Classic Hallucinogens and Mystical Experiences: Phenomenology and Neural Correlates

Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 36)


This chapter begins with a brief review of descriptions and definitions of mystical-type experiences and the historical connection between classic hallucinogens and mystical experiences. The chapter then explores the empirical literature on experiences with classic hallucinogens in which claims about mystical or religious experiences have been made. A psychometrically validated questionnaire is described for the reliable measurement of mystical-type experiences occasioned by classic hallucinogens. Controlled laboratory studies show that under double-blind conditions that provide significant controls for expectancy bias, psilocybin can occasion complete mystical experiences in the majority of people studied. These effects are dose-dependent, specific to psilocybin compared to placebo or a psychoactive control substance, and have enduring impact on the moods, attitudes, and behaviors of participants as assessed by self-report of participants and ratings by community observers. Other studies suggest that enduring personal meaning in healthy volunteers and therapeutic outcomes in patients, including reduction and cessation of substance abuse behaviors and reduction of anxiety and depression in patients with a life-threatening cancer diagnosis, are related to the occurrence of mystical experiences during drug sessions. The final sections of the chapter draw parallels in human neuroscience research between the neural bases of experiences with classic hallucinogens and the neural bases of meditative practices for which claims of mystical-type experience are sometimes made. From these parallels, a functional neural model of mystical experience is proposed, based on changes in the default mode network of the brain that have been observed after the administration of classic hallucinogens and during meditation practices for which mystical-type claims have been made.


Psilocybin Hallucinogens Meditation Mystical experiences Neural model Default mode network Medial prefrontal cortex Posterior cingulate Angular gyrus Inferior parietal lobule 


  1. Aaronson BS, Osmond H (1970) Introduction: psychedelics, technology, psychedelics. In: Aaronson BS, Osmond H (eds) Psychedelics: the uses and implications of hallucinogenic drugs. Anchor Books, New York, pp 3–20Google Scholar
  2. Amorapanth PX, WIdick P, Chatterjee A (2009) The neural basis for spatial relations. J Cogn Neurosci 22(8):1739–1753CrossRefGoogle Scholar
  3. Anthony FV, Hermans CAM, Sterkens C (2010) A comparative study of mystical experience among Christian, Muslim, and Hindu students in Tamil Nadu, India. J Sci Study Relig 49(2):264–277CrossRefGoogle Scholar
  4. Barrett FS, Griffiths RR (2017) The factor structure of the Mystical Experience Questionnaire (MEQ): Reply to Bouso et al., 2016. Hum Psychopharm 32(1). doi: 10.1002/hup.2564 CrossRefGoogle Scholar
  5. Barrett FS, Johnson MJ, Griffiths RR (2015) Validation of the revised mystical experiences questionnaire in experimental sessions with psilocybinCrossRefGoogle Scholar
  6. Battelli L, Pascual-Leone A, Cavanagh P (2007) The ‘when’ pathway of the right parietal lobe. Trends Cogn Sci 11(5):204–210CrossRefGoogle Scholar
  7. Behrendt RP (2013) Hippocampus and consciousness. Rev Neuroscience 24(3):239–266Google Scholar
  8. Berkovich-Ohana A, Harel M, Hahamy A, Arieli A, Malach R (2016) Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators. NeuroImage 135:125–134CrossRefGoogle Scholar
  9. Bogenschutz MP, Johnson MW (2016) Classic hallucinogens in the treatment of addictions. Prog Neuro-psychoph 64:250–258CrossRefGoogle Scholar
  10. Bogenschutz MP, Pommy JM (2012) Therapeutic mechanisms of classic halluciongens in the treatment of addictions: from indirect evidence to testable hypotheses. Drug Test Anal 4(543–555):543CrossRefGoogle Scholar
  11. Bogenschutz MP, Forcehimes AA, Pommy JA, Wilcox CE, Barbosa PCR, Strassman RJ (2015) Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. J PsychopharmacolCrossRefGoogle Scholar
  12. Bouso JC, Pedrero-Perez EJ, Gandy S, Alcazar-Corcoles MA (2016) Measuring the subjective: revisiting the psychometric properties of three rating scales that assess the acute effects of hallucinogens. Hum Psychopharm 31(5):356–372CrossRefGoogle Scholar
  13. Brewer JA, Worhunsky PD, Gray JR, Tang YY, Weber J, Kober H (2011) Meditation experience is associated with differences in default mode network activity and connectivity. Proc Natl Acad Sci U S A 108(50):20254–20259. doi: 10.1073/pnas.1112029108 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brewer JA, Garrison KA, Whitfield-Gabrieli S (2013) What about the “self” is processed in the posterior cingulate cortex? Front Hum Neurosci 7:647. doi: 10.3389/fnhum.2013.00647 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brewer JA, Garrison KA (2014) The posterior cingulate cortex as a plausible mechanistic target of meditation: findings from neuroimaging. Ann N Y Acad Sci 1307:19–27. doi: 10.1111/nyas.12246 CrossRefPubMedGoogle Scholar
  16. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. doi: 10.1196/annals.1440.011 CrossRefPubMedGoogle Scholar
  17. Bueti D, Walsh V (2009) The parietal cortex and the representation of time, space, number and other magnitudes. Phil Trans R Soc B 364:1831–1840CrossRefGoogle Scholar
  18. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. doi: 10.1038/nrn2575 CrossRefPubMedGoogle Scholar
  19. Buzsaki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80(3):751–764. doi: 10.1016/j.neuron.2013.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Carbonaro TM, Bradstreet MP, Barrett FS, MacLean KA, Jesse R, Johnson MW, Griffiths RR (2016) Survey study of challenging experiences after ingesting psilocybin mushrooms: acute and enduring positive and negative consequences. J Psychopharmacol 30(12):1268–1278CrossRefGoogle Scholar
  21. Carhart-Harris RL, Bolstridge M, Rucker J, Day CMJ, Erritzoe D, Kaelen M, Bloomfield M, Rickard JA, Forbes B, Feilding A, Taylor D, Pilling S, Curran HV, Nutt DJ (2016) Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry [Online] May 17, 2016Google Scholar
  22. Carhart-Harris RL, Erritzoe D, Williams T, Stone JM, Reed LJ, Colasanti A, Tyacke RJ, Leech R, Malizia AL, Murphy K, Hobden P, Evans J, Feilding A, Wise RG, Nutt DJ (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci U S A 109(6):2138–2143. doi: 10.1073/pnas.1119598109 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Carhart-Harris RL, Leech R, Hellyer PJ, Shanahan M, Feilding A, Tagliazucchi E, Chialvo DR, Nutt DJ (2014) The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front Hum Neurosci 8:20. doi: 10.3389/fnhum.2014.00020 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chalmers DJ (1995) Facing up to the problem of consciousness. J Conscious Stud 2(3):200–219Google Scholar
  25. Chen Z, Hood RWJ, Qi W, Watson PJ (2011a) Common core thesis and qualitative and quantitative analysis of mysticism in Chinese Buddhist Monks and Nuns. J Sci Study Relig 50(4):654–670CrossRefGoogle Scholar
  26. Chen Z, Hood RWJ, Yang L, Watson PJ (2011b) Mystical experience among Tibetan Buddhists: the common core thesis revisited. J Sci Study Relig 50(2):328–338CrossRefGoogle Scholar
  27. Chen Z, Zhang Y, Hood RWJ, Watson PJ (2012) Mysticism in Chinese Christians and Non-Christians: measurement invariance of the mysticism scale and implications for the mean differences. Int J Psychol Relig 2(2):155–168CrossRefGoogle Scholar
  28. d’Aquili EG, Newberg AB (2000) The neuropsychology of aesthetic, spiritual, and mystical states. Zygon 35(1):39–51CrossRefGoogle Scholar
  29. Dennett DC, Kinsbourne M (1995) Time and the observer: the where and when of consciousness in the brain. Behav Brain Sci 15(2):183–247CrossRefGoogle Scholar
  30. Denny BT, Kober H, Wager TD, Ochsner KN (2012) A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. J Cogn Neurosci 24(8):1742–1752. doi: 10.1162/jocn_a_00233 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dittrich A (1998) The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry 31:80–84. doi: 10.1055/s-2007-979351 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dittrich A, Lamparter D, Maurer M (2010) 5D-ASC: questionnaire for the assessment of altered states of consciousness. A short introduction. PSIN PLUS, Zurich, SwitzerlandGoogle Scholar
  33. Dobkin de Rios M (1984) Visionary vine: hallucinogenic healing in the Peruvian Amazon. Waveland Press, Prospet Heights, IllinoisGoogle Scholar
  34. Dobkin de Rios M (1996) On “human pharmacology of Hoasca”: a medical anthropology perspective. J Nerv Ment Dis 184(2):95–98CrossRefGoogle Scholar
  35. Doblin R (1991) Pahnke’s “good friday experiment”: a long-term follow-up and methodological critique. J Transpersonal Psychol 23(1):1–28Google Scholar
  36. Doucet G, Naveau M, Petit L, Delcroix N, Zago L, Crivello F, Jobard G, Tzourio-Mazoyer N, Mazoyer B, Mellet E, Joliot M (2011) Brain activity at rest: a multiscale hierarchical functional organization. J Neurophysiol 105(6):2753–2763. doi: 10.1152/jn.00895.2010 CrossRefPubMedGoogle Scholar
  37. El-Seedi HR, De Smet PAGM, Beck O, Possnert G, Bruhn JG (2005) Prehistoric peyote use: alkaloid analysis and radiocarbon dating of archaeological specimens of Lophophora from Texas. J Enthnopharmacol 101:238–242CrossRefGoogle Scholar
  38. Fox KC, Dixon ML, Nijeboer S, Girn M, Floman JL, Lifshitz M, Ellamil M, Sedlmeier P, Christoff K (2016) Functional neuroanatomy of meditation: a review and meta-analysis of 78 functional neuroimaging investigations. Neurosci Biobehav R 65:208–228CrossRefGoogle Scholar
  39. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678. doi: 10.1073/pnas.0504136102 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gabrielsson A (2010) Strong experiences with music. Oxford University Press, Handbook of Music and EmotionGoogle Scholar
  41. Garcia-Romeu A, Griffiths RR, Johnson MW (2015) Psilocybin-occasioned mystical experiences in the treatment of tobacco addiction. Curr Drug Abuse Rev 7(3):157–164CrossRefGoogle Scholar
  42. Garrison KA, Santoyo JF, Davis JH, Thornhill TAt, Kerr CE, Brewer JA (2013a) Effortless awareness: using real time neurofeedback to investigate correlates of posterior cingulate cortex activity in meditators’ self-report. Front Hum Neurosci 7:440. doi: 10.3389/fnhum.2013.00440
  43. Garrison KA, Scheinost D, Worhunsky PD, Elwafi HM, Thornhill TAt, Thompson E, Saron C, Desbordes G, Kober H, Hampson M, Gray JR, Constable RT, Papademetris X, Brewer JA (2013b) Real-time fMRI links subjective experience with brain activity during focused attention. Neuroimage 81:110–118. doi: 10.1016/j.neuroimage.2013.05.030 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gazzaniga MS, Ivry RB, Mangun GR (2014) Cognitive neuroscience: the biology of the mind, 4th edn. W. W. Norton & Company, Inc., New YorkGoogle Scholar
  45. Gilbert SJ, Spengler S, Simons JS, Steele JD, Lawrie SM, Frith CD, Burgess PW (2006) Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. J Cogn Neurosci 18(6):932–948. doi: 10.1162/jocn.2006.18.6.932 CrossRefPubMedGoogle Scholar
  46. Gouzoulis-Mayfrank E, Schreckenberger M, Sabri O, Arning C, Thelen B, Spitzer M, Kovar KA, Hermle L, Büll U, Sass H (1999) Neurometabolic effects of psilocybin, 3,4-methylenedioxyethylamphetamine (MDE) and d-methamphetamine in healthy volunteers. A double-blind, placebo-controlled PET study with [18F]FDG. Neuropsychopharmacology 20(6):565–581. doi: 10.1016/S0893-133X(98)00089-X CrossRefPubMedGoogle Scholar
  47. Griffiths RR, Richards WA, McCann U, Jesse R (2006) Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology (Berl) 187(3):268–283; discussion 284–292. doi: 10.1007/s00213–006-0457-5
  48. Griffiths RR, Richards W, Johnson M, McCann U, Jesse R (2008) Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. J Psychopharmacol 22(6):621–632. doi: 10.1177/0269881108094300 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Griffiths RR, Johnson MW, Richards WA, Richards BD, McCann U, Jesse R (2011) Psilocybin occasioned mystical-type experiences: immediate and persisting dose-related effects. Psychopharmacology 218(4):649–665. doi: 10.1007/s00213-011-2358-5 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA, Richards BD, Cosimano MP, Klinedinst MA (2016) Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J Psychopharmcol 30(12):1181–1197CrossRefGoogle Scholar
  51. Grob CS, McKenna DJ, Callaway JC, Brito GS, Neves ES, Oberlaender G, Saede OL, Labigalini E, Tacla C, Miranda CT, Strassman RJ, Boone KB (1996) Human psychopharmacology of Hoasca, a plant hallucinogen used in ritual context in Brazil. J Nerv Ment Dis 184(2):86–94CrossRefGoogle Scholar
  52. Grob CS, Danforth AL, Chopra GS, Hagerty M, McKay CR, Halberstadt AL, Greer GR (2011) Pilot study of psilocybin treatment of anxiety in patients with advanced-stage cancer. Arch Gen Psychiatry 68(1):71–78CrossRefGoogle Scholar
  53. Grof S, Grof C (2010) Holotropic breathwork: a new approach to self-exploration and therapy. State University of New York Press, Albany, New YorkGoogle Scholar
  54. Guzmán G (1983) The genus psilocybe: a systematic revision of the known species including the history, distribution and chemistry of the hallucinogenic species. Nova Hedwigia Heft 74, Cramer, Vaduz, GermanyGoogle Scholar
  55. Guzmán G (2008) Hallucinogenic mushrooms in Mexico: an overview. Econ Bot 62(3):404–412CrossRefGoogle Scholar
  56. Halpern JH, Sherwood AR, Hudson JI, Yurgelun-Todd D, Pope HG Jr (2005) Psychological and cognitive effects of long-term peyote use among Native Americans. Biol Psychiatry 58(8):624–631. doi: 10.1016/j.biopsych.2005.06.038 CrossRefPubMedGoogle Scholar
  57. Hermle L, Fünfgeld M, Oepen G, Botsch H, Borchardt D, Gouzoulis E, Fehrenbach RA, Spitzer M (1992) Mescaline-induced psychopathological, neuropsychological, and neurometabolic effects in normal subjects: experimental psychosis as a tool for psychiatric research. Biol Psychiatry 32(11):976–991CrossRefGoogle Scholar
  58. Hood RWJ (1975) The construction and preliminary validation of a measure of reported mystical experience. J Sci Study of Relig 14:29–41CrossRefGoogle Scholar
  59. Hood RWJ, Morris RJ, Watson PJ (1990) Quasi-experimental elicitation of differential report of religious experience among intrinsic and indiscriminately pro-religious types. J Sci Study Relig 29(2):164–172CrossRefGoogle Scholar
  60. Hood RW, Williamson WP (2000) An empirical test of the unity thesis: the structure of mystical descriptors in various faith samples. J Psychol Christianity 19(3):232–244Google Scholar
  61. Hood RWJ, Ghorbani N, Watson PJ, Ghramaleki AF, Bing MN, Davidson HK, Morris RJ, Williamson WP (2001) Dimensions of the mysticism scale: confirming the three-factor structure in the United States and Iran. J Sci Study Relig 40(4):691–705CrossRefGoogle Scholar
  62. Hood RWJ (2003) Conceptual and empirical consequences of the unity thesis. In: Belzen JA, Geels A (eds) Mysticism: a variety of psychological perspectives. Rodopi, New YorkGoogle Scholar
  63. Hood RWJ (2006) The common core thesis in the study of mysticism. Where God and Science Meet, vol 3. Praeger, Westport, pp 119–138Google Scholar
  64. Hood RWJ (2009) Mysticism. In: Hood RWJ, Hill PC, Spilka B (eds) The psychology of religion, 4th edn. The Guilford Press, New YorkGoogle Scholar
  65. Humphreys GF, Lambon Ralph MA (2014) Fusion and fission of cognitive functions in the human parietal cortex. Cereb Cortex. doi: 10.1093/cercor/bhu198 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Huxley A (1947) The perennial philosophy. Chatto & Windus, LondonGoogle Scholar
  67. Johnson MW, Garcia-Romeu A, Cosimano MP, Griffiths RR (2014) Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. J Psychopharmacol 28(11):983–992. doi: 10.1177/0269881114548296 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Josipovic Z (2010) Duality and nonduality in meditation research. Conscious Cogn 19:1119–1121CrossRefGoogle Scholar
  69. Josipovic Z, Dinstein I, Weber J, Heeger DJ (2011) Influence of meditation on anti-correlated networks in the brain. Front Hum Neurosci 5:183. doi: 10.3389/fnhum.2011.00183 CrossRefPubMedGoogle Scholar
  70. Josipovic Z (2014) Neural correlates of nondual awareness in meditation. Ann N Y Acad Sci 1307:9–18. doi: 10.1111/nyas.12261 CrossRefPubMedGoogle Scholar
  71. Katz ST (ed) (1978) Mysticism and philosophical analysis. Oxford University Press, New YorkGoogle Scholar
  72. Katz ST (ed) (1983) Mysticism and religious traditions. Oxford University Press, New YorkGoogle Scholar
  73. Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, Heatherton TF (2002) Finding the self? An event-related fMRI study. J Cogn Neurosci 14(5):785–794. doi: 10.1162/08989290260138672 CrossRefPubMedGoogle Scholar
  74. Kometer M, Pokorny T, Seifritz E, Volleinweider FX (2015) Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology 232(19):3663–3676CrossRefGoogle Scholar
  75. Kometer M, Schmidt A, Jancke L, Vollenweider FX (2013) Activation of serotonin 2A receptors underlies the psilocybin-induced effects on alpha oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci 33(25):10544–10551. doi: 10.1523/JNEUROSCI.3007-12.2013 CrossRefPubMedGoogle Scholar
  76. Kubit B, Jack AI (2013) Rethinking the role of the rTPJ in attention and social cognition in light of the opposing domains hypothesis: findings from an ALE-based meta-analysis and resting-state functional connectivity. Front Hum Neurosci 7:323. doi: 10.3389/fnhum.2013.00323 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Lebedev AV, Kaelen M, Lovden M, Nilsson J, Feilding A, Nutt DJ, Carhart-Harris RL (2016) LSD-induced entropic brain activity predicts subsequent personality change. Hum Brain Mapp 37(9):3203–3213CrossRefGoogle Scholar
  78. Lebedev AV, Lovden M, Rosenthal G, Feilding A, Nutt DJ, Carhart-Harris RL (2015) Finding the self by losing the self: neural correlates of ego-dissolution under psilocybin. Hum Brain Mapp 36(8):3137–3153CrossRefGoogle Scholar
  79. Leech R, Sharp DJ (2014) The role of the posterior cingulate cortex in cognition and disease. Brain 137(Pt 1):12–32. doi: 10.1093/brain/awt162 CrossRefPubMedGoogle Scholar
  80. Liechti ME, Dolder PC, Schmid Y (2016) Alterations of consciousness and mystical-type experiences after acute LSD in humans. PsychopharmacologyGoogle Scholar
  81. Lutz A, Slagter HA, Dunne JD, Davidson RJ (2008) Attention regulation and monitoring in meditation. Trends Cogn Sci 12(4):163–169CrossRefGoogle Scholar
  82. Lyvers M, Meester M (2012) Illicit use of LSD or psilocybin, but not MDMA or nonpsychedelic drugs, is associated with mystical experiences in a dose-dependent manner. J Psychoactive Drugs 44(5):410–417CrossRefGoogle Scholar
  83. MacLean KA, Leoutsakos JM, Johnson MW, Griffiths RR (2012) Factor analysis of the mystical experience questionnaire: a study of experiences occasioned by the hallucinogen psilocybin. J Sci Study Relig 51(4):721–737. doi: 10.1111/j.1468-5906.2012.01685.x CrossRefPubMedPubMedCentralGoogle Scholar
  84. Majic T, Schmidt TT, Gallinat J (2015) Peak experiences and the afterglow phenomenon: when and how do therapeutic effects of hallucinogens depend on psychedelic experiences? J Psychopharmacol. doi: 10.1177/0269881114568040 CrossRefPubMedGoogle Scholar
  85. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315(5810):393–395. doi: 10.1126/science.1131295 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Miller WR, C’de Baca J (2001) Quantum change. Guilford Press, New YorkGoogle Scholar
  87. Muthukumaraswamy SD, Carhart-Harris RL, Moran RJ, Brookes MJ, Williams TM, Errtizoe D, Sessa B, Papadopoulos A, Bolstridge M, Singh KD, Feilding A, Friston KJ, Nutt DJ (2013) Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci 33(38):15171–15183. doi: 10.1523/JNEUROSCI.2063-13.2013 CrossRefPubMedGoogle Scholar
  88. Nash JD, Newberg A (2013) Toward a unifying taxonomy and definition for meditation. Front Psychol 4(806):1–18Google Scholar
  89. Newberg A, Alavi A, Baime M, Pourdehnad M, Santanna J, d’Aquili E (2001) The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Res 106(2):113–122CrossRefGoogle Scholar
  90. Newberg AB, Iversen J (2003) The neural basis of the complex mental task of meditation: neurotransmitter and neurochemical considerations. [Review]. Med Hypotheses 61(2):282–291CrossRefGoogle Scholar
  91. Newberg AB, Wintering NA, Morgan D, Waldman MR (2006) The measurement of regional cerebral blood flow during glossolalia: a preliminary SPECT study. Psychiatry Res 148(1):67–71. doi: 10.1016/j.pscychresns.2006.07.001 CrossRefPubMedGoogle Scholar
  92. Newberg AB, Wintering N, Waldman MR, Amen D, Khalsa DS, Alavi A (2010) Cerebral blood flow differences between long-term meditators and non-meditators. Conscious Cogn 19(4):899–905. doi: 10.1016/j.concog.2010.05.003 CrossRefPubMedGoogle Scholar
  93. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101(2):131–181. doi: 10.1016/j.pharmthera.2003.11.002 CrossRefGoogle Scholar
  94. Nichols DE (2016) Psychedelics. Pharmacol Rev 68:264–355. doi: 10.1124/pr.115.011478 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J (2006) Self-referential processing in our brain-a meta-analysis of imaging studies on the self. Neuroimage 31(1):440–457. doi: 10.1016/j.neuroimage.2005.12.002 CrossRefPubMedGoogle Scholar
  96. Nour MM, Evans L, Nutt D, Carhart-Harris RL (2016) Ego-dissolution and psychedelics: validation of the Ego-Dissolution Inventory (EDI). Front Hum Neurosci 10:269Google Scholar
  97. Osmond H (1970) Peyote night. In: Aaronson B, Osmond H (eds) Psychedelics: the uses and implications of hallucinogenic drugs. Anchor Books, Garden City, pp 67–85Google Scholar
  98. Pahnke WN (1963) Drugs and mysticism: an analysis of the relationship between psychedelic drugs and the mystical consciousness. Harvard University Press, Cambridge, MAGoogle Scholar
  99. Pahnke WN (1967) LSD and religious experience. In: DeBold RC, Leaf RC (eds) LSD man & society. Wesleyan University Press, Middletown, CTGoogle Scholar
  100. Pahnke WN (1969) Psychedelic drugs and mystical experience. Int Psychiatry Clin 5:149–162PubMedGoogle Scholar
  101. Penman J, Becker J (2009) Religious ecstatics, “deep Listeners,” and musical emotion. Empirical Musicol Rev 4(2):49–70CrossRefGoogle Scholar
  102. Petri G, Expert P, Turkheimer F, Carhart-Harris R, Nutt D, Hellyer PJ, Vaccarino F (2014) Homological scaffolds of brain functional networks. J R Soc Interface 11(101):20140873CrossRefGoogle Scholar
  103. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel AG, Laumann TO, Miezin FM, Schlaggar BL, Petersen SE (2011) Functional network organization of the human brain. Neuron 72(4):665–678. doi: 10.1016/j.neuron.2011.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Proudfoot W (1985) Religious experience. University of California Press, Berkeley, CAGoogle Scholar
  105. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci 98(2):676–682CrossRefGoogle Scholar
  106. Raichle ME, Snyder AZ (2007) A default mode of brain function: A brief history of an evolving idea. NeuroImage 37:1083–1090CrossRefGoogle Scholar
  107. Ranganath C, Ritchey M (2012) Two cortical systems for memory-guided behaviour. Nat Rev Neurosci 13(10):713–726CrossRefGoogle Scholar
  108. Renes RA, van Haren NE, Aarts H, Vink M (2014) An exploratory fMRI study into inferences of self-agency. Soc Cogn Affect Neurosci. doi: 10.1093/scan/nsu106 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Riba J, Anderer P, Morte A, Urbano G, Jane F, Saletu B, Barbanoj MJ (2002) Topographic pharmaco-EEG mapping of the effects of the South American psychoactive beverage ayahuasca in healthy volunteers. Br J Clin Pharmacol 53(6):613–628CrossRefGoogle Scholar
  110. Riba J, Anderer P, Jane F, Saletu B, Barbanoj MJ (2004) Effects of the South American psychoactive beverage ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography. Neuropsychobiology 50(1):89–101. doi: 10.1159/000077946 CrossRefPubMedGoogle Scholar
  111. Riba J, Romero S, Grasa E, Mena E, Carrio I, Barbanoj MJ (2006) Increased frontal and paralimbic activation following ayahuasca, the pan-Amazonian inebriant. Psychopharmacology 186(1):93–98. doi: 10.1007/s00213-006-0358-7 CrossRefPubMedGoogle Scholar
  112. Richards WA, Rhead JC, DiLeo FB, Yensen R, Kurland AA (1977) The peak experience variable in DPT-assisted psychotherapy with cancer patients. J Psychedelic Drugs 9:1–10CrossRefGoogle Scholar
  113. Richards WA (2014) The rebirth of research with entheogens: lessons from the past and hypotheses for the future. In: Ellens JH (ed) Seeking the sacred with psychoactive substances: chemical paths to spirituality and to God, vol 2. Praeger, Santa Barbara, pp 1–14Google Scholar
  114. Roberts TB (ed) (2001) Psychoactive sacramentals: essays on entheogens and religion. Council on Spiritual Practices, San FranciscoGoogle Scholar
  115. Roseman L, Leech R, Feilding A, Nutt DJ, Carhart-Harris RL (2014) The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers. Front Hum Neurosci 8:204. doi: 10.3389/fnhum.2014.00204 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, Mennenga SE, Belser A, Kalliontzi K, Babb J, Su Zhe, Corby P, Schmidt BL (2016) Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmcol 30(12):1165–1180Google Scholar
  117. Scholz J, Triantafyllou C, Whitfield-Gabrieli S, Brown EN, Saxe R (2009) Distinct regions of right temporo-parietal junction are selective for theory of mind and exogenous attention. PLoS ONE 4(3):e4869. doi: 10.1371/journal.pone.0004869 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Schultes RE (1969) Hallucinogens of plant origin. Science 163:245–254CrossRefGoogle Scholar
  119. Schultes RE, Hofmann A, Rätsch C (2001) Plants of the Gods: their sacred, healing, and Hallucinogenic powers. Healing Arts PressGoogle Scholar
  120. Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19(1):43–61. doi: 10.1177/1073858412440596 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Sharf RH (1988) Experience. In: Taylor M (ed) Critical terms for religious studies. University of Chicago Press, Chicago, pp 94–116Google Scholar
  122. Shermer M (2015) The Moral Arc: how science and reason lead humanity toward truth, justice, and freedom. Henry Holt and Co, New YorkGoogle Scholar
  123. Smith H (2000) Cleansing the doors of perception: the religious significance of entheogenic plants and chemicals. Tarcher/Putnam, New YorkGoogle Scholar
  124. Speth J, Speth C, Kaelen M, Schloerscheidt AM, Feilding A, Nutt DJ, Carhart-Harris RL (2016) Decreased mental time travel to the past correlates with default-mode network disintegration under lysergic acid diethylamide. J psychopharmacol 30(4):344–353CrossRefGoogle Scholar
  125. Stace WT (1960a) Mysticism and philosophy. MacMillan Press, New YorkGoogle Scholar
  126. Stace WT (1960b). The teachings of the mystics. New American LibraryGoogle Scholar
  127. Studerus E, Gamma A, Vollenweider FX (2010) Psychometric evaluation of the altered states of consciousness rating scale (OAV). PLoS ONE 5(8):e12412CrossRefGoogle Scholar
  128. Svoboda E, McKinnon MC, Levine B (2006) The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44(12):2189–2208. doi: 10.1016/j.neuropsychologia.2006.05.023 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Tagliazucchi E, Carhart-Harris R, Leech R, Nutt D, Chialvo DR (2014) Enhanced repertoire of brain dynamical states during the psychedelic experience. Hum Brain Mapp 35(11):5442–5456. doi: 10.1002/hbm.22562 CrossRefPubMedGoogle Scholar
  130. Tagliazucchi E, Roseman L, Kaelen M, Orban C, Muthukumaraswamy SD, Murphy K, Laufs H, Leech R, McGonigle J, Crossley N, Bullmore E, Williams T, Bolstridge M, Feilding A, Nutt DJ, Carhart-Harris R (2016) Increased global functional connectivity correlates with LSD-Induced Ego Dissolution. Curr biol 26(8):1043–1050CrossRefGoogle Scholar
  131. Tupper KW (2008) The globalization of ayahuasca: harm reduction or benefit maximization? Int J Drug Policy 19:297–303CrossRefGoogle Scholar
  132. Underhill E (1911 [2009]). Mysticism. Evinity PublishingGoogle Scholar
  133. Urgesi C, Aglioti SM, Skrap M, Fabbro F (2010) The spiritual brain: selective cortical lesions modulate human self-transcendence. Neuron 65(3):309–319. doi: 10.1016/j.neuron.2010.01.026 CrossRefPubMedGoogle Scholar
  134. van Veluw SJ, Chance SA (2014) Differentiating between self and others: an ALE meta-analysis of fMRI studies of self-recognition and theory of mind. Brain Imaging Behav 8(1):24–38. doi: 10.1007/s11682-013-9266-8 CrossRefPubMedGoogle Scholar
  135. Vollenweider FX, Kometer M (2010) The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 11:642–651CrossRefGoogle Scholar
  136. Vollenweider FX, Leenders KL, Scharfetter C, Maguire P, Stadelmann O, Angst J (1997) Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16(5):357–372. doi: 10.1016/S0893-133X(96)00246-1 CrossRefPubMedPubMedCentralGoogle Scholar
  137. von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38(3):301–313CrossRefGoogle Scholar
  138. Wasson RG, Hofman A, Ruck CAP (1998) The road to eleusis: unveiling the secret of the mysteries. Hermes Press, Los AngelesGoogle Scholar
  139. Watts A (1970) Psychedelics and religious experience. In: Aaronson B, Osmond H (eds) Psychedelics: the uses and implications of hallucinogenic drugss. Anchor Books, New York, pp 131–144Google Scholar
  140. Westermeyer J (1988) The pursuit of intoxication: our 100 century-old romance with psychoactive substances. Am J Drug Alcohol Abuse 14(2):175–187CrossRefGoogle Scholar
  141. Wulff DM (1991) Psychology of religion; classic and contemporary views. Wiley, New YorkGoogle Scholar
  142. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165. doi: 10.1152/jn.00338.2011 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations