Advertisement

Effects of Hallucinogens on Neuronal Activity

  • L. Lladó-Pelfort
  • P. Celada
  • M. S. Riga
  • E. Troyano-Rodríguez
  • N. Santana
  • F. Artigas
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 36)

Abstract

Hallucinogens evoke sensory, perceptual, affective, and cognitive effects that may be useful to understand the neurobiological basis of mood and psychotic disorders. The present chapter reviews preclinical research carried out in recent years in order to better understand the action of psychotomimetic agents such as the noncompetitive NMDA receptor (NMDA-R) antagonists and serotonergic hallucinogens. Our studies have focused on the mechanisms through which these agents alter cortical activity. Noncompetitive NMDA-R antagonists, such as phencyclidine (PCP) and MK-801 (dizocilpine), as well as the serotonergic hallucinogens DOI and 5-MeO-DMT, produce similar effects on cellular and population activity in prefrontal cortex (PFC); these effects include alterations of pyramidal neuron discharge (with an overall increase in firing), as well as a marked attenuation of the low frequency oscillations (0.2–4 Hz) to which neuronal discharge is coupled in anesthetized rodents. PCP increases c-fos expression in excitatory neurons from various cortical and subcortical areas, particularly the thalamus. This effect of PCP involves the preferential blockade of NMDA-R on GABAergic neurons of the reticular nucleus of the thalamus, which provides feedforward inhibition to the rest of thalamic nuclei. It is still unknown whether serotonergic hallucinogens also affect thalamocortical networks. However, when examined, similar alterations in other cortical areas, such as the primary visual cortex (V1), have been observed, suggesting that these agents affect cortical activity in sensory and associative areas. Interestingly, the disruption of PFC activity induced by PCP, DOI and 5-MeO-DMT is reversed by classical and atypical antipsychotic drugs. This effect suggests a possible link between the mechanisms underlying the disruption of perception by multiple classes of hallucinogenic agents and the therapeutic efficacy of antipsychotic agents.

Keywords

5-HT2A receptors Antipsychotic drugs NMDA receptors Prefrontal cortex Thalamus 

Notes

Acknowledgements

Supported by the Innovative Medicines Initiative Joint Undertaking (IMI) under Grant Agreement N° 115008 (NEWMEDS). IMI is a public–private partnership between the European Union and the European Federation of Pharmaceutical Industries and Associations. Support from the following grants is also acknowledged: SAF 2015-68346-P (Ministry of Economy and Competitiveness and European Regional Development Fund), PI09/1245 and PI12/00156 (PN de I+D+I 2008–2011, ISCIII-Subdireccion General de Evaluación y Fomento de la Investigación cofinanced by the European Regional Development Fund. “Una manera de hacer Europa”) and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (P82, 11INT3). Support from the Generalitat de Catalunya (SGR20093) is also acknowledged. MR is recipient of a IDIBAPS fellowship.

Statement of interest

None.

References

  1. Abi-Dargham A et al (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A 97(14):8104–8109PubMedPubMedCentralGoogle Scholar
  2. Abi-Dargham A et al (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22(9):3708–3719PubMedGoogle Scholar
  3. Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36(4–5):589–599Google Scholar
  4. Aghajanian GK, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825(1–2):161–171PubMedGoogle Scholar
  5. Agurell S et al (1968) Identification of two new beta-carboline alkaloids in South American hallucinogenic plants. Biochem Pharmacol 17(12):2487–2488PubMedGoogle Scholar
  6. Amargos-Bosch M et al (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14(3):281–299PubMedGoogle Scholar
  7. Amargos-Bosch M et al (2006) Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine. Int J Neuropsychopharmacol 9(5):565–573PubMedGoogle Scholar
  8. Angrist B et al (1976) Dimethyltryptamine levels in blood of schizophrenic patients and control subjects. Psychopharmacology 47(1):29–32PubMedGoogle Scholar
  9. Anver H et al (2011) NMDA receptor hypofunction phase couples independent gamma-oscillations in the rat visual cortex. Neuropsychopharmacology 36(2):519–528PubMedGoogle Scholar
  10. Araneda R, Andrade R (1991) 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40(2):399–412PubMedGoogle Scholar
  11. Artigas F (2010) The prefrontal cortex: a target for antipsychotic drugs. Acta Psychiatr Scand 121(1):11–21PubMedGoogle Scholar
  12. Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450PubMedGoogle Scholar
  13. Barre A et al (2016) Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proc Natl Acad Sci U S A 113(10):E1382–E1391PubMedPubMedCentralGoogle Scholar
  14. Basar E, Guntekin B (2008) A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res 1235:172–193PubMedGoogle Scholar
  15. Bates AT et al (2009) Low-frequency EEG oscillations associated with information processing in schizophrenia. Schizophr Res 115(2–3):222–230PubMedGoogle Scholar
  16. Begic D, Hotujac L, Jokic-Begic N (2000) Quantitative EEG in ‘positive’ and ‘negative’ schizophrenia. Acta Psychiatr Scand 101(4):307–311PubMedGoogle Scholar
  17. Begic D, Mahnik-Milos M, Grubisin J (2009) EEG characteristics in depression, “negative” and “positive” schizophrena. Psychiatr Danub 21(4):579–584PubMedGoogle Scholar
  18. Begic D et al (2011) Quantitative electroencephalography in schizophrenia and depression. Psychiatr Danub 23(4):355–362PubMedGoogle Scholar
  19. Beique JC et al (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci U S A 104(23):9870–9875PubMedPubMedCentralGoogle Scholar
  20. Belforte JE et al (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13(1):76–83PubMedGoogle Scholar
  21. Benington F, Morin RD, Clark LC Jr (1965) 5-methoxy-N, N-dimethyltryptamine, a possible endogenous psychotoxin. Ala J Med Sci 2(4):397–403PubMedGoogle Scholar
  22. Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42(1):73–102PubMedGoogle Scholar
  23. Berger H (1929) Electroencephalogram in humans. Archiv fur Psychiatrie und Nervenkrankheiten 87:527–570Google Scholar
  24. Binder S et al (2014) Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats. Front Behav Neurosci 7:220PubMedPubMedCentralGoogle Scholar
  25. Bodizs R et al (2002) Sleep-dependent hippocampal slow activity correlates with waking memory performance in humans. Neurobiol Learn Mem 78(2):441–457PubMedGoogle Scholar
  26. Bortolozzi A et al (2003) In vivo modulation of 5-hydroxytryptamine release in mouse prefrontal cortex by local 5-HT(2A) receptors: effect of antipsychotic drugs. Eur J Neurosci 18(5):1235–1246PubMedGoogle Scholar
  27. Bortolozzi A et al (2005) The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem 95(6):1597–1607PubMedGoogle Scholar
  28. Bortolozzi A et al (2010) Dopamine release induced by atypical antipsychotics in prefrontal cortex requires 5-HT(1A) receptors but not 5-HT(2A) receptors. Int J Neuropsychopharmacol 13(10):1299–1314PubMedGoogle Scholar
  29. Breier A et al (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 154(6):805–811PubMedGoogle Scholar
  30. Brush DE, Bird SB, Boyer EW (2004) Monoamine oxidase inhibitor poisoning resulting from Internet misinformation on illicit substances. J Toxicol Clin Toxicol 42(2):191–195PubMedGoogle Scholar
  31. Camchong J et al (2011) Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull 37(3):640–650PubMedGoogle Scholar
  32. Cardinal RN et al (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3):321–352PubMedGoogle Scholar
  33. Carhart-Harris RL et al (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci U S A 109(6):2138–2143PubMedPubMedCentralGoogle Scholar
  34. Carlen M et al (2012) A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry 17(5):537–548PubMedGoogle Scholar
  35. Carlsson A (1977) Does dopamine play a role in schizophrenia? Psychol Med 7(4):583–597PubMedGoogle Scholar
  36. Carlsson M, Carlsson A (1989) Dramatic synergism between MK-801 and clonidine with respect to locomotor stimulatory effect in monoamine-depleted mice. J Neural Transm 77(1):65–71PubMedGoogle Scholar
  37. Cavara NA, Hollmann M (2008) Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol Neurobiol 38(1):16–26PubMedGoogle Scholar
  38. Celada P et al. (2008) The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: reversal by antipsychotic drugs. Biol Psychiatry 64(5):392–400PubMedGoogle Scholar
  39. Celada P, Puig MV, Artigas F (2013) Serotonin modulation of cortical neurons and networks. Front Integr Neurosci 7:25PubMedPubMedCentralGoogle Scholar
  40. Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13(1):9–17PubMedGoogle Scholar
  41. Davidson RJ, Irwin W (1999) The functional neuroanatomy of emotion and affective style. Trends Cogn Sci 3(1):11–21PubMedGoogle Scholar
  42. de Almeida J, Mengod G (2007) Quantitative analysis of glutamatergic and GABAergic neurons expressing 5-HT(2A) receptors in human and monkey prefrontal cortex. J Neurochem 103(2):475–486PubMedGoogle Scholar
  43. de Almeida J, Mengod G (2008) Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J Neurochem 107(2):488–496PubMedGoogle Scholar
  44. DeFelipe J et al (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14(3):202–216PubMedPubMedCentralGoogle Scholar
  45. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279–306PubMedGoogle Scholar
  46. Diaz-Mataix L et al (2005) Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 25(47):10831–10843PubMedGoogle Scholar
  47. Drevets WC (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11(2):240–249PubMedGoogle Scholar
  48. Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5(1):16–25PubMedGoogle Scholar
  49. Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30(2):319–333PubMedGoogle Scholar
  50. Fuster JM (2008) The prefrontal cortex, 4th edn. Academic Press, Los Angeles, California, USAGoogle Scholar
  51. Gabbott PL et al (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492(2):145–177PubMedGoogle Scholar
  52. Galarreta M, Hestrin S (2001) Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2(6):425–433PubMedGoogle Scholar
  53. Geyer MA, Vollenweider FX (2008) Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci 29(9):445–453PubMedPubMedCentralGoogle Scholar
  54. Geyer MA et al (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156(2–3):117–154PubMedGoogle Scholar
  55. Gillin JC, Wyatt RJ (1976) Evidence for and against the involvement of N, N-dimethyl-tryptamine (DMT) and 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) in schizophrenia. Psychopharmacol Bull 12(4):12–13PubMedGoogle Scholar
  56. Glennon RA (1991) Discriminative stimulus properties of hallucinogens and related designer drugs. NIDA Res Monogr 116:25–44Google Scholar
  57. Glennon RA (1994) Classical hallucinogens: an introductory overview. NIDA Res Monogr 146:4–32PubMedGoogle Scholar
  58. Gonzalez-Maeso J et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452PubMedGoogle Scholar
  59. Goonawardena AV et al (2016) Alterations in high-frequency neuronal oscillations in a cynomolgus macaque test of sustained attention following NMDA receptor antagonism. Neuropsychopharmacology 41(5):1319–1328PubMedGoogle Scholar
  60. Groenewegen HJ, Uylings HB (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126:3–28PubMedGoogle Scholar
  61. Hall H et al (2000) Autoradiographic localization of 5-HT(2A) receptors in the human brain using [(3)H]M100907 and [(11)C]M100907. Synapse 38(4):421–431PubMedGoogle Scholar
  62. Harrison PJ (1999a) The neuropathological effects of antipsychotic drugs. Schizophr Res 40(2):87–99PubMedGoogle Scholar
  63. Harrison PJ (1999b) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122(Pt 4):593–624PubMedGoogle Scholar
  64. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68; image 5Google Scholar
  65. Hoffman RE, McGlashan TH (1993) Neurodynamics and schizophrenia research: editors’ introduction. Schizophr Bull 19(1):15–19PubMedGoogle Scholar
  66. Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27(43):11496–11500PubMedPubMedCentralGoogle Scholar
  67. Hong LE et al (2010) Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 35(3):632–640PubMedGoogle Scholar
  68. Ichikawa J et al (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76(5):1521–1531PubMedGoogle Scholar
  69. Itoh T et al (2011) LORETA analysis of three-dimensional distribution of delta band activity in schizophrenia: relation to negative symptoms. Neurosci Res 70(4):442–448PubMedGoogle Scholar
  70. Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 95(2):735–740PubMedPubMedCentralGoogle Scholar
  71. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308PubMedGoogle Scholar
  72. Jodo E et al (2005) Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo-prefrontal pathway. Cereb Cortex 15(5):663–669PubMedGoogle Scholar
  73. Kargieman L et al (2007) Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine. Proc Natl Acad Sci U S A 104(37):14843–14848PubMedPubMedCentralGoogle Scholar
  74. Kargieman L et al (2012) Clozapine reverses phencyclidine-induced desynchronization of prefrontal cortex through a 5-HT(1A) receptor-dependent mechanism. Neuropsychopharmacology 37(3):723–733PubMedGoogle Scholar
  75. Katayama T et al (2007) Activation of medial prefrontal cortex neurons by phencyclidine is mediated via AMPA/kainate glutamate receptors in anesthetized rats. Neuroscience 150(2):442–448PubMedGoogle Scholar
  76. Keshavan MS et al (1998) Delta sleep deficits in schizophrenia: evidence from automated analyses of sleep data. Arch Gen Psychiatry 55(5):443–448PubMedGoogle Scholar
  77. Kikuchi M et al (2011) Frontal areas contribute to reduced global coordination of resting-state gamma activities in drug-naive patients with schizophrenia. Schizophr Res 130(1–3):187–194PubMedGoogle Scholar
  78. Kiss T, Hoffmann WE, Hajos M (2011a) Delta oscillation and short-term plasticity in the rat medial prefrontal cortex: modelling NMDA hypofunction of schizophrenia. Int J Neuropsychopharmacol 14(1):29–42PubMedGoogle Scholar
  79. Kiss T et al (2011b) Role of thalamic projection in NMDA receptor-induced disruption of cortical slow oscillation and short-term plasticity. Front Psychiatry 2:14PubMedPubMedCentralGoogle Scholar
  80. Kometer M et al (2015) Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology 232(19):3663–3676PubMedPubMedCentralGoogle Scholar
  81. Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97(2):153–179PubMedPubMedCentralGoogle Scholar
  82. Korotkova T et al (2010) NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68(3):557–569PubMedGoogle Scholar
  83. Krystal JH et al (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169(3–4):215–233PubMedGoogle Scholar
  84. Kuroda M, Yokofujita J, Murakami K (1998) An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog Neurobiol 54(4):417–458PubMedGoogle Scholar
  85. Kurrasch-Orbaugh DM et al (2003) Serotonin 5-hydroxytryptamine 2A receptor-coupled phospholipase C and phospholipase A2 signaling pathways have different receptor reserves. J Pharmacol Exp Ther 304(1):229–237PubMedGoogle Scholar
  86. Laruelle M et al (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93(17):9235–9240PubMedPubMedCentralGoogle Scholar
  87. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8(6):413–426PubMedGoogle Scholar
  88. Leresche N et al (1990) Pacemaker-like and other types of spontaneous membrane potential oscillations of thalamocortical cells. Neurosci Lett 113(1):72–77PubMedGoogle Scholar
  89. Lewis DA, Gonzalez-Burgos G (2006) Pathophysiologically based treatment interventions in schizophrenia. Nat Med 12(9):1016–1022PubMedGoogle Scholar
  90. Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28(2):325–334PubMedGoogle Scholar
  91. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–324PubMedGoogle Scholar
  92. Lewis DA et al (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35(1):57–67PubMedGoogle Scholar
  93. Lladó-Pelfort L et al (2016) Phencyclidine-induced disruption of oscillatory activity in prefrontal cortex: effects of antipsychotic drugs and receptor ligands. Eur Neuropsychopharmacol 26(3):614–625PubMedGoogle Scholar
  94. Llinas RR, Steriade M (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95(6):3297–3308PubMedGoogle Scholar
  95. Lopez Hill X, Scorza MC (2012) Role of the anterior thalamic nucleus in the motor hyperactivity induced by systemic MK-801 administration in rats. Neuropharmacology 62(7):2440–2446PubMedGoogle Scholar
  96. Lopez-Gil X et al (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32(10):2087–2097PubMedGoogle Scholar
  97. Lopez-Gil X et al (2012) Importance of inter-hemispheric prefrontal connection in the effects of non-competitive NMDA receptor antagonists. Int J Neuropsychopharmacol 15(7):945–956PubMedGoogle Scholar
  98. Lopez-Gimenez JF et al (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429(4):571–589PubMedGoogle Scholar
  99. Marek GJ, Aghajanian GK (1998) 5-Hydroxytryptamine-induced excitatory postsynaptic currents in neocortical layer V pyramidal cells: suppression by mu-opiate receptor activation. Neuroscience 86(2):485–497PubMedGoogle Scholar
  100. Marek GJ et al (2001) A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience 105(2):379–392PubMedGoogle Scholar
  101. Marshall L et al (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613PubMedGoogle Scholar
  102. Martin-Ruiz R et al (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21(24):9856–9866PubMedGoogle Scholar
  103. Mayberg HS et al (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660PubMedGoogle Scholar
  104. McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318PubMedPubMedCentralGoogle Scholar
  105. McKenna DJ (2004) Clinical investigations of the therapeutic potential of ayahuasca: rationale and regulatory challenges. Pharmacol Ther 102(2):111–129PubMedGoogle Scholar
  106. McKenna DJ, Towers GH, Abbott F (1984) Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and beta-carboline constituents of ayahuasca. J Ethnopharmacol 10(2):195–223PubMedPubMedCentralGoogle Scholar
  107. Meltzer HY, Massey BW (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 11(1):59–67PubMedGoogle Scholar
  108. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202PubMedGoogle Scholar
  109. Miner LA et al (2003) Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116(1):107–117PubMedGoogle Scholar
  110. Muthukumaraswamy SD et al (2013) Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci 33(38):15171–15183Google Scholar
  111. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101(2):131–181Google Scholar
  112. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322PubMedPubMedCentralGoogle Scholar
  113. Nunez PL, Srinivasan R (2006) A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 117(11):2424–2435PubMedPubMedCentralGoogle Scholar
  114. Oughourlian JM, Rougeul A, Verdeaux J (1971) Action of hallucinogens on electroencephalograms. Therapie 26(5):953–968PubMedGoogle Scholar
  115. Palenicek T et al (2013) Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology 225(1):75–93PubMedGoogle Scholar
  116. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7(1):39–47PubMedGoogle Scholar
  117. Pazos A, Cortes R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346(2):231–249PubMedGoogle Scholar
  118. Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain–IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21(1):123–139PubMedGoogle Scholar
  119. Petsche H, Pockberger H, Rappelsberger P (1984) On the search for the sources of the electroencephalogram. Neuroscience 11(1):1–27PubMedGoogle Scholar
  120. Phillips ML et al (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 54(5):504–514PubMedGoogle Scholar
  121. Pinault D (2008) N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex. Biol Psychiatry 63(8):730–735PubMedGoogle Scholar
  122. Poulin J, Stip E, Godbout R (2008) REM sleep EEG spectral analysis in patients with first-episode schizophrenia. J Psychiatr Res 42(13):1086–1093PubMedGoogle Scholar
  123. Puig MV et al (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex 13(8):870–882PubMedGoogle Scholar
  124. Puig MV, Artigas F, Celada P (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 15(1):1–14PubMedGoogle Scholar
  125. Puigdemont D et al (2012) Deep brain stimulation of the subcallosal cingulate gyrus: further evidence in treatment-resistant major depression. Int J Neuropsychopharmacol 15(1):121–133PubMedGoogle Scholar
  126. Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682PubMedPubMedCentralGoogle Scholar
  127. Rasmussen H et al (2010) Decreased frontal serotonin2A receptor binding in antipsychotic-naive patients with first-episode schizophrenia. Arch Gen Psychiatry 67(1):9–16PubMedGoogle Scholar
  128. Rasmussen H et al (2016) Low frontal serotonin 2A receptor binding is a state marker for schizophrenia? Eur Neuropsychopharmacol 26(7):1248–1250PubMedGoogle Scholar
  129. Riba J et al (2002) Topographic pharmaco-EEG mapping of the effects of the South American psychoactive beverage ayahuasca in healthy volunteers. Br J Clin Pharmacol 53(6):613–628PubMedPubMedCentralGoogle Scholar
  130. Riba J et al (2004) Effects of the South American psychoactive beverage ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography. Neuropsychobiology 50(1):89–101Google Scholar
  131. Riga MS et al (2014) The natural hallucinogen 5-MeO-DMT, component of ayahuasca, disrupts cortical function in rats: reversal by antipsychotic drugs. Int J Neuropsychopharmacol 17(8):1269–1282PubMedGoogle Scholar
  132. Rockstroh BS et al (2007) Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network? BMC Psychiatry 7:44PubMedPubMedCentralGoogle Scholar
  133. Rollema H et al (1997) Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 338(2):R3–R5PubMedGoogle Scholar
  134. Santana N et al (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14(10):1100–1109PubMedGoogle Scholar
  135. Santana N, Mengod G, Artigas F (2009) Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 19(4):849–860PubMedGoogle Scholar
  136. Santana N et al (2011) Activation of thalamocortical networks by the N-methyl-D-aspartate receptor antagonist phencyclidine: reversal by clozapine. Biol Psychiatry 69(10):918–927PubMedGoogle Scholar
  137. Santana N, Mengod G, Artigas F (2013) Expression of alpha(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors. Int J Neuropsychopharmacol 16(5):1139–1151PubMedGoogle Scholar
  138. Schenberg EE et al (2015) Acute biphasic effects of ayahuasca. PLoS ONE 10(9):e0137202PubMedPubMedCentralGoogle Scholar
  139. Schreiber R, Brocco M, Millan MJ (1994) Blockade of the discriminative stimulus effects of DOI by MDL 100,907 and the ‘atypical’ antipsychotics, clozapine and risperidone. Eur J Pharmacol 264(1):99–102PubMedGoogle Scholar
  140. Schug RA et al (2011) Resting EEG deficits in accused murderers with schizophrenia. Psychiatry Res 194(1):85–94PubMedPubMedCentralGoogle Scholar
  141. Schultes RE, Hofmann A (1991) The botany and chemistry of Hallucinogens. Charles C Thomas Pub Ltd., Springfield, Illinois, USAGoogle Scholar
  142. Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74(1):1–58PubMedGoogle Scholar
  143. Sebban C et al (2002) Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA-, alpha(1)- and 5-HT(2A)-receptors. Br J Pharmacol 135(1):65–78PubMedPubMedCentralGoogle Scholar
  144. Sekimoto M et al (2007) Reduced frontal asymmetry of delta waves during all-night sleep in schizophrenia. Schizophr Bull 33(6):1307–1311PubMedGoogle Scholar
  145. Selemon LD, Goldman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45(1):17–25PubMedGoogle Scholar
  146. Seminowicz DA et al (2004) Limbic-frontal circuitry in major depression: a path modeling metanalysis. NeuroImage 22(1):409–418PubMedGoogle Scholar
  147. Shergill SS et al (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 57(11):1033–1038PubMedGoogle Scholar
  148. Skelly LR et al (2008) Diffusion tensor imaging in schizophrenia: relationship to symptoms. Schizophr Res 98(1–3):157–162PubMedGoogle Scholar
  149. Sklerov J et al (2005) A fatal intoxication following the ingestion of 5-methoxy-N, N-dimethyltryptamine in an ayahuasca preparation. J Anal Toxicol 29(8):838–841PubMedGoogle Scholar
  150. Spencer KM (2011) Baseline gamma power during auditory steady-state stimulation in schizophrenia. Front Hum Neurosci 5:190PubMedGoogle Scholar
  151. Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6(4):557–618PubMedGoogle Scholar
  152. Steriade M (2006) Grouping of brain rhythms in corticothalamic systems. Neuroscience 137(4):1087–1106PubMedGoogle Scholar
  153. Steriade M, Nunez A, Amzica F (1993) Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13(8):3266–3283PubMedGoogle Scholar
  154. Suzuki Y et al (2002) Acute administration of phencyclidine induces tonic activation of medial prefrontal cortex neurons in freely moving rats. Neuroscience 114(3):769–779PubMedGoogle Scholar
  155. Swanson CJ et al (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 4(2):131–144PubMedGoogle Scholar
  156. Traub RD et al (2000) A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur J Neurosci 12(11):4093–4106PubMedGoogle Scholar
  157. Traub RD et al (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J Neurosci 21(23):9478–9486PubMedGoogle Scholar
  158. Troyano-Rodriguez E et al (2014) Phencyclidine inhibits the activity of thalamic reticular gamma-aminobutyric acidergic neurons in rat brain. Biol Psychiatry 76(12):937–945PubMedGoogle Scholar
  159. Tseng KY et al (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59(7):412–417PubMedPubMedCentralGoogle Scholar
  160. Upton N et al. (2014) NMDA receptor antagonist-induced changes in rat EEG power spectra as a model of schizophrenia. Program No. 230.04, in neuroscience 2014 abstracts 2014. Society for Neuroscience, Washington, USAGoogle Scholar
  161. Van Eden CG et al (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 22(3):849–862PubMedGoogle Scholar
  162. Vazquez-Borsetti P, Cortes R, Artigas F (2009) Pyramidal neurons in rat prefrontal cortex projecting to ventral tegmental area and dorsal raphe nucleus express 5-HT2A receptors. Cereb Cortex 19(7):1678–1686PubMedGoogle Scholar
  163. Vazquez-Borsetti P et al (2011) Simultaneous projections from prefrontal cortex to dopaminergic and serotonergic nuclei. Int J Neuropsychopharmacol 14(3):289–302PubMedGoogle Scholar
  164. Venables NC, Bernat EM, Sponheim SR (2009) Genetic and disorder-specific aspects of resting state EEG abnormalities in schizophrenia. Schizophr Bull 35(4):826–839PubMedGoogle Scholar
  165. Villalobos C et al (2005) Serotonergic regulation of calcium-activated potassium currents in rodent prefrontal cortex. Eur J Neurosci 22(5):1120–1126PubMedGoogle Scholar
  166. Vollenweider FX, Kometer M (2010) The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 11(9):642–651Google Scholar
  167. Vollenweider FX et al (1997a) Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16(5):357–372PubMedPubMedCentralGoogle Scholar
  168. Vollenweider FX et al (1997b) Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol 7(1):9–24PubMedPubMedCentralGoogle Scholar
  169. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44(7):660–669PubMedGoogle Scholar
  170. Woo TU, Kim AM, Viscidi E (2008) Disease-specific alterations in glutamatergic neurotransmission on inhibitory interneurons in the prefrontal cortex in schizophrenia. Brain Res 1218:267–277PubMedPubMedCentralGoogle Scholar
  171. Wood J, Kim Y, Moghaddam B (2012) Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs. J Neurosci 32(9):3022–3031PubMedPubMedCentralGoogle Scholar
  172. Yu AM (2008) Indolealkylamines: biotransformations and potential drug-drug interactions. AAPS J 10(2):242–253PubMedPubMedCentralGoogle Scholar
  173. Zhang Y, Llinas RR, Lisman JE (2009) Inhibition of NMDARs in the Nucleus Reticularis of the Thalamus Produces Delta Frequency Bursting. Front Neural Circuits 3:20PubMedPubMedCentralGoogle Scholar
  174. Zhang Y et al (2012) NMDAR antagonist action in thalamus imposes delta oscillations on the hippocampus. J Neurophysiol 107(11):3181–3189PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • L. Lladó-Pelfort
    • 1
  • P. Celada
    • 1
  • M. S. Riga
    • 1
  • E. Troyano-Rodríguez
    • 1
  • N. Santana
    • 1
  • F. Artigas
    • 1
    • 2
  1. 1.Department of Neurochemistry and Neuropharmacology, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Institut d’Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS)BarcelonaSpain
  2. 2.Department of Neurochemistry and NeuropharmacologyIIBB-CSIC (IDIBAPS)BarcelonaSpain

Personalised recommendations