Effects of Hallucinogens on Neuronal Activity

  • L. Lladó-Pelfort
  • P. Celada
  • M. S. Riga
  • E. Troyano-Rodríguez
  • N. Santana
  • F. ArtigasEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 36)


Hallucinogens evoke sensory, perceptual, affective, and cognitive effects that may be useful to understand the neurobiological basis of mood and psychotic disorders. The present chapter reviews preclinical research carried out in recent years in order to better understand the action of psychotomimetic agents such as the noncompetitive NMDA receptor (NMDA-R) antagonists and serotonergic hallucinogens. Our studies have focused on the mechanisms through which these agents alter cortical activity. Noncompetitive NMDA-R antagonists, such as phencyclidine (PCP) and MK-801 (dizocilpine), as well as the serotonergic hallucinogens DOI and 5-MeO-DMT, produce similar effects on cellular and population activity in prefrontal cortex (PFC); these effects include alterations of pyramidal neuron discharge (with an overall increase in firing), as well as a marked attenuation of the low frequency oscillations (0.2–4 Hz) to which neuronal discharge is coupled in anesthetized rodents. PCP increases c-fos expression in excitatory neurons from various cortical and subcortical areas, particularly the thalamus. This effect of PCP involves the preferential blockade of NMDA-R on GABAergic neurons of the reticular nucleus of the thalamus, which provides feedforward inhibition to the rest of thalamic nuclei. It is still unknown whether serotonergic hallucinogens also affect thalamocortical networks. However, when examined, similar alterations in other cortical areas, such as the primary visual cortex (V1), have been observed, suggesting that these agents affect cortical activity in sensory and associative areas. Interestingly, the disruption of PFC activity induced by PCP, DOI and 5-MeO-DMT is reversed by classical and atypical antipsychotic drugs. This effect suggests a possible link between the mechanisms underlying the disruption of perception by multiple classes of hallucinogenic agents and the therapeutic efficacy of antipsychotic agents.


5-HT2A receptors Antipsychotic drugs NMDA receptors Prefrontal cortex Thalamus 



Supported by the Innovative Medicines Initiative Joint Undertaking (IMI) under Grant Agreement N° 115008 (NEWMEDS). IMI is a public–private partnership between the European Union and the European Federation of Pharmaceutical Industries and Associations. Support from the following grants is also acknowledged: SAF 2015-68346-P (Ministry of Economy and Competitiveness and European Regional Development Fund), PI09/1245 and PI12/00156 (PN de I+D+I 2008–2011, ISCIII-Subdireccion General de Evaluación y Fomento de la Investigación cofinanced by the European Regional Development Fund. “Una manera de hacer Europa”) and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (P82, 11INT3). Support from the Generalitat de Catalunya (SGR20093) is also acknowledged. MR is recipient of a IDIBAPS fellowship.

Statement of interest



  1. Abi-Dargham A et al (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A 97(14):8104–8109PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abi-Dargham A et al (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22(9):3708–3719PubMedCrossRefGoogle Scholar
  3. Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36(4–5):589–599CrossRefPubMedGoogle Scholar
  4. Aghajanian GK, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825(1–2):161–171PubMedCrossRefGoogle Scholar
  5. Agurell S et al (1968) Identification of two new beta-carboline alkaloids in South American hallucinogenic plants. Biochem Pharmacol 17(12):2487–2488PubMedCrossRefGoogle Scholar
  6. Amargos-Bosch M et al (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14(3):281–299PubMedCrossRefGoogle Scholar
  7. Amargos-Bosch M et al (2006) Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine. Int J Neuropsychopharmacol 9(5):565–573PubMedCrossRefGoogle Scholar
  8. Angrist B et al (1976) Dimethyltryptamine levels in blood of schizophrenic patients and control subjects. Psychopharmacology 47(1):29–32PubMedCrossRefGoogle Scholar
  9. Anver H et al (2011) NMDA receptor hypofunction phase couples independent gamma-oscillations in the rat visual cortex. Neuropsychopharmacology 36(2):519–528PubMedCrossRefGoogle Scholar
  10. Araneda R, Andrade R (1991) 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40(2):399–412PubMedCrossRefGoogle Scholar
  11. Artigas F (2010) The prefrontal cortex: a target for antipsychotic drugs. Acta Psychiatr Scand 121(1):11–21PubMedCrossRefGoogle Scholar
  12. Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450PubMedCrossRefGoogle Scholar
  13. Barre A et al (2016) Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proc Natl Acad Sci U S A 113(10):E1382–E1391PubMedPubMedCentralCrossRefGoogle Scholar
  14. Basar E, Guntekin B (2008) A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res 1235:172–193PubMedCrossRefGoogle Scholar
  15. Bates AT et al (2009) Low-frequency EEG oscillations associated with information processing in schizophrenia. Schizophr Res 115(2–3):222–230PubMedCrossRefGoogle Scholar
  16. Begic D, Hotujac L, Jokic-Begic N (2000) Quantitative EEG in ‘positive’ and ‘negative’ schizophrenia. Acta Psychiatr Scand 101(4):307–311PubMedGoogle Scholar
  17. Begic D, Mahnik-Milos M, Grubisin J (2009) EEG characteristics in depression, “negative” and “positive” schizophrena. Psychiatr Danub 21(4):579–584PubMedGoogle Scholar
  18. Begic D et al (2011) Quantitative electroencephalography in schizophrenia and depression. Psychiatr Danub 23(4):355–362PubMedGoogle Scholar
  19. Beique JC et al (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci U S A 104(23):9870–9875PubMedPubMedCentralCrossRefGoogle Scholar
  20. Belforte JE et al (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13(1):76–83PubMedCrossRefGoogle Scholar
  21. Benington F, Morin RD, Clark LC Jr (1965) 5-methoxy-N, N-dimethyltryptamine, a possible endogenous psychotoxin. Ala J Med Sci 2(4):397–403PubMedGoogle Scholar
  22. Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42(1):73–102PubMedCrossRefGoogle Scholar
  23. Berger H (1929) Electroencephalogram in humans. Archiv fur Psychiatrie und Nervenkrankheiten 87:527–570CrossRefGoogle Scholar
  24. Binder S et al (2014) Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats. Front Behav Neurosci 7:220PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bodizs R et al (2002) Sleep-dependent hippocampal slow activity correlates with waking memory performance in humans. Neurobiol Learn Mem 78(2):441–457PubMedCrossRefGoogle Scholar
  26. Bortolozzi A et al (2003) In vivo modulation of 5-hydroxytryptamine release in mouse prefrontal cortex by local 5-HT(2A) receptors: effect of antipsychotic drugs. Eur J Neurosci 18(5):1235–1246PubMedCrossRefGoogle Scholar
  27. Bortolozzi A et al (2005) The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem 95(6):1597–1607PubMedCrossRefGoogle Scholar
  28. Bortolozzi A et al (2010) Dopamine release induced by atypical antipsychotics in prefrontal cortex requires 5-HT(1A) receptors but not 5-HT(2A) receptors. Int J Neuropsychopharmacol 13(10):1299–1314PubMedCrossRefPubMedCentralGoogle Scholar
  29. Breier A et al (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 154(6):805–811PubMedCrossRefGoogle Scholar
  30. Brush DE, Bird SB, Boyer EW (2004) Monoamine oxidase inhibitor poisoning resulting from Internet misinformation on illicit substances. J Toxicol Clin Toxicol 42(2):191–195PubMedCrossRefGoogle Scholar
  31. Camchong J et al (2011) Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull 37(3):640–650PubMedCrossRefGoogle Scholar
  32. Cardinal RN et al (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3):321–352PubMedCrossRefGoogle Scholar
  33. Carhart-Harris RL et al (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci U S A 109(6):2138–2143PubMedPubMedCentralCrossRefGoogle Scholar
  34. Carlen M et al (2012) A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry 17(5):537–548PubMedCrossRefGoogle Scholar
  35. Carlsson A (1977) Does dopamine play a role in schizophrenia? Psychol Med 7(4):583–597PubMedCrossRefGoogle Scholar
  36. Carlsson M, Carlsson A (1989) Dramatic synergism between MK-801 and clonidine with respect to locomotor stimulatory effect in monoamine-depleted mice. J Neural Transm 77(1):65–71PubMedCrossRefGoogle Scholar
  37. Cavara NA, Hollmann M (2008) Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol Neurobiol 38(1):16–26PubMedCrossRefGoogle Scholar
  38. Celada P et al. (2008) The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: reversal by antipsychotic drugs. Biol Psychiatry 64(5):392–400PubMedCrossRefGoogle Scholar
  39. Celada P, Puig MV, Artigas F (2013) Serotonin modulation of cortical neurons and networks. Front Integr Neurosci 7:25PubMedPubMedCentralCrossRefGoogle Scholar
  40. Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13(1):9–17PubMedCrossRefGoogle Scholar
  41. Davidson RJ, Irwin W (1999) The functional neuroanatomy of emotion and affective style. Trends Cogn Sci 3(1):11–21PubMedCrossRefGoogle Scholar
  42. de Almeida J, Mengod G (2007) Quantitative analysis of glutamatergic and GABAergic neurons expressing 5-HT(2A) receptors in human and monkey prefrontal cortex. J Neurochem 103(2):475–486PubMedCrossRefGoogle Scholar
  43. de Almeida J, Mengod G (2008) Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J Neurochem 107(2):488–496PubMedCrossRefGoogle Scholar
  44. DeFelipe J et al (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14(3):202–216PubMedPubMedCentralCrossRefGoogle Scholar
  45. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279–306PubMedCrossRefGoogle Scholar
  46. Diaz-Mataix L et al (2005) Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 25(47):10831–10843PubMedCrossRefGoogle Scholar
  47. Drevets WC (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11(2):240–249PubMedCrossRefGoogle Scholar
  48. Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5(1):16–25PubMedCrossRefGoogle Scholar
  49. Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30(2):319–333PubMedCrossRefGoogle Scholar
  50. Fuster JM (2008) The prefrontal cortex, 4th edn. Academic Press, Los Angeles, California, USACrossRefGoogle Scholar
  51. Gabbott PL et al (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492(2):145–177PubMedCrossRefGoogle Scholar
  52. Galarreta M, Hestrin S (2001) Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2(6):425–433PubMedCrossRefGoogle Scholar
  53. Geyer MA, Vollenweider FX (2008) Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci 29(9):445–453PubMedPubMedCentralCrossRefGoogle Scholar
  54. Geyer MA et al (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156(2–3):117–154PubMedCrossRefGoogle Scholar
  55. Gillin JC, Wyatt RJ (1976) Evidence for and against the involvement of N, N-dimethyl-tryptamine (DMT) and 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) in schizophrenia. Psychopharmacol Bull 12(4):12–13PubMedGoogle Scholar
  56. Glennon RA (1991) Discriminative stimulus properties of hallucinogens and related designer drugs. NIDA Res Monogr 116:25–44Google Scholar
  57. Glennon RA (1994) Classical hallucinogens: an introductory overview. NIDA Res Monogr 146:4–32PubMedGoogle Scholar
  58. Gonzalez-Maeso J et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452PubMedCrossRefGoogle Scholar
  59. Goonawardena AV et al (2016) Alterations in high-frequency neuronal oscillations in a cynomolgus macaque test of sustained attention following NMDA receptor antagonism. Neuropsychopharmacology 41(5):1319–1328PubMedCrossRefGoogle Scholar
  60. Groenewegen HJ, Uylings HB (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126:3–28PubMedCrossRefGoogle Scholar
  61. Hall H et al (2000) Autoradiographic localization of 5-HT(2A) receptors in the human brain using [(3)H]M100907 and [(11)C]M100907. Synapse 38(4):421–431PubMedCrossRefGoogle Scholar
  62. Harrison PJ (1999a) The neuropathological effects of antipsychotic drugs. Schizophr Res 40(2):87–99PubMedCrossRefGoogle Scholar
  63. Harrison PJ (1999b) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122(Pt 4):593–624PubMedCrossRefGoogle Scholar
  64. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68; image 5CrossRefGoogle Scholar
  65. Hoffman RE, McGlashan TH (1993) Neurodynamics and schizophrenia research: editors’ introduction. Schizophr Bull 19(1):15–19PubMedCrossRefGoogle Scholar
  66. Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27(43):11496–11500PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hong LE et al (2010) Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 35(3):632–640PubMedCrossRefGoogle Scholar
  68. Ichikawa J et al (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76(5):1521–1531PubMedCrossRefGoogle Scholar
  69. Itoh T et al (2011) LORETA analysis of three-dimensional distribution of delta band activity in schizophrenia: relation to negative symptoms. Neurosci Res 70(4):442–448PubMedCrossRefGoogle Scholar
  70. Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 95(2):735–740PubMedPubMedCentralCrossRefGoogle Scholar
  71. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308PubMedCrossRefGoogle Scholar
  72. Jodo E et al (2005) Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo-prefrontal pathway. Cereb Cortex 15(5):663–669PubMedCrossRefGoogle Scholar
  73. Kargieman L et al (2007) Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine. Proc Natl Acad Sci U S A 104(37):14843–14848PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kargieman L et al (2012) Clozapine reverses phencyclidine-induced desynchronization of prefrontal cortex through a 5-HT(1A) receptor-dependent mechanism. Neuropsychopharmacology 37(3):723–733PubMedCrossRefGoogle Scholar
  75. Katayama T et al (2007) Activation of medial prefrontal cortex neurons by phencyclidine is mediated via AMPA/kainate glutamate receptors in anesthetized rats. Neuroscience 150(2):442–448PubMedCrossRefGoogle Scholar
  76. Keshavan MS et al (1998) Delta sleep deficits in schizophrenia: evidence from automated analyses of sleep data. Arch Gen Psychiatry 55(5):443–448PubMedCrossRefGoogle Scholar
  77. Kikuchi M et al (2011) Frontal areas contribute to reduced global coordination of resting-state gamma activities in drug-naive patients with schizophrenia. Schizophr Res 130(1–3):187–194PubMedCrossRefGoogle Scholar
  78. Kiss T, Hoffmann WE, Hajos M (2011a) Delta oscillation and short-term plasticity in the rat medial prefrontal cortex: modelling NMDA hypofunction of schizophrenia. Int J Neuropsychopharmacol 14(1):29–42PubMedCrossRefGoogle Scholar
  79. Kiss T et al (2011b) Role of thalamic projection in NMDA receptor-induced disruption of cortical slow oscillation and short-term plasticity. Front Psychiatry 2:14PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kometer M et al (2015) Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology 232(19):3663–3676PubMedPubMedCentralCrossRefGoogle Scholar
  81. Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97(2):153–179PubMedPubMedCentralCrossRefGoogle Scholar
  82. Korotkova T et al (2010) NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68(3):557–569PubMedCrossRefGoogle Scholar
  83. Krystal JH et al (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169(3–4):215–233PubMedCrossRefGoogle Scholar
  84. Kuroda M, Yokofujita J, Murakami K (1998) An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog Neurobiol 54(4):417–458PubMedCrossRefGoogle Scholar
  85. Kurrasch-Orbaugh DM et al (2003) Serotonin 5-hydroxytryptamine 2A receptor-coupled phospholipase C and phospholipase A2 signaling pathways have different receptor reserves. J Pharmacol Exp Ther 304(1):229–237PubMedCrossRefGoogle Scholar
  86. Laruelle M et al (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93(17):9235–9240PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8(6):413–426PubMedCrossRefGoogle Scholar
  88. Leresche N et al (1990) Pacemaker-like and other types of spontaneous membrane potential oscillations of thalamocortical cells. Neurosci Lett 113(1):72–77PubMedCrossRefGoogle Scholar
  89. Lewis DA, Gonzalez-Burgos G (2006) Pathophysiologically based treatment interventions in schizophrenia. Nat Med 12(9):1016–1022PubMedCrossRefGoogle Scholar
  90. Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28(2):325–334PubMedCrossRefGoogle Scholar
  91. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–324PubMedCrossRefGoogle Scholar
  92. Lewis DA et al (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35(1):57–67PubMedCrossRefGoogle Scholar
  93. Lladó-Pelfort L et al (2016) Phencyclidine-induced disruption of oscillatory activity in prefrontal cortex: effects of antipsychotic drugs and receptor ligands. Eur Neuropsychopharmacol 26(3):614–625PubMedCrossRefGoogle Scholar
  94. Llinas RR, Steriade M (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95(6):3297–3308PubMedCrossRefGoogle Scholar
  95. Lopez Hill X, Scorza MC (2012) Role of the anterior thalamic nucleus in the motor hyperactivity induced by systemic MK-801 administration in rats. Neuropharmacology 62(7):2440–2446PubMedCrossRefGoogle Scholar
  96. Lopez-Gil X et al (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32(10):2087–2097PubMedCrossRefGoogle Scholar
  97. Lopez-Gil X et al (2012) Importance of inter-hemispheric prefrontal connection in the effects of non-competitive NMDA receptor antagonists. Int J Neuropsychopharmacol 15(7):945–956PubMedCrossRefGoogle Scholar
  98. Lopez-Gimenez JF et al (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429(4):571–589PubMedCrossRefGoogle Scholar
  99. Marek GJ, Aghajanian GK (1998) 5-Hydroxytryptamine-induced excitatory postsynaptic currents in neocortical layer V pyramidal cells: suppression by mu-opiate receptor activation. Neuroscience 86(2):485–497PubMedCrossRefGoogle Scholar
  100. Marek GJ et al (2001) A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience 105(2):379–392PubMedCrossRefGoogle Scholar
  101. Marshall L et al (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613PubMedCrossRefGoogle Scholar
  102. Martin-Ruiz R et al (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21(24):9856–9866PubMedCrossRefGoogle Scholar
  103. Mayberg HS et al (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660PubMedCrossRefGoogle Scholar
  104. McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318PubMedPubMedCentralCrossRefGoogle Scholar
  105. McKenna DJ (2004) Clinical investigations of the therapeutic potential of ayahuasca: rationale and regulatory challenges. Pharmacol Ther 102(2):111–129PubMedCrossRefGoogle Scholar
  106. McKenna DJ, Towers GH, Abbott F (1984) Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and beta-carboline constituents of ayahuasca. J Ethnopharmacol 10(2):195–223PubMedPubMedCentralCrossRefGoogle Scholar
  107. Meltzer HY, Massey BW (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 11(1):59–67PubMedCrossRefGoogle Scholar
  108. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202PubMedCrossRefGoogle Scholar
  109. Miner LA et al (2003) Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116(1):107–117PubMedCrossRefGoogle Scholar
  110. Muthukumaraswamy SD et al (2013) Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci 33(38):15171–15183CrossRefPubMedGoogle Scholar
  111. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101(2):131–181CrossRefPubMedGoogle Scholar
  112. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322PubMedPubMedCentralCrossRefGoogle Scholar
  113. Nunez PL, Srinivasan R (2006) A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 117(11):2424–2435PubMedPubMedCentralCrossRefGoogle Scholar
  114. Oughourlian JM, Rougeul A, Verdeaux J (1971) Action of hallucinogens on electroencephalograms. Therapie 26(5):953–968PubMedGoogle Scholar
  115. Palenicek T et al (2013) Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology 225(1):75–93PubMedCrossRefGoogle Scholar
  116. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7(1):39–47PubMedCrossRefGoogle Scholar
  117. Pazos A, Cortes R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346(2):231–249PubMedCrossRefGoogle Scholar
  118. Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain–IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21(1):123–139PubMedCrossRefGoogle Scholar
  119. Petsche H, Pockberger H, Rappelsberger P (1984) On the search for the sources of the electroencephalogram. Neuroscience 11(1):1–27PubMedCrossRefGoogle Scholar
  120. Phillips ML et al (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 54(5):504–514PubMedCrossRefGoogle Scholar
  121. Pinault D (2008) N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex. Biol Psychiatry 63(8):730–735PubMedCrossRefGoogle Scholar
  122. Poulin J, Stip E, Godbout R (2008) REM sleep EEG spectral analysis in patients with first-episode schizophrenia. J Psychiatr Res 42(13):1086–1093PubMedCrossRefGoogle Scholar
  123. Puig MV et al (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex 13(8):870–882PubMedCrossRefGoogle Scholar
  124. Puig MV, Artigas F, Celada P (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 15(1):1–14PubMedCrossRefGoogle Scholar
  125. Puigdemont D et al (2012) Deep brain stimulation of the subcallosal cingulate gyrus: further evidence in treatment-resistant major depression. Int J Neuropsychopharmacol 15(1):121–133PubMedCrossRefGoogle Scholar
  126. Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682PubMedPubMedCentralCrossRefGoogle Scholar
  127. Rasmussen H et al (2010) Decreased frontal serotonin2A receptor binding in antipsychotic-naive patients with first-episode schizophrenia. Arch Gen Psychiatry 67(1):9–16PubMedCrossRefGoogle Scholar
  128. Rasmussen H et al (2016) Low frontal serotonin 2A receptor binding is a state marker for schizophrenia? Eur Neuropsychopharmacol 26(7):1248–1250PubMedCrossRefGoogle Scholar
  129. Riba J et al (2002) Topographic pharmaco-EEG mapping of the effects of the South American psychoactive beverage ayahuasca in healthy volunteers. Br J Clin Pharmacol 53(6):613–628PubMedPubMedCentralCrossRefGoogle Scholar
  130. Riba J et al (2004) Effects of the South American psychoactive beverage ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography. Neuropsychobiology 50(1):89–101CrossRefPubMedGoogle Scholar
  131. Riga MS et al (2014) The natural hallucinogen 5-MeO-DMT, component of ayahuasca, disrupts cortical function in rats: reversal by antipsychotic drugs. Int J Neuropsychopharmacol 17(8):1269–1282PubMedCrossRefGoogle Scholar
  132. Rockstroh BS et al (2007) Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network? BMC Psychiatry 7:44PubMedPubMedCentralCrossRefGoogle Scholar
  133. Rollema H et al (1997) Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 338(2):R3–R5PubMedCrossRefGoogle Scholar
  134. Santana N et al (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14(10):1100–1109PubMedCrossRefGoogle Scholar
  135. Santana N, Mengod G, Artigas F (2009) Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 19(4):849–860PubMedCrossRefGoogle Scholar
  136. Santana N et al (2011) Activation of thalamocortical networks by the N-methyl-D-aspartate receptor antagonist phencyclidine: reversal by clozapine. Biol Psychiatry 69(10):918–927PubMedCrossRefGoogle Scholar
  137. Santana N, Mengod G, Artigas F (2013) Expression of alpha(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors. Int J Neuropsychopharmacol 16(5):1139–1151PubMedCrossRefGoogle Scholar
  138. Schenberg EE et al (2015) Acute biphasic effects of ayahuasca. PLoS ONE 10(9):e0137202PubMedPubMedCentralCrossRefGoogle Scholar
  139. Schreiber R, Brocco M, Millan MJ (1994) Blockade of the discriminative stimulus effects of DOI by MDL 100,907 and the ‘atypical’ antipsychotics, clozapine and risperidone. Eur J Pharmacol 264(1):99–102PubMedCrossRefGoogle Scholar
  140. Schug RA et al (2011) Resting EEG deficits in accused murderers with schizophrenia. Psychiatry Res 194(1):85–94PubMedPubMedCentralCrossRefGoogle Scholar
  141. Schultes RE, Hofmann A (1991) The botany and chemistry of Hallucinogens. Charles C Thomas Pub Ltd., Springfield, Illinois, USAGoogle Scholar
  142. Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74(1):1–58PubMedCrossRefGoogle Scholar
  143. Sebban C et al (2002) Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA-, alpha(1)- and 5-HT(2A)-receptors. Br J Pharmacol 135(1):65–78PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sekimoto M et al (2007) Reduced frontal asymmetry of delta waves during all-night sleep in schizophrenia. Schizophr Bull 33(6):1307–1311PubMedCrossRefGoogle Scholar
  145. Selemon LD, Goldman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45(1):17–25PubMedCrossRefGoogle Scholar
  146. Seminowicz DA et al (2004) Limbic-frontal circuitry in major depression: a path modeling metanalysis. NeuroImage 22(1):409–418PubMedCrossRefGoogle Scholar
  147. Shergill SS et al (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 57(11):1033–1038PubMedCrossRefGoogle Scholar
  148. Skelly LR et al (2008) Diffusion tensor imaging in schizophrenia: relationship to symptoms. Schizophr Res 98(1–3):157–162PubMedCrossRefGoogle Scholar
  149. Sklerov J et al (2005) A fatal intoxication following the ingestion of 5-methoxy-N, N-dimethyltryptamine in an ayahuasca preparation. J Anal Toxicol 29(8):838–841PubMedCrossRefGoogle Scholar
  150. Spencer KM (2011) Baseline gamma power during auditory steady-state stimulation in schizophrenia. Front Hum Neurosci 5:190PubMedGoogle Scholar
  151. Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6(4):557–618PubMedCrossRefGoogle Scholar
  152. Steriade M (2006) Grouping of brain rhythms in corticothalamic systems. Neuroscience 137(4):1087–1106PubMedCrossRefGoogle Scholar
  153. Steriade M, Nunez A, Amzica F (1993) Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13(8):3266–3283PubMedCrossRefGoogle Scholar
  154. Suzuki Y et al (2002) Acute administration of phencyclidine induces tonic activation of medial prefrontal cortex neurons in freely moving rats. Neuroscience 114(3):769–779PubMedCrossRefGoogle Scholar
  155. Swanson CJ et al (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 4(2):131–144PubMedCrossRefGoogle Scholar
  156. Traub RD et al (2000) A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur J Neurosci 12(11):4093–4106PubMedCrossRefGoogle Scholar
  157. Traub RD et al (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J Neurosci 21(23):9478–9486PubMedCrossRefGoogle Scholar
  158. Troyano-Rodriguez E et al (2014) Phencyclidine inhibits the activity of thalamic reticular gamma-aminobutyric acidergic neurons in rat brain. Biol Psychiatry 76(12):937–945PubMedCrossRefGoogle Scholar
  159. Tseng KY et al (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59(7):412–417PubMedPubMedCentralCrossRefGoogle Scholar
  160. Upton N et al. (2014) NMDA receptor antagonist-induced changes in rat EEG power spectra as a model of schizophrenia. Program No. 230.04, in neuroscience 2014 abstracts 2014. Society for Neuroscience, Washington, USAGoogle Scholar
  161. Van Eden CG et al (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 22(3):849–862PubMedCrossRefGoogle Scholar
  162. Vazquez-Borsetti P, Cortes R, Artigas F (2009) Pyramidal neurons in rat prefrontal cortex projecting to ventral tegmental area and dorsal raphe nucleus express 5-HT2A receptors. Cereb Cortex 19(7):1678–1686PubMedCrossRefGoogle Scholar
  163. Vazquez-Borsetti P et al (2011) Simultaneous projections from prefrontal cortex to dopaminergic and serotonergic nuclei. Int J Neuropsychopharmacol 14(3):289–302PubMedCrossRefGoogle Scholar
  164. Venables NC, Bernat EM, Sponheim SR (2009) Genetic and disorder-specific aspects of resting state EEG abnormalities in schizophrenia. Schizophr Bull 35(4):826–839PubMedCrossRefGoogle Scholar
  165. Villalobos C et al (2005) Serotonergic regulation of calcium-activated potassium currents in rodent prefrontal cortex. Eur J Neurosci 22(5):1120–1126PubMedCrossRefGoogle Scholar
  166. Vollenweider FX, Kometer M (2010) The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 11(9):642–651CrossRefPubMedGoogle Scholar
  167. Vollenweider FX et al (1997a) Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16(5):357–372PubMedPubMedCentralCrossRefGoogle Scholar
  168. Vollenweider FX et al (1997b) Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol 7(1):9–24PubMedPubMedCentralCrossRefGoogle Scholar
  169. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44(7):660–669PubMedCrossRefGoogle Scholar
  170. Woo TU, Kim AM, Viscidi E (2008) Disease-specific alterations in glutamatergic neurotransmission on inhibitory interneurons in the prefrontal cortex in schizophrenia. Brain Res 1218:267–277PubMedPubMedCentralCrossRefGoogle Scholar
  171. Wood J, Kim Y, Moghaddam B (2012) Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs. J Neurosci 32(9):3022–3031PubMedPubMedCentralCrossRefGoogle Scholar
  172. Yu AM (2008) Indolealkylamines: biotransformations and potential drug-drug interactions. AAPS J 10(2):242–253PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zhang Y, Llinas RR, Lisman JE (2009) Inhibition of NMDARs in the Nucleus Reticularis of the Thalamus Produces Delta Frequency Bursting. Front Neural Circuits 3:20PubMedPubMedCentralGoogle Scholar
  174. Zhang Y et al (2012) NMDAR antagonist action in thalamus imposes delta oscillations on the hippocampus. J Neurophysiol 107(11):3181–3189PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • L. Lladó-Pelfort
    • 1
  • P. Celada
    • 1
  • M. S. Riga
    • 1
  • E. Troyano-Rodríguez
    • 1
  • N. Santana
    • 1
  • F. Artigas
    • 1
    • 2
    Email author
  1. 1.Department of Neurochemistry and Neuropharmacology, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Institut d’Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS)BarcelonaSpain
  2. 2.Department of Neurochemistry and NeuropharmacologyIIBB-CSIC (IDIBAPS)BarcelonaSpain

Personalised recommendations