML, Khorana N, Young R, May JA, Hellberg MR, McLaughlin MA, Sharif NA (2004) Beta-oxygenated analogues of the 5-HT2A serotonin receptor agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. J Med Chem 47:6034–6041PubMedCrossRefGoogle Scholar
  41. Gorodetzky CW, Isbell H (1964) A comparison of 2,3-dihydro-lysergic acid diethylamide with LSD-25. Psychopharmacologia 6:229–233PubMedCrossRefGoogle Scholar
  42. Gupta SK, Diez E, Heasley LE, Osawa S, Johnson GL (1990) A G protein mutant that inhibits thrombin and purinergic receptor activation of phospholipase A2. Science 249:662–666PubMedCrossRefGoogle Scholar
  43. Hansen M, Phonekeo K, Paine JS, Leth-Petersen S, Begtrup M, Brauner-Osborne H, Kristensen JL (2014) Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists. ACS Chem Neurosci 5:243–249PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hartig PR, Kadan MJ, Evans MJ, Krohn AM (1983) 125I-LSD: a high sensitivity ligand for serotonin receptors. Eur J Pharmacol 89:321–322PubMedCrossRefGoogle Scholar
  45. Heffter A (1898) Ueber pellote. Beitrag zur chemischen und pharmakologischen kenntnis der cacteen. Naunyn Schmiedebergs Arch Exp Path Pharmacol 40:385–429CrossRefGoogle Scholar
  46. Heim R (2003) Synthese und Pharmakologie potenter 5-HT2A-Rezeptoragonisten mit N-2-Methoxybenzyl-Partialstruktur Entwicklung eines neen Struktur-Wirkungskonzepts. vol. Dr. rer. nat. Freien Universität Berlin, BerlinGoogle Scholar
  47. Heim R, Pertz HH, Elz S (1999) Preparation and in vitro pharmacology of novel secondary amine-type 5-HT2A receptor agonists: from submillimolar to subnanomolar activity. Arch Pharm Pharm Med Chem 332:34Google Scholar
  48. Hey P (1947) The synthesis of a new homolog of mescaline. Quart J Pharm Pharmacol 20:129–134Google Scholar
  49. Hoffman AJ, Nichols DE (1985) Synthesis and LSD-like discriminative stimulus properties in a series of N(6)-alkyl norlysergic acid N, N-diethylamide derivatives. J Med Chem 28:1252–1255PubMedCrossRefGoogle Scholar
  50. Hofmann A (1968) Psychotomimetic agents. In: Burger A (ed) Drugs affecting the central nervous system. Edward Arnold, London, p 169Google Scholar
  51. Hofmann A (1971) Teonanacatl and Ololuiqui, two ancient magic drugs of Mexico. Bull Narcotics XXIII:3–14Google Scholar
  52. Hong SS, Young R, Glennon RA (2001) Discriminative stimulus properties of alpha-ethyltryptamine optical isomers. Pharmacol Biochem Behav 70:311–316PubMedCrossRefGoogle Scholar
  53. Huang XM, Johnson MP, Nichols DE (1991) Reduction in brain serotonin markers by alpha-ethyltryptamine (Monase). Eur J Pharmacol 200:187–190PubMedCrossRefGoogle Scholar
  54. Isberg V, Balle T, Sander T, Jorgensen FS, Gloriam DE (2011) G Protein- and agonist-bound serotonin 5-HT(2A) receptor model activated by steered molecular dynamics simulations. J Chem Inf Model 51:315–325PubMedCrossRefGoogle Scholar
  55. Jacob JN, Nichols DE (1982) Isomeric cyclopropyl ring-methylated homologues of trans-2-(2,5- dimethoxy-4-methylphenyl)cyclopropylamine, an hallucinogen analogue. J Med Chem 25:526–530PubMedCrossRefGoogle Scholar
  56. Jacob P III, Shulgin AT (1981) Sulfur analogues of psychotomimetic agents. Monothio analogues of mescaline and isomescaline. J Med Chem 24:1348–1353PubMedCrossRefGoogle Scholar
  57. Jacob P III, Shulgin AT (1983) Sulfur analogues of psychotomimetic agents. 2. Analogues of (2,5-dimethoxy-4-methylphenyl)-and (2,5-dimethoxy-4-ethylphenyl)isopropylamine. J Med Chem 26:746–752PubMedCrossRefGoogle Scholar
  58. Jacob P III, Anderson G III, Meshul CK, Shulgin AT, Castagnoli N Jr (1977) Monomethylthio analogues of 1-(2,4,5-trimethoxyphenyl)-2-aminopropane. J Med Chem 20:1235–1239PubMedCrossRefGoogle Scholar
  59. Johnson MP, Hoffman AJ, Nichols DE, Mathis CA (1987) Binding to the serotonin 5-HT2 receptor by the enantiomers of 125I-DOI. Neuropharmacology 26:1803–1806PubMedCrossRefGoogle Scholar
  60. Johnson MP, Mathis CA, Shulgin AT, Hoffman AJ, Nichols DE (1990) [125I]-2-(2,5-dimethoxy-4-iodophenyl)aminoethane ([125I]-2C-I) as a label for the 5-HT2 receptor in rat frontal cortex. Pharmacol Biochem Behav 35:211–217PubMedCrossRefGoogle Scholar
  61. Juncosa JI (2011) Organic synthesis combined with molecular modeling: a powerful approach to map the functional topography of dopamine and serotonin receptors. PhD, Purdue UniversityGoogle Scholar
  62. Juncosa JI Jr, Hansen M, Bonner LA, Cueva JP, Maglathlin R, McCorvy JD, Marona-Lewicka D, Lill MA, Nichols DE (2013) Extensive rigid analogue design maps the binding conformation of potent N-benzylphenethylamine 5-HT2A serotonin receptor agonist ligands. ACS Chem Neurosci 4:96–109PubMedCrossRefGoogle Scholar
  63. Kalir A, Szara S (1963) Synthesis and pharmacological activity of fluorinated tryptamine derivatives. J Med Chem 6:716–719PubMedCrossRefGoogle Scholar
  64. Kantor RE, Dudlettes SD, Shulgin AT (1980) 5-methoxy-alpha-methyltryptamine (alphs, o-dimethylserotonin), a hallucinogenic homolog of serotonin. Biol Psychiatry 15:349–352PubMedGoogle Scholar
  65. Karst M, Halpern JH, Bernateck M, Passie T (2010) The non-hallucinogen 2-bromo-lysergic acid diethylamide as preventative treatment for cluster headache: an open, non-randomized case series. Cephalalgia 30:1140–1144PubMedCrossRefGoogle Scholar
  66. Krebs KM, Geyer MA (1993) Behavioral characterization of alpha-ethyltryptamine, a tryptamine derivative with MDMA-like properties in rats. Psychopharmacology 113:284–287PubMedCrossRefGoogle Scholar
  67. Laban U, Kurrasch-Orbaugh D, Marona-Lewicka D, Nichols DE (2001) A novel fluorinated tryptamine with highly potent serotonin 5-HT1A receptor agonist properties. Bioorg Med Chem Lett 11:793–795PubMedCrossRefGoogle Scholar
  68. Lemaire D, Jacob P III, Shulgin AT (1985) Ring-substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J Pharm Pharmacol 37:575–577PubMedCrossRefGoogle Scholar
  69. Leth-Petersen S, Bundgaard C, Hansen M, Carnerup MA, Kehler J, Kristensen JL (2014) Correlating the metabolic stability of psychedelic 5-HT(2)A agonists with anecdotal reports of human oral bioavailability. Neurochem Res 39:2018–2023PubMedCrossRefGoogle Scholar
  70. Leth-Petersen S, Gabel-Jensen C, Gillings N, Lehel S, Hansen HD, Knudsen GM, Kristensen JL (2016) metabolic fate of hallucinogenic NBOMes. Chem Res Toxicol 29:96–100PubMedCrossRefGoogle Scholar
  71. Leuner H, Baer G (1965) Two new short-acting hallucinogens of the psilocybin group. Neuropsychopharmacol 4:471–474Google Scholar
  72. May JA, Chen HH, Rusinko A, Lynch VM, Sharif NA, McLaughlin MA (2003a) A novel and selective 5-HT2 receptor agonist with ocular hypotensive activity: (S)-(+)-1-(2-aminopropyl)-8,9-dihydropyrano[3,2-e]indole. J Med Chem 46:4188–4195PubMedCrossRefGoogle Scholar
  73. May JA, McLaughlin MA, Sharif NA, Hellberg MR, Dean TR (2003b) Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys. J Pharmacol Exp Ther 306:301–309PubMedCrossRefGoogle Scholar
  74. May JA, Dantanarayana AP, Zinke PW, McLaughlin MA, Sharif NA (2006) 1-((S)-2-aminopropyl)-1H-indazol-6-ol: a potent peripherally acting 5-HT2 receptor agonist with ocular hypotensive activity. J Med Chem 49:318–328PubMedCrossRefGoogle Scholar
  75. May JA, Sharif NA, Chen HH, Liao JC, Kelly CR, Glennon RA, Young R, Li JX, Rice KC, France CP (2009) Pharmacological properties and discriminative stimulus effects of a novel and selective 5-HT2 receptor agonist AL-38022A [(S)-2-(8,9-dihydro-7H-pyrano[2,3-g]indazol-1-yl)-1-methylethylamine]. Pharmacol Biochem Behav 91:307–314PubMedCrossRefGoogle Scholar
  76. McCorvy JD (2012) Mapping the binding site of the 5-HT2A receptor using mutagenesis and ligand libraries: insights into the molecular actions of psychedelics. In: Chemistry Medicinal, Pharmacology Molecular (eds) vol. Purdue, PhD West Lafayette, INGoogle Scholar
  77. McKenna DJ, Nazarali AJ, Hoffman AJ, Nichols DE, Mathis CA, Saavedra JM (1989) Common receptors for hallucinogens in rat brain: a comparative autoradiographic study using [125I]LSD and [125I]DOI, a new psychotomimetic radioligand. Brain Res 476:45–56PubMedCrossRefGoogle Scholar
  78. McKenna DJ, Repke DB, Lo L, Peroutka SJ (1990) Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 29:193–198PubMedCrossRefGoogle Scholar
  79. McLean TH, Chambers JJ, Parrish JC, Braden MR, Marona-Lewicka D, Kurrasch-Orbaugh D, Nichols DE (2006a) C-(4,5,6-trimethoxyindan-1-yl)methanamine: a mescaline analogue designed using a homology model of the 5-HT2A receptor. J Med Chem 49:4269–4274PubMedCrossRefGoogle Scholar
  80. McLean TH, Parrish JC, Braden MR, Marona-Lewicka D, Gallardo-Godoy A, Nichols DE (2006b) 1-Aminomethylbenzocycloalkanes: conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J Med Chem 49:5794–5803PubMedCrossRefGoogle Scholar
  81. Monte AP, Marona-Lewicka D, Kanthasamy A, Sanders-Bush E, Nichols DE (1995) Stereoselective LSD-like activity in a series of d-lysergic acid amides of (R)- and (S)-2-aminoalkanes. J Med Chem 38:958–966PubMedCrossRefGoogle Scholar
  82. Monte AP, Marona-Lewicka D, Parker MA, Wainscott DB, Nelson DL, Nichols DE (1996) Dihydrobenzofuran analogues of hallucinogens. 3. Models of 4-substituted (2,5-dimethoxyphenyl)alkylamine derivatives with rigidified methoxy groups. J Med Chem 39:2953–2961PubMedCrossRefGoogle Scholar
  83. Monte AP, Waldman SR, Marona-Lewicka D, Wainscott DB, Nelson DL, Sanders-Bush E, Nichols DE (1997) Dihydrobenzofuran analogues of hallucinogens. 4. Mescaline derivatives. J Med Chem 40:2997–3008PubMedCrossRefGoogle Scholar
  84. Monte AP, Marona-Lewicka D, Lewis MM, Mailman RB, Wainscott DB, Nelson DL, Nichols DE (1998) Substituted naphthofurans as hallucinogenic phenethylamine-ergoline hybrid molecules with unexpected muscarinic antagonist activity. J Med Chem 41:2134–2145PubMedCrossRefGoogle Scholar
  85. Murphree HB, Dippy RH, Jenney EH, Pfeiffer CC (1961) Effects in normal man of alpha-methyltryptamine and alpha-ethyltryptamine. Clin Pharmacol Ther 2:722–726PubMedCrossRefGoogle Scholar
  86. Nakada MT, Wieczorek CM, Rainbow TC (1984) Localization and characterization by quantitative autoradiography of [125I]LSD binding sites in rat brain. Neurosci Lett 49:13–18PubMedCrossRefGoogle Scholar
  87. Nakahara Y, Niwaguchi T, Ishii H (1977) Studies on lysergic acid diethylamide and related compounds. V. Syntheses of dihydrolysergic acid diethylamides and related compounds. Chem Pharm Bull (Tokyo) 25:1756–1763CrossRefGoogle Scholar
  88. Nash JF, Roth BL, Brodkin JD, Nichols DE, Gudelsky GA (1994) Effect of the R(-) and S(+) isomers of MDA and MDMA on phosphatidyl inositol turnover in cultured cells expressing 5-HT2A or 5-HT2C receptors. Neurosci Lett 177:111–115PubMedCrossRefGoogle Scholar
  89. Nichols DE (1981) Structure-activity relationships of phenethylamine hallucinogens. J Pharm Sci 70:839–849PubMedCrossRefGoogle Scholar
  90. Nichols DE (1986) Hallucinogens. In: Verderame M (ed) Handbook of CNS agents and local anesthetics. CRC Press, Inc, Boca Raton, pp 303–325Google Scholar
  91. Nichols DE (2016) Psychedelics. Pharmacol Rev 68:264–355PubMedPubMedCentralCrossRefGoogle Scholar
  92. Nichols DE, Dyer DC (1977) Lipophilicity and serotonin agonist activity in a series of 4-substituted mescaline analogues. J Med Chem 20:299–301PubMedCrossRefGoogle Scholar
  93. Nichols DE, Shulgin AT (1976) Sulfur analogs of psychotomimetic amines. J Pharm Sci 65:1554–1556PubMedCrossRefGoogle Scholar
  94. Nichols DE, Barfknecht CF, Rusterholz DB, Benington F, Morin RD (1973) Asymmetric synthesis of psychotomimetic phenylisopropylamines. J Med Chem 16:480–483PubMedCrossRefGoogle Scholar
  95. Nichols DE, Barfknecht CF, Long JP, Standridge RT, Howell HG, Partyka RA, Dyer DC (1974) Potential psychotomimetics. 2. Rigid analogs of 2,5-dimethoxy-4- methylphenylisopropylamine (DOM, STP). J Med Chem 17:161–166PubMedCrossRefGoogle Scholar
  96. Nichols DE, Shulgin AT, Dyer DC (1977) Directional lipophilic character in a series of psychotomimetic phenethylamine derivatives. Life Sci 21:569–575PubMedCrossRefGoogle Scholar
  97. Nichols DE, Pfister WR, Yim GK (1978) LSD and phenethylamine hallucinogens: new structural analogy and implications for receptor geometry. Life Sci 22:2165–2170PubMedCrossRefGoogle Scholar
  98. Nichols DE, Woodard R, Hathaway BA, Lowy MT, Yom KW (1979) Resolution and absolute configuration of trans-2-(2,5-dimethoxy-4- methylphenyl)cyclopropylamine, a potent hallucinogen analogue. J Med Chem 22:458–460PubMedCrossRefGoogle Scholar
  99. Nichols DE, Jadhav KP, Oberlender RA, Zabik JE, Bossart JF, Hamada A, Miller DD (1984a) Synthesis and evaluation of substituted 2-phenylcyclobutylamines as analogues of hallucinogenic phenethylamines: lack of LSD-like biological activity. J Med Chem 27:1108–1111PubMedCrossRefGoogle Scholar
  100. Nichols DE, Schooler D, Yeung MC, Oberlender RA, Zabik JE (1984b) Unreliability of the rat stomach fundus as a predictor of hallucinogenic activity in substituted phenethylamines. Life Sci 35:1343–1348PubMedCrossRefGoogle Scholar
  101. Nichols DE, Hoffman AJ, Oberlender RA, Riggs RM (1986) Synthesis and evaluation of 2,3-dihydrobenzofuran analogues of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane: drug discrimination studies in rats. J Med Chem 29:302–304PubMedCrossRefGoogle Scholar
  102. Nichols DE, Lloyd DH, Johnson MP, Hoffman AJ (1988) Synthesis and serotonin receptor affinities of a series of enantiomers of alpha-methyltryptamines: evidence for the binding conformation of tryptamines at serotonin 5-HT1B receptors. J Med Chem 31:1406–1412PubMedCrossRefGoogle Scholar
  103. Nichols DE, Snyder SE, Oberlender R, Johnson MP, Huang XM (1991) 2,3-Dihydrobenzofuran analogues of hallucinogenic phenethylamines. J Med Chem 34:276–281PubMedCrossRefGoogle Scholar
  104. Nichols DE, Frescas S, Marona-Lewicka D, Huang X, Roth BL, Gudelsky GA, Nash JF (1994) 1-(2,5-Dimethoxy-4-(trifluoromethyl)phenyl)-2-aminopropane: a potent serotonin 5-HT2A/2C agonist. J Med Chem 37:4346–4351PubMedCrossRefGoogle Scholar
  105. Nichols DE, Frescas S, Marona-Lewicka D, Kurrasch-Orbaugh DM (2002) Lysergamides of isomeric 2,4-dimethylazetidines map the binding orientation of the diethylamide moiety in the potent hallucinogenic agent N, N-diethyllysergamide (LSD). J Med Chem 45:4344–4349PubMedCrossRefGoogle Scholar
  106. Nichols DE, Frescas SP, Chemel BR, Rehder KS, Zhong D, Lewin AH (2008) High specific activity tritium-labeled N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (INBMeO): a high-affinity 5-HT2A receptor-selective agonist radioligand. Bioorg Med Chem 16:6116–6123PubMedPubMedCentralCrossRefGoogle Scholar
  107. Nichols DE, Sassano MF, Halberstadt AL, Klein LM, Brandt SD, Elliott SP, Fiedler WJ (2015) N-Benzyl-5-methoxytryptamines as potent serotonin 5-HT2 receptor family agonists and comparison with a series of phenethylamine analogues. ACS Chem Neurosci 6:1165–1175PubMedCrossRefGoogle Scholar
  108. Nikolaou P, Papoutsis I, Stefanidou M, Spiliopoulou C, Athanaselis S (2015) 2C-I-NBOMe, an “N-bomb” that kills with “Smiles”. Toxicological and legislative aspects. Drug Chem Toxicol 38:113–119PubMedCrossRefGoogle Scholar
  109. Oberlender RA, Kothari PJ, Nichols DE, Zabik JE (1984) Substituent branching in phenethylamine-type hallucinogens: a comparison of 1-[2,5-dimethoxy-4-(2-butyl)phenyl]-2-aminopropane and 1- [2,5-dimethoxy-4-(2-methylpropyl)phenyl]-2-aminopropane. J Med Chem 27:788–792PubMedCrossRefGoogle Scholar
  110. Oberlender R, Pfaff RC, Johnson MP, Huang XM, Nichols DE (1992) Stereoselective LSD-like activity in d-lysergic acid amides of (R)- and (S)-2-aminobutane. J Med Chem 35:203–211PubMedCrossRefGoogle Scholar
  111. Oberlender R, Ramachandran PV, Johnson MP, Huang X, Nichols DE (1995) Effect of a chiral 4-alkyl substituent in hallucinogenic amphetamines. J Med Chem 38:3593–3601PubMedCrossRefGoogle Scholar
  112. Parker MA, Marona-Lewicka D, Lucaites VL, Nelson DL, Nichols DE (1998) A novel (benzodifuranyl)aminoalkane with extremely potent activity at the 5-HT2A receptor. J Med Chem 41:5148–5149PubMedCrossRefGoogle Scholar
  113. Parrish JC (2006) Toward a molecular understanding of hallucinogen action. PhD, Purdue UniversityGoogle Scholar
  114. Parrish JC, Braden MR, Gundy E, Nichols DE (2005) Differential phospholipase C activation by phenylalkylamine serotonin 5-HT 2A receptor agonists. J Neurochem 95:1575–1584PubMedCrossRefGoogle Scholar
  115. Peretz DI, Smythies JR, Gibson WC (1955) A new hallucinogen: 3,4,5-trimethoxyphenyl-beta-aminopropane (with notes on a stroboscopic phenomenon). J Mental Sci 101:317–329CrossRefGoogle Scholar
  116. Pigott A, Frescas S, McCorvy JD, Huang XP, Roth BL, Nichols DE (2012) trans-2-(2,5-Dimethoxy-4-iodophenyl)cyclopropylamine and trans-2-(2,5-dimethoxy-4-bromophenyl)cyclopropylamine as potent agonists for the 5-HT(2) receptor family. Beilstein J Org Chem 8:1705–1709PubMedPubMedCentralCrossRefGoogle Scholar
  117. Poklis JL, Devers KG, Arbefeville EF, Pearson JM, Houston E, Poklis A (2014) Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance liquid chromatography with tandem mass spectrometry from a traumatic death. Forensic Sci Int 234:e14–e20PubMedCrossRefGoogle Scholar
  118. Rangisetty JB, Dukat M, Dowd CS, Herrick-Davis K, Dupre A, Gadepalli S, Teitler M, Kelley CR, Sharif NA, Glennon RA (2001) 1-[2-methoxy-5-(3-phenylpropyl)]-2-aminopropane unexpectedly shows 5-HT(2A) serotonin receptor affinity and antagonist character. J Med Chem 44:3283–3291PubMedCrossRefGoogle Scholar
  119. Ray TS (2010) Psychedelics and the human receptorome. PLoS ONE 5:e9019PubMedPubMedCentralCrossRefGoogle Scholar
  120. Repke DB, Grotjahn DB, Shulgin AT (1985) Psychotomimetic N-methyl-N-isopropyltryptamines. Effects of variation of aromatic oxygen substituents. J Med Chem 28:892–896PubMedCrossRefGoogle Scholar
  121. Rusterholz DB, Long JP, Nichols DE (1979) Effect of alpha-methyltryptamine on spontaneous activity in mice. Pharmacol Biochem Behav 10:223–227PubMedCrossRefGoogle Scholar
  122. Sargent T III, Kalbhen DA, Shulgin AT, Stauffer H, Kusubov N (1975) A potential new brain-scanning agent: 4-77Br-2,5-dimethoxyphenylisoproplamine (4-Br-DPIA). J Nucl Med 16:243–245PubMedGoogle Scholar
  123. Schechter MD (1998) MDMA-like stimulus effects of hallucinogens in male Fawn-Hooded rats. Pharmacol Biochem Behav 59:265–270CrossRefPubMedGoogle Scholar
  124. Schultz DM, Prescher JA, Kidd S, Marona-Lewicka D, Nichols DE, Monte A (2008) ‘Hybrid’ benzofuran-benzopyran congeners as rigid analogs of hallucinogenic phenethylamines. Bioorg Med Chem 16:6242–6251PubMedPubMedCentralCrossRefGoogle Scholar
  125. Seggel MR, Yousif MY, Lyon RA, Titeler M, Roth BL, Suba EA, Glennon RA (1990) A structure-affinity study of the binding of 4-substituted analogues of 1-(2,5-dimethoxyphenyl)-2-aminopropane at 5-HT2 serotonin receptors. J Med Chem 33:1032–1036PubMedCrossRefGoogle Scholar
  126. Shulgin AT (1968) The ethyl homologs of 2,4,5-trimethoxyphenylisopropylamine. J Med Chem 11:186–187PubMedCrossRefGoogle Scholar
  127. Shulgin AT (1978) Psychotomimetic Drugs: Structure-activity relationships. In: Iversen LL et al (eds) Handbook of psychopharmacology, vol 11. Plenum Press, New York, pp 243–333CrossRefGoogle Scholar
  128. Shulgin AT (1982) Chemistry of Psychotomimetics. In: Hoffmeister F, Stille G (eds) Handbook of experimental pharmacology, vol 55/III. Springer, New York, pp 3–29CrossRefGoogle Scholar
  129. Shulgin AT, Carter MF (1980) N, N-Diisopropyltryptamine (DIPT) and 5-methoxy-N, N-diisopropyltryptamine (5-MeO-DIPT). Two orally active tryptamine analogs with CNS activity. Commun Psychopharmacol 4:363–369PubMedGoogle Scholar
  130. Shulgin A, Shulgin A (1991) PIHKAL A chemical love story. Berkeley, CA 94701: Transform PressGoogle Scholar
  131. Shulgin AT, Shulgin A (1997) TIHKAL. The continuation. Transform Press, BerkeleyGoogle Scholar
  132. Shulgin AT, Sargent T, Naranjo C (1969) Structure–activity relationships of one-ring psychotomimetics. Nature 221:537–541PubMedCrossRefGoogle Scholar
  133. Shulgin AT, Sargent T, Naranjo C (1971) 4-Bromo-2,5-dimethoxyphenylisopropylamine, a new centrally active amphetamine analog. Pharmacology 5:103–107PubMedCrossRefGoogle Scholar
  134. Siva Sankar DV (1975) LSD: a total study. PJD Publications, WestburyGoogle Scholar
  135. Stoll A, Hofmann A (1955) Amide der sterreoisomeren lysergsauren und dihydro-lysergsauren. Helv Chim Acta 38:421–433CrossRefGoogle Scholar
  136. Strano Rossi S, Odoardi S, Gregori A, Peluso G, Ripani L, Ortar G, Serpelloni G, Romolo FS (2014) An analytical approach to the forensic identification of different classes of new psychoactive substances (NPSs) in seized materials. Rapid Commun Mass Spectrom 28:1904–1916PubMedCrossRefGoogle Scholar
  137. Szara S (1961) 6-Hydroxylation: an important metabolic route for alpha-methyltryptamine. Experientia 17:76–77PubMedCrossRefGoogle Scholar
  138. Tomaszewski Z, Johnson MP, Huang X, Nichols DE (1992) Benzofuran bioisosteres of hallucinogenic tryptamines. J Med Chem 35:2061–2064PubMedCrossRefGoogle Scholar
  139. Trachsel D, Nichols DE, Kidd S, Hadorn M, Baumberger F (2009) 4-aryl-substituted 2,5-dimethoxyphenethylamines: synthesis and serotonin 5-HT(2A) receptor affinities. Chem Biodivers 6:692–704PubMedCrossRefGoogle Scholar
  140. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13CrossRefPubMedGoogle Scholar
  141. Vangveravong S, Kanthasamy A, Lucaites VL, Nelson DL, Nichols DE (1998) Synthesis and serotonin receptor affinities of a series of trans-2-(indol-3-yl)cyclopropylamine derivatives. J Med Chem 41:4995–5001PubMedCrossRefGoogle Scholar
  142. Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY, Liu W, Xu HE, Cherezov V, Roth BL, Stevens RC (2013) Structural features for functional selectivity at serotonin receptors. Science 340:615–619PubMedPubMedCentralCrossRefGoogle Scholar
  143. Walters GC, Cooper PD (1968) Alicyclic analogue of mescaline. Nature 218:298–300PubMedCrossRefGoogle Scholar
  144. Walterscheid JP, Phillips GT, Lopez AE, Gonsoulin ML, Chen HH, Sanchez LA (2014) Pathological findings in 2 cases of fatal 25I-NBOMe toxicity. Am J Forensic Med Pathol 35:20–25PubMedCrossRefGoogle Scholar
  145. Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E, McCorvy JD, Gao X, Zhou XE, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Roth BL, Cherezov V, Stevens RC, Xu HE (2013) Structural basis for molecular recognition at serotonin receptors. Science 340:610–614PubMedPubMedCentralCrossRefGoogle Scholar
  146. Watts SW, Gackenheimer SL, Gehlert DR, Cohen ML (1994) Autoradiographic comparison of [125I]LSD-labeled 5-HT2A receptor distribution in rat and guinea pig brain. Neurochem Int 24:565–574PubMedCrossRefGoogle Scholar
  147. Whiteside MS, Kurrasch-Orbaugh D, Marona-Lewicka D, Nichols DE, Monte A (2002) Substituted hexahydrobenzodipyrans as 5-HT2A/2C receptor probes. Bioorg Med Chem 10:3301–3306PubMedCrossRefGoogle Scholar
  148. Winter JC, Gessner PK, Godse DD (1967) Synthesis of some 3-indenealkylamines. Comparison of the biological activity of 3-indenealkylamines and 3-benzo[b]thiophenealkylamines with their tryptamine isosteres. J Med Chem 10:856–858PubMedCrossRefGoogle Scholar
  149. Yin X, Xu H, Hanson M, Liu W (2014) GPCR crystallization using lipidic cubic phase technique. Curr Pharm Biotechnol 15:971–979PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Division of Chemical Biology and Medicinal ChemistryUniversity of North CarolinaChapel HillUSA

Personalised recommendations