Advertisement

Oxytocin and Prader-Willi Syndrome

  • Anahid Kabasakalian
  • Casara J. Ferretti
  • Eric Hollander
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 35)

Abstract

In the chapter, we explore the relationship between the peptide hormone, oxytocin (OT), and behavioral and metabolic disturbances observed in the genetic disorder Prader-Willi Syndrome (PWS). Phenotypic and genotypic characteristics of PWS are described, as are the potential implications of an abnormal OT system with respect to neural development including the possible effects of OT dysfunction on interactions with other regulatory mediators, including neurotransmitters, neuromodulators, and hormones. The major behavioral characteristics are explored in the context of OT dysfunction, including hyperphagia, impulsivity, anxiety and emotion dysregulation, sensory processing and interoception, repetitive and restrictive behaviors, and dysfunctional social cognition. Behavioral overlaps with autistic spectrum disorders are discussed. The implications of OT dysfunction on the mechanisms of reward and satiety and their possible role in informing behavioral characteristics are also discussed. Treatment implications and future directions for investigation are considered.

Keywords

Autistic spectrum disorder Hyperphagia Neuropeptide Oxytocin Prader-Willi PWS Restrictive and repetitive behaviors Reward Satiety 

References

  1. Aad G, Abbott B, Abdallah J, Abdelalim AA, Abdesselam A, Abdinov O et al (2010) Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC. Phys Rev Lett 105(16):161801. doi: 10.1103/PhysRevLett.105.161801CrossRefPubMedGoogle Scholar
  2. Akefeldt A, Ekman R, Gillberg C, Mansson JE (1998) Cerebrospinal fluid monoamines in Prader-Willi syndrome. Biol Psychiatry 44(12):1321–1328CrossRefGoogle Scholar
  3. Anagnostou E, Soorya L, Chaplin W, Bartz J, Halpern D, Wasserman S et al (2012) Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: a randomized controlled trial. Mol Autism 3(1):16. doi: 10.1186/2040-2392-3-16CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andrieu D, Meziane H, Marly F, Angelats C, Fernandez PA, Muscatelli F (2006) Sensory defects in Necdin deficient mice result from a loss of sensory neurons correlated within an increase of developmental programmed cell death. BMC Dev Biol 6:56. doi: 10.1186/1471-213X-6-56CrossRefPubMedPubMedCentralGoogle Scholar
  5. Angulo MA, Butler MG, Cataletto ME (2015) Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Investig 38(12):1249–1263. doi: 10.1007/s40618-015-0312-9CrossRefGoogle Scholar
  6. Aoki Y, Watanabe T, Abe O, Kuwabara H, Yahata N, Takano Y et al (2015) Oxytocin’s neurochemical effects in the medial prefrontal cortex underlie recovery of task-specific brain activity in autism: a randomized controlled trial. Mol Psychiatry 20(4):447–453. doi: 10.1038/mp.2014.74CrossRefGoogle Scholar
  7. Atasoy D, Betley JN, Su HH, Sternson SM (2012) Deconstruction of a neural circuit for hunger. Nature 488(7410):172–177. doi: 10.1038/nature11270CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bartz JA, Zaki J, Bolger N, Ochsner KN (2011) Social effects of oxytocin in humans: context and person matter. Trends Cogn Sci 15(7):301–309. doi: 10.1016/j.tics.2011.05.002CrossRefGoogle Scholar
  9. Bennett JA, Germani T, Haqq AM, Zwaigenbaum L (2015) Autism spectrum disorder in Prader-Willi syndrome: a systematic review. Am J Med Genet A 167A(12):2936–2944. doi: 10.1002/ajmg.a.37286CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bethlehem RA, van Honk J, Auyeung B, Baron-Cohen S (2013) Oxytocin, brain physiology, and functional connectivity: a review of intranasal oxytocin fMRI studies. Psychoneuroendocrinology 38(7):962–974. doi: 10.1016/j.psyneuen.2012.10.011CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T et al (2010) A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 468(7327):1061–1066. doi: 10.1038/nature09629CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bickart KC, Dickerson BC, Barrett LF (2014) The amygdala as a hub in brain networks that support social life. Neuropsychologia 63:235–248. doi: 10.1016/j.neuropsychologia.2014.08.013CrossRefPubMedPubMedCentralGoogle Scholar
  13. Biebermann H, Castaneda TR, van Landeghem F, von Deimling A, Escher F, Brabant G et al (2006) A role for beta-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab 3(2):141–146. doi: 10.1016/j.cmet.2006.01.007CrossRefPubMedGoogle Scholar
  14. Bittel DC, Kibiryeva N, Sell SM, Strong TV, Butler MG (2007) Whole genome microarray analysis of gene expression in Prader-Willi syndrome. Am J Med Genet A 143A(5):430–442. doi: 10.1002/ajmg.a.31606CrossRefPubMedPubMedCentralGoogle Scholar
  15. Blevins JE, Ho JM (2013) Role of oxytocin signaling in the regulation of body weight. Rev Endocr Metab Disord 14(4):311–329. doi: 10.1007/s11154-013-9260-xCrossRefPubMedPubMedCentralGoogle Scholar
  16. Bos PA, Montoya ER, Hermans EJ, Keysers C, van Honk J (2015) Oxytocin reduces neural activity in the pain circuitry when seeing pain in others. NeuroImage 113:217–224. doi: 10.1016/j.neuroimage.2015.03.049CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boutelle KN, Wierenga CE, Bischoff-Grethe A, Melrose AJ, Grenesko-Stevens E, Paulus MP, Kaye WH (2015) Increased brain response to appetitive tastes in the insula and amygdala in obese compared with healthy weight children when sated. Int J Obes 39(4):620–628. doi: 10.1038/ijo.2014.206CrossRefGoogle Scholar
  18. Brandt BR, Rosen I (1998) Impaired peripheral somatosensory function in children with Prader-Willi syndrome. Neuropediatrics 29(3):124–126CrossRefGoogle Scholar
  19. Brown CH, Grattan DR (2007) Does maternal oxytocin protect the fetal brain? Trends Endocrinol Metab 18(6):225–226. doi: 10.1016/j.tem.2007.04.003CrossRefPubMedGoogle Scholar
  20. Caquineau C, Leng G, Guan XM, Jiang M, Van der Ploeg L, Douglas AJ (2006) Effects of alpha-melanocyte-stimulating hormone on magnocellular oxytocin neurones and their activation at intromission in male rats. J Neuroendocrinol 18(9):685–691. doi: 10.1111/j.1365-2826.2006.01465.xCrossRefPubMedGoogle Scholar
  21. Carter CS (2014) Oxytocin pathways and the evolution of human behavior. Annu Rev Psychol 65:17–39. doi: 10.1146/annurev-psych-010213-115110CrossRefGoogle Scholar
  22. Ceunen E, Vlaeyen JW, Van Diest I (2016) On the origin of interoception. Front Psychol 7:743. doi: 10.3389/fpsyg.2016.00743CrossRefPubMedPubMedCentralGoogle Scholar
  23. Coiro V, Saccani-Jotti G, Rubino P, Manfredi G, Vacca P, Volta E, Chiodera P (2008) Oxytocin inhibits the stimulatory effect of ghrelin on circulating neuropeptide Y levels in humans. J Neural Transm (Vienna) 115(9):1265–1267. doi: 10.1007/s00702-008-0057-0CrossRefGoogle Scholar
  24. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13(4):500–505CrossRefGoogle Scholar
  25. Dagher A (2012) Functional brain imaging of appetite. Trends Endocrinol Metab 23(5):250–260. doi: 10.1016/j.tem.2012.02.009CrossRefPubMedGoogle Scholar
  26. Dai L, Carter CS, Ying J, Bellugi U, Pournajafi-Nazarloo H, Korenberg JR (2012) Oxytocin and vasopressin are dysregulated in Williams syndrome, a genetic disorder affecting social behavior. PLoS One 7(6):e38513. doi: 10.1371/journal.pone.0038513CrossRefPubMedPubMedCentralGoogle Scholar
  27. Damiano CR, Aloi J, Dunlap K, Burrus CJ, Mosner MG, Kozink RV et al (2014) Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards. Mol Autism 5(1):7. doi: 10.1186/2040-2392-5-7CrossRefPubMedPubMedCentralGoogle Scholar
  28. Del Parigi A, Gautier JF, Chen K, Salbe AD, Ravussin E, Reiman E, Tataranni PA (2002) Neuroimaging and obesity: mapping the brain responses to hunger and satiation in humans using positron emission tomography. Ann N Y Acad Sci 967:389–397CrossRefGoogle Scholar
  29. Descheemaeker MJ, Govers V, Vermeulen P, Fryns JP (2006) Pervasive developmental disorders in Prader-Willi syndrome: the Leuven experience in 59 subjects and controls. Am J Med Genet A 140(11):1136–1142. doi: 10.1002/ajmg.a.31235CrossRefPubMedGoogle Scholar
  30. Dimitropoulos A, Schultz RT (2007) Autistic-like symptomatology in Prader-Willi syndrome: a review of recent findings. Curr Psychiatry Rep 9(2):159–164CrossRefGoogle Scholar
  31. Dimitropoulos A, Schultz RT (2008) Food-related neural circuitry in Prader-Willi syndrome: response to high- versus low-calorie foods. J Autism Dev Disord 38(9):1642–1653. doi: 10.1007/s10803-008-0546-xCrossRefPubMedGoogle Scholar
  32. Dimitropoulos A, Feurer ID, Roof E, Stone W, Butler MG, Sutcliffe J, Thompson T (2000) Appetitive behavior, compulsivity, and neurochemistry in Prader-Willi syndrome. Ment Retard Dev Disabil Res Rev 6(2):125–130. doi: 10.1002/1098-2779(2000)6:2<125::AID-MRDD6>3.0.CO;2-TCrossRefPubMedGoogle Scholar
  33. Dimitropoulos A, Ho A, Feldman B (2013) Social responsiveness and competence in Prader-Willi syndrome: direct comparison to autism spectrum disorder. J Autism Dev Disord 43(1):103–113. doi: 10.1007/s10803-012-1547-3CrossRefPubMedGoogle Scholar
  34. Dombret C, Nguyen T, Schakman O, Michaud JL, Hardin-Pouzet H, Bertrand MJ, De Backer O (2012) Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus. Hum Mol Genet 21(21):4703–4717. doi: 10.1093/hmg/dds310CrossRefPubMedPubMedCentralGoogle Scholar
  35. Domes G, Kumbier E, Heinrichs M, Herpertz SC (2014) Oxytocin promotes facial emotion recognition and amygdala reactivity in adults with asperger syndrome. Neuropsychopharmacology 39(3):698–706. doi: 10.1038/npp.2013.254CrossRefPubMedPubMedCentralGoogle Scholar
  36. Driscoll DJ, Miller JL, Schwartz S, Cassidy SB (2016) Prader-Willi syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, Bird TD, Ledbetter N, Mefford HC, RJH S, Stephens K (eds) GeneReviews®. University of Washington, Seattle, pp 1993–2017. [Internet]Google Scholar
  37. Dubern B, Bisbis S, Talbaoui H, Le Beyec J, Tounian P, Lacorte JM, Clement K (2007) Homozygous null mutation of the melanocortin-4 receptor and severe early-onset obesity. J Pediatr 150(6):613–617, 617.e611. doi: 10.1016/j.jpeds.2007.01.041CrossRefGoogle Scholar
  38. DuBois D, Ameis SH, Lai MC, Casanova MF, Desarkar P (2016) Interoception in autism spectrum disorder: a review. Int J Dev Neurosci 52:104–111. doi: 10.1016/j.ijdevneu.2016.05.001CrossRefPubMedGoogle Scholar
  39. Dykens EM, Lee E, Roof E (2011) Prader-Willi syndrome and autism spectrum disorders: an evolving story. J Neurodev Disord 3(3):225–237. doi: 10.1007/s11689-011-9092-5CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ebner NC, Chen H, Porges E, Lin T, Fischer H, Feifel D, Cohen RA (2016) Oxytocin’s effect on resting-state functional connectivity varies by age and sex. Psychoneuroendocrinology 69:50–59. doi: 10.1016/j.psyneuen.2016.03.013CrossRefPubMedPubMedCentralGoogle Scholar
  41. Eiholzer U, Grieser J, Schlumpf M, l’Allemand D (2007) Clinical effects of treatment for hypogonadism in male adolescents with Prader-Labhart-Willi syndrome. Horm Res 68(4):178–184. doi: 10.1159/000100925CrossRefPubMedGoogle Scholar
  42. Einfeld SL, Smith E, McGregor IS, Steinbeck K, Taffe J, Rice LJ et al (2014) A double-blind randomized controlled trial of oxytocin nasal spray in Prader Willi syndrome. Am J Med Genet A 164A(9):2232–2239. doi: 10.1002/ajmg.a.36653CrossRefPubMedGoogle Scholar
  43. Fiene L, Brownlow C (2015) Investigating interoception and body awareness in adults with and without autism spectrum disorder. Autism Res 8(6):709–716. doi: 10.1002/aur.1486CrossRefPubMedGoogle Scholar
  44. Frijling JL, van Zuiden M, Koch SB, Nawijn L, Veltman DJ, Olff M (2016) Intranasal oxytocin affects amygdala functional connectivity after trauma script-driven imagery in distressed recently trauma-exposed individuals. Neuropsychopharmacology 41(5):1286–1296. doi: 10.1038/npp.2015.278CrossRefPubMedGoogle Scholar
  45. Gamer M, Zurowski B, Buchel C (2010) Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proc Natl Acad Sci U S A 107(20):9400–9405. doi: 10.1073/pnas.1000985107CrossRefPubMedPubMedCentralGoogle Scholar
  46. Gito M, Ihara H, Ogata H, Sayama M, Murakami N, Nagai T et al (2015) Gender differences in the behavioral symptom severity of Prader-Willi syndrome. Behav Neurol 2015:294127. doi: 10.1155/2015/294127CrossRefPubMedPubMedCentralGoogle Scholar
  47. Godino A, De Luca LA Jr, Antunes-Rodrigues J, Vivas L (2007) Oxytocinergic and serotonergic systems involvement in sodium intake regulation: satiety or hypertonicity markers? Am J Physiol Regul Integr Comp Physiol 293(3):R1027–R1036. doi: 10.1152/ajpregu.00078.2007CrossRefPubMedGoogle Scholar
  48. Goodson JL, Kabelik D (2009) Dynamic limbic networks and social diversity in vertebrates: from neural context to neuromodulatory patterning. Front Neuroendocrinol 30(4):429–441. doi: 10.1016/j.yfrne.2009.05.007CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gorka SM, Fitzgerald DA, Labuschagne I, Hosanagar A, Wood AG, Nathan PJ, Phan KL (2015) Oxytocin modulation of amygdala functional connectivity to fearful faces in generalized social anxiety disorder. Neuropsychopharmacology 40(2):278–286. doi: 10.1038/npp.2014.168CrossRefPubMedPubMedCentralGoogle Scholar
  50. Greaves N, Prince E, Evans DW, Charman T (2006) Repetitive and ritualistic behaviour in children with Prader-Willi syndrome and children with autism. J Intellect Disabil Res 50(Pt 2):92–100. doi: 10.1111/j.1365-2788.2005.00726.xCrossRefPubMedGoogle Scholar
  51. Green L, Fein D, Modahl C, Feinstein C, Waterhouse L, Morris M (2001) Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 50(8):609–613CrossRefGoogle Scholar
  52. Green MF, Horan WP, Lee J (2015) Social cognition in schizophrenia. Nat Rev Neurosci 16(10):620–631. doi: 10.1038/nrn4005CrossRefPubMedPubMedCentralGoogle Scholar
  53. Griggs JL, Sinnayah P, Mathai ML (2015) Prader-Willi syndrome: from genetics to behaviour, with special focus on appetite treatments. Neurosci Biobehav Rev 59:155–172. doi: 10.1016/j.neubiorev.2015.10.003CrossRefPubMedGoogle Scholar
  54. Grinevich V, Desarmenien MG, Chini B, Tauber M, Muscatelli F (2014) Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders. Front Neuroanat 8:164. doi: 10.3389/fnana.2014.00164CrossRefPubMedPubMedCentralGoogle Scholar
  55. Halit H, Grice SJ, Bolton R, Johnson MH (2008) Face and gaze processing in Prader-Willi syndrome. J Neuropsychol 2(Pt 1):65–77CrossRefGoogle Scholar
  56. Harrold JA, Williams G (2006) Melanocortin-4 receptors, beta-MSH and leptin: key elements in the satiety pathway. Peptides 27(2):365–371. doi: 10.1016/j.peptides.2005.01.030CrossRefPubMedGoogle Scholar
  57. Hayashi M, Itoh M, Kabasawa Y, Hayashi H, Satoh J, Morimatsu Y (1992) A neuropathological study of a case of the Prader-Willi syndrome with an interstitial deletion of the proximal long arm of chromosome 15. Brain Dev 14(1):58–62CrossRefGoogle Scholar
  58. Heinrichs SC, Menzaghi F, Merlo Pich E, Britton KT, Koob GF (1995) The role of CRF in behavioral aspects of stress. Ann N Y Acad Sci 771:92–104CrossRefGoogle Scholar
  59. Herisson FM, Waas JR, Fredriksson R, Schioth HB, Levine AS, Olszewski PK (2016) Oxytocin acting in the nucleus accumbens core decreases food intake. J Neuroendocrinol 28(4). doi: 10.1111/jne.12381
  60. Hinton EC, Holland AJ, Gellatly MS, Soni S, Patterson M, Ghatei MA, Owen AM (2006) Neural representations of hunger and satiety in Prader-Willi syndrome. Int J Obes 30(2):313–321. doi: 10.1038/sj.ijo.0803128CrossRefGoogle Scholar
  61. Holland AJ, Treasure J, Coskeran P, Dallow J (1995) Characteristics of the eating disorder in Prader-Willi syndrome: implications for treatment. J Intellect Disabil Res 39(Pt 5):373–381CrossRefGoogle Scholar
  62. Hollander E (2013) Social synchrony and oxytocin: from behavior to genes to therapeutics. Am J Psychiatry 170(10):1086–1089. doi: 10.1176/appi.ajp.2013.13070848CrossRefPubMedGoogle Scholar
  63. Hollander E, Novotny S, Hanratty M, Yaffe R, DeCaria CM, Aronowitz BR, Mosovich S (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 28(1):193–198. doi: 10.1038/sj.npp.1300021CrossRefPubMedPubMedCentralGoogle Scholar
  64. Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L et al (2007) Oxytocin increases retention of social cognition in autism. Biol Psychiatry 61(4):498–503. doi: 10.1016/j.biopsych.2006.05.030CrossRefPubMedPubMedCentralGoogle Scholar
  65. Holsen LM, Zarcone JR, Brooks WM, Butler MG, Thompson TI, Ahluwalia JS et al (2006) Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. Obesity (Silver Spring) 14(6):1028–1037. doi: 10.1038/oby.2006.118CrossRefGoogle Scholar
  66. Holsen LM, Zarcone JR, Chambers R, Butler MG, Bittel DC, Brooks WM et al (2009) Genetic subtype differences in neural circuitry of food motivation in Prader-Willi syndrome. Int J Obes (Lond) 33(2):273–283. doi: 10.1038/ijo.2008.255CrossRefGoogle Scholar
  67. Holsen LM, Savage CR, Martin LE, Bruce AS, Lepping RJ, Ko E et al (2012) Importance of reward and prefrontal circuitry in hunger and satiety: Prader-Willi syndrome vs simple obesity. Int J Obes (Lond) 36(5):638–647. doi: 10.1038/ijo.2011.204CrossRefGoogle Scholar
  68. Hoybye C (2004) Endocrine and metabolic aspects of adult Prader-Willi syndrome with special emphasis on the effect of growth hormone treatment. Growth Horm IGF Res 14(1):1–15CrossRefGoogle Scholar
  69. Hoybye C, Barkeling B, Espelund U, Petersson M, Thoren M (2003) Peptides associated with hyperphagia in adults with Prader-Willi syndrome before and during GH treatment. Growth Horm IGF Res 13(6):322–327CrossRefGoogle Scholar
  70. Hu J, Qi S, Becker B, Luo L, Gao S, Gong Q et al (2015) Oxytocin selectively facilitates learning with social feedback and increases activity and functional connectivity in emotional memory and reward processing regions. Hum Brain Mapp 36(6):2132–2146. doi: 10.1002/hbm.22760CrossRefGoogle Scholar
  71. Hurlemann R, Patin A, Onur OA, Cohen MX, Baumgartner T, Metzler S et al (2010) Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J Neurosci 30(14):4999–5007. doi: 10.1523/JNEUROSCI.5538-09.2010CrossRefPubMedPubMedCentralGoogle Scholar
  72. Hurren BJ, Flack NA (2016) Prader-Willi syndrome: a spectrum of anatomical and clinical features. Clin Anat 29(5):590–605. doi: 10.1002/ca.22686CrossRefPubMedGoogle Scholar
  73. Iughetti L, Bosio L, Corrias A, Gargantini L, Ragusa L, Livieri C et al (2008) Pituitary height and neuroradiological alterations in patients with Prader-Labhart-Willi syndrome. Eur J Pediatr 167(6):701–702. doi: 10.1007/s00431-007-0555-3CrossRefPubMedGoogle Scholar
  74. Johnson L, Manzardo AM, Miller JL, Driscoll DJ, Butler MG (2016) Elevated plasma oxytocin levels in children with Prader-Willi syndrome compared with healthy unrelated siblings. Am J Med Genet A 170(3):594–601. doi: 10.1002/ajmg.a.37488CrossRefPubMedGoogle Scholar
  75. Kerestes R, Harrison BJ, Dandash O, Stephanou K, Whittle S, Pujol J, Davey CG (2015) Specific functional connectivity alterations of the dorsal striatum in young people with depression. Neuroimage Clin 7:266–272. doi: 10.1016/j.nicl.2014.12.017CrossRefPubMedGoogle Scholar
  76. Kido Y, Sakazume S, Abe Y, Oto Y, Itabashi H, Shiraishi M et al (2013) Testosterone replacement therapy to improve secondary sexual characteristics and body composition without adverse behavioral problems in adult male patients with Prader-Willi syndrome: an observational study. Am J Med Genet A 161A(9):2167–2173. doi: 10.1002/ajmg.a.36048CrossRefPubMedGoogle Scholar
  77. Kim SE, Jin DK, Cho SS, Kim JH, Hong SD, Paik KH et al (2006) Regional cerebral glucose metabolic abnormality in Prader-Willi syndrome: a 18F-FDG PET study under sedation. J Nucl Med 47(7):1088–1092PubMedGoogle Scholar
  78. Klabunde M, Saggar M, Hustyi KM, Hammond JL, Reiss AL, Hall SS (2015) Neural correlates of self-injurious behavior in Prader-Willi syndrome. Hum Brain Mapp 36(10):4135–4143. doi: 10.1002/hbm.22903CrossRefPubMedPubMedCentralGoogle Scholar
  79. Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8(1):21–34. doi: 10.1111/j.1467-789X.2006.00270.xCrossRefPubMedGoogle Scholar
  80. Koch SB, van Zuiden M, Nawijn L, Frijling JL, Veltman DJ, Olff M (2016) Intranasal oxytocin normalizes amygdala functional connectivity in posttraumatic stress disorder. Neuropsychopharmacology 41(8):2041–2051. doi: 10.1038/npp.2016.1CrossRefPubMedPubMedCentralGoogle Scholar
  81. Koenig K, Klin A, Schultz R (2004) Deficits in social attribution ability in Prader-Willi syndrome. J Autism Dev Disord 34(5):573–582CrossRefGoogle Scholar
  82. Kovacs K, Kis A, Pogany A, Koller D, Topal J (2016) Differential effects of oxytocin on social sensitivity in two distinct breeds of dogs (Canis familiaris). Psychoneuroendocrinology 74:212–220. doi: 10.1016/j.psyneuen.2016.09.010CrossRefPubMedGoogle Scholar
  83. Kramer B, Gruber O (2015) Dynamic amygdala influences on the fronto-striatal brain mechanisms involved in self-control of impulsive desires. Neuropsychobiology 72(1):37–45. doi: 10.1159/000437436CrossRefPubMedGoogle Scholar
  84. Krashes MJ, Lowell BB, Garfield AS (2016) Melanocortin-4 receptor-regulated energy homeostasis. Nat Neurosci 19(2):206–219. doi: 10.1038/nn.4202CrossRefPubMedPubMedCentralGoogle Scholar
  85. Kumar J, Völlm B, Palaniyappan L (2015) Oxytocin affects the connectivity of the precuneus and the amygdala: a randomized, double-blinded, placebo-controlled neuroimaging trial. Int J Neuropsychopharmacol 18(5):pyu051CrossRefGoogle Scholar
  86. Kuppens RJ, Donze SH, Hokken-Koelega AC (2016) Promising effects of oxytocin on social and food-related behaviour in young children with Prader-Willi syndrome: a randomized, double-blind, controlled crossover trial. Clin Endocrinol (Oxf) 85(6):979–987. doi: 10.1111/cen.13169CrossRefGoogle Scholar
  87. Kweh FA, Miller JL, Sulsona CR, Wasserfall C, Atkinson M, Shuster JJ et al (2015) Hyperghrelinemia in Prader-Willi syndrome begins in early infancy long before the onset of hyperphagia. Am J Med Genet A 167A(1):69–79. doi: 10.1002/ajmg.a.36810CrossRefPubMedGoogle Scholar
  88. LaBar KS, Gitelman DR, Parrish TB, Kim YH, Nobre AC, Mesulam MM (2001) Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behav Neurosci 115(2):493–500CrossRefGoogle Scholar
  89. Lassi G, Priano L, Maggi S, Garcia-Garcia C, Balzani E, El-Assawy N et al (2016) Deletion of the Snord116/SNORD116 alters sleep in mice and patients with Prader-Willi syndrome. Sleep 39(3):637–644. doi: 10.5665/sleep.5542CrossRefPubMedPubMedCentralGoogle Scholar
  90. Lawson EA, Holsen LM, Santin M, Meenaghan E, Eddy KT, Becker AE et al (2012) Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa. J Clin Endocrinol Metab 97(10):E1898–E1908. doi: 10.1210/jc.2012-1702CrossRefPubMedPubMedCentralGoogle Scholar
  91. Lawson EA, Holsen LM, Santin M, DeSanti R, Meenaghan E, Eddy KT et al (2013) Postprandial oxytocin secretion is associated with severity of anxiety and depressive symptoms in anorexia nervosa. J Clin Psychiatry 74(5):e451–e457. doi: 10.4088/JCP.12m08154CrossRefPubMedPubMedCentralGoogle Scholar
  92. Lee S, Kozlov S, Hernandez L, Chamberlain SJ, Brannan CI, Stewart CL, Wevrick R (2000) Expression and imprinting of MAGEL2 suggest a role in Prader-Willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet 9(12):1813–1819CrossRefGoogle Scholar
  93. Lee YS, Challis BG, Thompson DA, Yeo GS, Keogh JM, Madonna ME et al (2006) A POMC variant implicates beta-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab 3(2):135–140. doi: 10.1016/j.cmet.2006.01.006CrossRefPubMedGoogle Scholar
  94. Leibowitz SF (1990) The role of serotonin in eating disorders. Drugs 39(Suppl 3):33–48CrossRefGoogle Scholar
  95. Leuner B, Shors TJ (2013) Stress, anxiety, and dendritic spines: what are the connections? Neuroscience 251:108–119. doi: 10.1016/j.neuroscience.2012.04.021CrossRefPubMedGoogle Scholar
  96. Lindgren AC, Barkeling B, Hagg A, Ritzen EM, Marcus C, Rossner S (2000) Eating behavior in Prader-Willi syndrome, normal weight, and obese control groups. J Pediatr 137(1):50–55. doi: 10.1067/mpd.2000.106563CrossRefPubMedGoogle Scholar
  97. Lo ST, Siemensma E, Collin P, Hokken-Koelega A (2013) Impaired theory of mind and symptoms of autism spectrum disorder in children with Prader-Willi syndrome. Res Dev Disabil 34(9):2764–2773. doi: 10.1016/j.ridd.2013.05.024CrossRefPubMedGoogle Scholar
  98. Long Z, Duan X, Mantini D, Chen H (2016) Alteration of functional connectivity in autism spectrum disorder: effect of age and anatomical distance. Sci Rep 6:26527. doi: 10.1038/srep26527CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lukoshe A, Hokken-Koelega AC, van der Lugt A, White T (2014) Reduced cortical complexity in children with Prader-Willi syndrome and its association with cognitive impairment and developmental delay. PLoS One 9(9):e107320. doi: 10.1371/journal.pone.0107320CrossRefPubMedPubMedCentralGoogle Scholar
  100. Mantoulan C, Payoux P, Diene G, Glattard M, Roge B, Molinas C et al (2011) PET scan perfusion imaging in the Prader-Willi syndrome: new insights into the psychiatric and social disturbances. J Cereb Blood Flow Metab 31(1):275–282. doi: 10.1038/jcbfm.2010.87CrossRefPubMedGoogle Scholar
  101. Martin A, State M, Anderson GM, Kaye WM, Hanchett JM, McConaha CW et al (1998) Cerebrospinal fluid levels of oxytocin in Prader-Willi syndrome: a preliminary report. Biol Psychiatry 44(12):1349–1352CrossRefGoogle Scholar
  102. Menzies JR, Skibicka KP, Dickson SL, Leng G (2012) Neural substrates underlying interactions between appetite stress and reward. Obes Facts 5(2):208–220. doi: 10.1159/000338237CrossRefPubMedGoogle Scholar
  103. Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12(9):524–538. doi: 10.1038/nrn3044CrossRefPubMedPubMedCentralGoogle Scholar
  104. Meziane H, Schaller F, Bauer S, Villard C, Matarazzo V, Riet F et al (2015) An early postnatal oxytocin treatment prevents social and learning deficits in adult mice deficient for Magel2, a gene involved in Prader-Willi syndrome and autism. Biol Psychiatry 78(2):85–94. doi: 10.1016/j.biopsych.2014.11.010CrossRefGoogle Scholar
  105. Miller JL, Couch JA, Leonard CM, Schwenk K, Towler SD, Shuster J et al (2007a) Sylvian fissure morphology in Prader-Willi syndrome and early-onset morbid obesity. Genet Med 9(8):536–543. doi: 10.1097/GIM.0b013e31812f720dCrossRefPubMedGoogle Scholar
  106. Miller JL, James GA, Goldstone AP, Couch JA, He G, Driscoll DJ, Liu Y (2007b) Enhanced activation of reward mediating prefrontal regions in response to food stimuli in Prader-Willi syndrome. J Neurol Neurosurg Psychiatry 78(6):615–619. doi: 10.1136/jnnp.2006.099044CrossRefPubMedGoogle Scholar
  107. Miller JL, Couch JA, Schmalfuss I, He G, Liu Y, Driscoll DJ (2007c) Intracranial abnormalities detected by three-dimensional magnetic resonance imaging in Prader-Willi syndrome. Am J Med Genet A 143A(5):476–483. doi: 10.1002/ajmg.a.31508CrossRefPubMedGoogle Scholar
  108. Miller JL, Goldstone AP, Couch JA, Shuster J, He G, Driscoll DJ et al (2008) Pituitary abnormalities in Prader-Willi syndrome and early onset morbid obesity. Am J Med Genet A 146A(5):570–577. doi: 10.1002/ajmg.a.31677CrossRefPubMedGoogle Scholar
  109. Miller JL, Tamura R, Butler MG, Kimonis V, Sulsona C, Gold JA, Driscoll DJ (2017) Oxytocin treatment in children with Prader-Willi syndrome: a double-blind, placebo-controlled, crossover study. Am J Med Genet A 173(5):1243–1250. doi: 10.1002/ajmg.a.38160CrossRefPubMedPubMedCentralGoogle Scholar
  110. Modi ME, Inoue K, Barrett CE, Kittelberger KA, Smith DG, Landgraf R, Young LJ (2015) Melanocortin receptor agonists facilitate oxytocin-dependent partner preference formation in the prairie vole. Neuropsychopharmacology 40(8):1856–1865. doi: 10.1038/npp.2015.35CrossRefPubMedPubMedCentralGoogle Scholar
  111. Mottolese R, Redoute J, Costes N, Le Bars D, Sirigu A (2014) Switching brain serotonin with oxytocin. Proc Natl Acad Sci U S A 111(23):8637–8642. doi: 10.1073/pnas.1319810111CrossRefPubMedPubMedCentralGoogle Scholar
  112. Mountjoy K (2015) Pro-opiomelanocortin (POMC) neurones, POMC-derived peptides, melanocortin receptors and obesity: how understanding of this system has changed over the last decade. J Neuroendocrinol 27(6):406–418CrossRefGoogle Scholar
  113. Muller CL, Anacker AM, Veenstra-VanderWeele J (2016) The serotonin system in autism spectrum disorder: from biomarker to animal models. Neuroscience 321:24–41. doi: 10.1016/j.neuroscience.2015.11.010CrossRefPubMedGoogle Scholar
  114. Neumann ID, Landgraf R (2012) Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci 35(11):649–659. doi: 10.1016/j.tins.2012.08.004CrossRefPubMedPubMedCentralGoogle Scholar
  115. Ogura K, Fujii T, Abe N, Hosokai Y, Shinohara M, Takahashi S, Mori E (2011) Small gray matter volume in orbitofrontal cortex in Prader-Willi syndrome: a voxel-based MRI study. Hum Brain Mapp 32(7):1059–1066. doi: 10.1002/hbm.21089CrossRefPubMedGoogle Scholar
  116. Ogura K, Fujii T, Abe N, Hosokai Y, Shinohara M, Fukuda H, Mori E (2013) Regional cerebral blood flow and abnormal eating behavior in Prader-Willi syndrome. Brain Dev 35(5):427–434. doi: 10.1016/j.braindev.2012.07.013CrossRefPubMedGoogle Scholar
  117. Olszewski PK, Waas JR, Brooks LL, Herisson F, Levine AS (2013) Oxytocin receptor blockade reduces acquisition but not retrieval of taste aversion and blunts responsiveness of amygdala neurons to an aversive stimulus. Peptides 50:36–41. doi: 10.1016/j.peptides.2013.09.008CrossRefPubMedGoogle Scholar
  118. Omokawa M, Ayabe T, Nagai T, Imanishi A, Omokawa A, Nishino S et al (2016) Decline of CSF orexin (hypocretin) levels in Prader-Willi syndrome. Am J Med Genet A 170A(5):1181–1186. doi: 10.1002/ajmg.a.37542CrossRefPubMedGoogle Scholar
  119. Ott V, Finlayson G, Lehnert H, Heitmann B, Heinrichs M, Born J, Hallschmid M (2013) Oxytocin reduces reward-driven food intake in humans. Diabetes 62(10):3418–3425. doi: 10.2337/db13-0663CrossRefPubMedPubMedCentralGoogle Scholar
  120. Parker KJ, Garner JP, Libove RA, Hyde SA, Hornbeak KB, Carson DS et al (2014) Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc Natl Acad Sci U S A 111(33):12258–12263. doi: 10.1073/pnas.1402236111CrossRefPubMedPubMedCentralGoogle Scholar
  121. Paulus MP, Stein MB (2006) An insular view of anxiety. Biol Psychiatry 60(4):383–387. doi: 10.1016/j.biopsych.2006.03.042CrossRefPubMedGoogle Scholar
  122. Piech RM, Lewis J, Parkinson CH, Owen AM, Roberts AC, Downing PE, Parkinson JA (2009) Neural correlates of appetite and hunger-related evaluative judgments. PLoS One 4(8):e6581. doi: 10.1371/journal.pone.0006581CrossRefPubMedPubMedCentralGoogle Scholar
  123. Priano L, Miscio G, Grugni G, Milano E, Baudo S, Sellitti L et al (2009) On the origin of sensory impairment and altered pain perception in Prader-Willi syndrome: a neurophysiological study. Eur J Pain 13(8):829–835. doi: 10.1016/j.ejpain.2008.09.011CrossRefPubMedGoogle Scholar
  124. Pujol J, del Hoyo L, Blanco-Hinojo L, de Sola S, Macia D, Martinez-Vilavella G et al (2015) Anomalous brain functional connectivity contributing to poor adaptive behavior in down syndrome. Cortex 64:148–156. doi: 10.1016/j.cortex.2014.10.012CrossRefPubMedGoogle Scholar
  125. Purtell L, Sze L, Loughnan G, Smith E, Herzog H, Sainsbury A et al (2011) In adults with Prader-Willi syndrome, elevated ghrelin levels are more consistent with hyperphagia than high PYY and GLP-1 levels. Neuropeptides 45(4):301–307. doi: 10.1016/j.npep.2011.06.001CrossRefPubMedGoogle Scholar
  126. Quattrocki E, Friston K (2014) Autism, oxytocin and interoception. Neurosci Biobehav Rev 47:410–430. doi: 10.1016/j.neubiorev.2014.09.012CrossRefPubMedPubMedCentralGoogle Scholar
  127. Rice LJ, Einfeld SL (2015) Cognitive and behavioural aspects of Prader-Willi syndrome. Curr Opin Psychiatry 28(2):102–106. doi: 10.1097/YCO.0000000000000135CrossRefPubMedGoogle Scholar
  128. Robinson-Shelton A, Malow BA (2016) Sleep disturbances in neurodevelopmental disorders. Curr Psychiatry Rep 18(1):6. doi: 10.1007/s11920-015-0638-1CrossRefPubMedGoogle Scholar
  129. Sabatier N, Caquineau C, Dayanithi G, Bull P, Douglas AJ, Guan XM et al (2003) Alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. J Neurosci 23(32):10351–10358CrossRefGoogle Scholar
  130. Sabatier N, Leng G, Menzies J (2013) Oxytocin, feeding, and satiety. Front Endocrinol (Lausanne) 4:35. doi: 10.3389/fendo.2013.00035CrossRefGoogle Scholar
  131. Sabihi S, Durosko NE, Dong SM, Leuner B (2014) Oxytocin in the prelimbic medial prefrontal cortex reduces anxiety-like behavior in female and male rats. Psychoneuroendocrinology 45:31–42. doi: 10.1016/j.psyneuen.2014.03.009CrossRefPubMedPubMedCentralGoogle Scholar
  132. Schaaf CP, Gonzalez-Garay ML, Xia F, Potocki L, Gripp KW, Zhang B et al (2013) Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet 45(11):1405–1408CrossRefGoogle Scholar
  133. Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F (2010) A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum Mol Genet 19(24):4895–4905. doi: 10.1093/hmg/ddq424CrossRefPubMedPubMedCentralGoogle Scholar
  134. Shapira NA, Lessig MC, He AG, James GA, Driscoll DJ, Liu Y (2005) Satiety dysfunction in Prader-Willi syndrome demonstrated by fMRI. J Neurol Neurosurg Psychiatry 76(2):260–262. doi: 10.1136/jnnp.2004.039024CrossRefPubMedPubMedCentralGoogle Scholar
  135. Siljee JE, Unmehopa UA, Kalsbeek A, Swaab DF, Fliers E, Alkemade A (2013) Melanocortin 4 receptor distribution in the human hypothalamus. Eur J Endocrinol 168(3):361–369. doi: 10.1530/EJE-12-0750CrossRefPubMedGoogle Scholar
  136. Sinnema M, Boer H, Collin P, Maaskant MA, van Roozendaal KE, Schrander-Stumpel CT, Curfs LM (2011) Psychiatric illness in a cohort of adults with Prader-Willi syndrome. Res Dev Disabil 32(5):1729–1735. doi: 10.1016/j.ridd.2011.02.027CrossRefPubMedGoogle Scholar
  137. Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP (2011) Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 3(103):103ra197. doi: 10.1126/scitranslmed.3002627CrossRefGoogle Scholar
  138. Sripada CS, Phan KL, Labuschagne I, Welsh R, Nathan PJ, Wood AG (2013) Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex. Int J Neuropsychopharmacol 16(2):255–260. doi: 10.1017/S1461145712000533CrossRefPubMedPubMedCentralGoogle Scholar
  139. Stein DJ, Hollander E, Liebowitz MR (1993) Neurobiology of impulsivity and the impulse control disorders. J Neuropsychiatry Clin Neurosci 5(1):9–17. doi: 10.1176/jnp.5.1.9CrossRefPubMedGoogle Scholar
  140. Striepens N, Schroter F, Stoffel-Wagner B, Maier W, Hurlemann R, Scheele D (2016) Oxytocin enhances cognitive control of food craving in women. Hum Brain Mapp 37(12):4276–4285. doi: 10.1002/hbm.23308CrossRefGoogle Scholar
  141. Swaab DF (1997) Prader-Willi syndrome and the hypothalamus. Acta Paediatr Suppl 423:50–54CrossRefGoogle Scholar
  142. Swaab DF, Purba JS, Hofman MA (1995) Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: a study of five cases. J Clin Endocrinol Metab 80(2):573–579. doi: 10.1210/jcem.80.2.7852523CrossRefPubMedGoogle Scholar
  143. Tauber M, Mantoulan C, Copet P, Jauregui J, Demeer G, Diene G et al (2011) Oxytocin may be useful to increase trust in others and decrease disruptive behaviours in patients with Prader-Willi syndrome: a randomised placebo-controlled trial in 24 patients. Orphanet J Rare Dis 6:47. doi: 10.1186/1750-1172-6-47CrossRefPubMedPubMedCentralGoogle Scholar
  144. Tauber M, Boulanouar K, Diene G, Çabal-Berthoumieu S, Ehlinger V, Fichaux-Bourin P et al (2017) The use of oxytocin to improve feeding and social skills in infants with Prader-Willi syndrome. Pediatrics 139(2):e20162976. doi: 10.1542/peds.2016-2976CrossRefPubMedGoogle Scholar
  145. Turner L, Gregory A, Twells L, Gregory D, Stavropoulos DJ (2015) Deletion of the MC4R gene in a 9-year-old obese boy. Child Obes 11(2):219–223. doi: 10.1089/chi.2014.0128CrossRefPubMedGoogle Scholar
  146. Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari S et al (2014) Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 343(6171):675–679. doi: 10.1126/science.1247190CrossRefPubMedPubMedCentralGoogle Scholar
  147. Veltman MW, Thompson RJ, Roberts SE, Thomas NS, Whittington J, Bolton PF (2004) Prader-Willi syndrome – a study comparing deletion and uniparental disomy cases with reference to autism spectrum disorders. Eur Child Adolesc Psychiatry 13(1):42–50. doi: 10.1007/s00787-004-0354-6CrossRefPubMedGoogle Scholar
  148. Veltman MW, Craig EE, Bolton PF (2005) Autism spectrum disorders in Prader-Willi and Angelman syndromes: a systematic review. Psychiatr Genet 15(4):243–254CrossRefGoogle Scholar
  149. Whittington J, Holland T (2011) Recognition of emotion in facial expression by people with Prader-Willi syndrome. J Intellect Disabil Res 55(1):75–84. doi: 10.1111/j.1365-2788.2010.01348.xCrossRefPubMedGoogle Scholar
  150. Wiebking C, Duncan NW, Tiret B, Hayes DJ, Marjanska M, Doyon J et al (2014) GABA in the insula – a predictor of the neural response to interoceptive awareness. Neuroimage 86:10–18. doi: 10.1016/j.neuroimage.2013.04.042CrossRefPubMedGoogle Scholar
  151. Wigren M, Hansen S (2003) Prader-Willi syndrome: clinical picture, psychosocial support and current management. Child Care Health Dev 29(6):449–456CrossRefGoogle Scholar
  152. Wigton R, Radua J, Allen P, Averbeck B, Meyer-Lindenberg A, McGuire P et al (2015) Neurophysiological effects of acute oxytocin administration: systematic review and meta-analysis of placebo-controlled imaging studies. J Psychiatry Neurosci 40(1):E1–22CrossRefGoogle Scholar
  153. Woodcock KA, Oliver C, Humphreys GW (2009) Task-switching deficits and repetitive behaviour in genetic neurodevelopmental disorders: data from children with Prader-Willi syndrome chromosome 15 q11-q13 deletion and boys with Fragile X syndrome. Cogn Neuropsychol 26(2):172–194. doi: 10.1080/02643290802685921CrossRefPubMedGoogle Scholar
  154. Wright H, Li X, Fallon NB, Crookall R, Giesbrecht T, Thomas A et al (2016) Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity. Eur J Neurosci 43(9):1181–1189. doi: 10.1111/ejn.13182CrossRefPubMedPubMedCentralGoogle Scholar
  155. Yamada K, Matsuzawa H, Uchiyama M, Kwee IL, Nakada T (2006) Brain developmental abnormalities in Prader-Willi syndrome detected by diffusion tensor imaging. Pediatrics 118(2):e442–e448. doi: 10.1542/peds.2006-0637CrossRefPubMedGoogle Scholar
  156. Yatawara CJ, Einfeld SL, Hickie IB, Davenport TA, Guastella AJ (2016) The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol Psychiatry 21(9):1225–1231. doi: 10.1038/mp.2015.162CrossRefPubMedPubMedCentralGoogle Scholar
  157. Yoshida M, Takayanagi Y, Inoue K, Kimura T, Young LJ, Onaka T, Nishimori K (2009) Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 29(7):2259–2271. doi: 10.1523/JNEUROSCI.5593-08.2009CrossRefPubMedPubMedCentralGoogle Scholar
  158. Yosten GL, Samson WK (2010) The melanocortins, not oxytocin, mediate the anorexigenic and antidipsogenic effects of neuronostatin. Peptides 31(9):1711–1714. doi: 10.1016/j.peptides.2010.06.017CrossRefPubMedPubMedCentralGoogle Scholar
  159. Young T, Apfeldorf W, Knepper J, Yager J (2009) Severe eating disorder in a 28-year-old man with William’s syndrome. Am J Psychiatry 166(1):25–31. doi: 10.1176/appi.ajp.2008.08050773CrossRefPubMedGoogle Scholar
  160. Zhang Y, Zhao H, Qiu S, Tian J, Wen X, Miller JL et al (2013) Altered functional brain networks in Prader-Willi syndrome. NMR Biomed 26(6):622–629. doi: 10.1002/nbm.2900CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anahid Kabasakalian
    • 1
  • Casara J. Ferretti
    • 2
  • Eric Hollander
    • 1
  1. 1.Albert Einstein College of Medicine, Montefiore Medical CenterBronxUSA
  2. 2.Ferkauf Graduate School of PsychologyYeshiva University, Albert Einstein College of MedicineBronxUSA

Personalised recommendations