Overview of Human Oxytocin Research

  • Keith M. KendrickEmail author
  • Adam J. GuastellaEmail author
  • Benjamin BeckerEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 35)


Social dysfunction is a core symptom of many psychiatric disorders and current medications have little or no remedial effects on this. Following on from extensive studies on animal models demonstrating that the neuropeptide oxytocin plays an important role in social recognition and bonding, human-based research has explored its therapeutic potential for social dysfunction in psychiatric disorders. Here we outline the historical background of this human-based research and some of the current methodological challenges it is facing. To date, research has primarily attempted to establish functional effects through measuring altered endogenous concentrations, observing effects of exogenous administration and by investigating the effects of polymorphisms and epigenetic modifications of the oxytocin receptor gene. We summarize some of the key findings on behavioral and neural effects that have been reported in healthy subjects in the context of social cognition which have provided encouragement that oxytocin could represent a promising therapeutic target. At the same time, we have identified a number of key areas where we urgently need further information about optimal dosing strategies and interactions with other peptide and transmitter systems. Finally, we have summarized current translational findings, particularly in the context of therapeutic outcomes of intranasal oxytocin administration in autism and schizophrenia. These clinical findings while somewhat varied in outcome do offer increasing cause for optimism that targeting the oxytocin system may provide a successful therapeutic approach for social dysfunction. However, future research needs to focus on the most effective treatment strategy and which types of individuals are likely to benefit most.


Autism Brain biomarkers Human Oxytocin Social cognition 



KMK was supported by a National Natural Science Foundation of China grant [NSFC grant number 31530032].


  1. Addington J, Penn D, Woods SW et al (2008) Facial affect recognition in individuals at clinical high risk for psychosis. Br J Psychiatry 192(1):67–68PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adhikari A, Lerner TM, Finkelstein J (2015) Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527:179–185PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adolphs R, Gosselin F, Buchanan TW et al (2005) A mechanism for impaired fear recognition after amygdala damage. Nature 433:68–72PubMedCrossRefGoogle Scholar
  4. Amunts K, Kedo M, Pieperhoff P et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol 210(5):343–352PubMedCrossRefGoogle Scholar
  5. Anagnostou E, Soorya L, Chaplin W et al (2012) Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: a randomized controlled trial. Mol Autism 3(1):16PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anagnostou E, Soorya L, Brian J et al (2014) Intranasal oxytocin in the treatment of autism spectrum disorders: a review of literature and early safety and efficacy data in youth. Brain Res 1580:188–198PubMedCrossRefGoogle Scholar
  7. Andari E, Duhamel JR, Zalla T et al (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci U S A 107(9):4389–4394PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ansseau M, Legros J-J, Mormont C (1987) Intransal oxytocin in obsessive compulsive disorder. Psychoneuroendocrinology 12(3):231–236PubMedCrossRefGoogle Scholar
  9. Aoki Y, Watanabe T, Abe O et al (2014) Oxytocin’s neurochemical effects in the medial prefrontal cortex underlie recovery of task-specific brain activity in autism: a randomized controlled trial. Mol Psychiatry 20:447–453PubMedPubMedCentralCrossRefGoogle Scholar
  10. Aspé-Sánchez M, Moreno M, Rivera MI et al (2016) Oxytocin and vasopressin receptor gene polymorphisms: role in social and psychiatric traits. Front Neurosci 9:510PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bâ MB, Zanello A, Varnier M et al (2008) Deficits in neurocognition, theory of mind, and social functioning in patients with schizophrenic disorders: are they related? J Nerv Ment Dis 196(2):153–156PubMedCrossRefGoogle Scholar
  12. Bakermans-Kranenburg MJ, van Ijzendoorn MH (2013) Sniffing around oxytocin: review and meta-analyses of trials in healthy and clinical groups with implications for pharmacotherapy. Transl Psychiatry 3:e258PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bakermans-Kranenburg MJ, van Ijzendoorn MH (2014) A sociability gene? Meta-analysis of oxytocin receptor genotype effects in humans. Psychiatr Genet 24(2):45–51PubMedCrossRefGoogle Scholar
  14. Bales KL, Perkeybile AM, Conley OG et al (2013) Chronic intranasal oxytocin causes long-term impairments in partner preference formation in male prairie voles. Biol Psychiatry 74:180–188PubMedCrossRefGoogle Scholar
  15. Bartholomeusz CF, Allott K, Killackey E et al (2013) Social cognition training as an intervention for improving functional outcome in first-episode psychosis: a feasibility study. Early Interv Psychiatry 7(4):421–426PubMedCrossRefGoogle Scholar
  16. Bartz JA, Zaki J, Bolger N (2010) Oxytocin selectively improves empathic accuracy. Psychol Sci 21(10):1426–1428PubMedPubMedCentralGoogle Scholar
  17. Bartz JA, Zaki J, Bolger N (2011) Social effects of oxytocin in humans: context and person matter. Trends Cogn Sci 15:301–309PubMedGoogle Scholar
  18. Beckman H, Lang RE, Gattaz WF (1985) Vasopressin-oxytocin in cerebrospinal fluid of schizophrenia patients and normal controls. Psychoneuroendocrinology 10:187–191CrossRefGoogle Scholar
  19. Bernaerts S, Prinsen J, Berra E et al (2017) Long-term oxytocin administration enhances the experience of attachment. Psychoneuroendocrinology 78:1–9PubMedCrossRefGoogle Scholar
  20. Bickart KC, Dickerson BC, Feldman-Barrett E et al (2014) The amygdala as a hub in brain networks that support social life. Neuropsychologia 63:235–248PubMedPubMedCentralCrossRefGoogle Scholar
  21. Born J, Lange T, Kern GP et al (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5:514–516PubMedCrossRefGoogle Scholar
  22. Brambilla M, Cotelli M, Manenti R et al (2016) Oxytocin to modulate emotional processing in schizophrenia: a randomized, double-blind, cross-over clinical trial. Eur Neuropsychopharmacol 26(10):1619–1628PubMedGoogle Scholar
  23. Brüne M, Abdel-Hamid M, Lehmkämper C et al (2007) Mental state attribution, neurocognitive functioning, and psychopathology: what predicts poor social competence in schizophrenia best? Schizophr Res 92(1–3):151–159PubMedCrossRefGoogle Scholar
  24. Chang SWC, Barter JW, Ebitz RB et al (2012) Inhaled oxytocin amplifies both vicarious reinforcement and self reinforcement in rhesus monkeys (Macaca mulatta). Proc Natl Acad Sci U S A 109:959–964PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chatterjee O, Patil K, Sahu A et al (2016) An overview of the oxytocin-oxytocin receptor signalling network. J Cell Commun Signal 10:355–360PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chung YS, Kang DH, Shin NY et al (2008) Deficit of theory of mind in individuals at ultra-high-risk for schizophrenia. Schizophr Res 99(1–3):111–118PubMedCrossRefGoogle Scholar
  27. Cochran D, Fallon D, Hill M et al (2013) The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings. Harv Rev Psychiatry 21(5):219–247PubMedPubMedCentralCrossRefGoogle Scholar
  28. Couture SM, Penn DL, Roberts DL (2006) The functional significance of social cognition in schizophrenia: a review. Schizophr Bull 32(Suppl 1):S44–S63PubMedPubMedCentralCrossRefGoogle Scholar
  29. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13(4):500–505PubMedCrossRefGoogle Scholar
  30. Dadds MR, MacDonald E, Cauchi A et al (2014a) Nasal oxytocin for social deficits in childhood autism: a randomized controlled trial. J Autism Dev Disord 44(3):521–531PubMedCrossRefGoogle Scholar
  31. Dadds MR, Moul C, Cauchi A et al (2014b) Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy. Dev Psychopathy 26:33–40CrossRefGoogle Scholar
  32. Dal Monte O, Noble PL, Turchi J (2014) CSF and blood oxytocin concentration following intranasal delivery in macaque. PLoS One 9:e103677PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dawson G, Bernier R, Ring RH (2012) Social attention: a possible early indicator of efficacy in autism clinical trials. J Neurodev Disord 4(1):11PubMedPubMedCentralCrossRefGoogle Scholar
  34. De Dreu CKW, Kret ME (2016) Oxytocin conditions intergroup relations through upregulated in-group empathy, cooperation, conformity, and defense. Biol Psychiatry 79:165–173PubMedPubMedCentralCrossRefGoogle Scholar
  35. De Dreu CKW, Greer LL, Handgraaf MJJ et al (2010) The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among human. Science 328:1408–1411PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dhuria SV, Hanson LR, Frey WH (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99(4):1654–1673PubMedCrossRefGoogle Scholar
  37. Di Simplicio M, Massey-Chase R, Cowen PJ et al (2009) Oxytocin enhances processing of positive versus negative emotional information in healthy male volunteers. J Psychopharmacol 23:241–248PubMedCrossRefGoogle Scholar
  38. Di Stefano C, Shih W, Kaiser A et al (2016) Communication growth in minimally verbal children with ASD: the importance of interaction. Autism Res 9:1093–1102. doi: 10.1002/aur.1594CrossRefGoogle Scholar
  39. Ditzen B, Schaer M, Gabriel B et al (2009) Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol Psychiatry 65:728–731PubMedCrossRefGoogle Scholar
  40. Dӧlen G, Darvishzadeh A, Huang KW et al (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501:179–184CrossRefGoogle Scholar
  41. Domes G, Heinrichs M, Michel A et al (2007) Oxytocin improves “mind-reading” in humans. Biol Psychiatry 61:731–733PubMedPubMedCentralCrossRefGoogle Scholar
  42. Domes G, Lischke A, Berger C et al (2010) Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology 35(1):83–93PubMedCrossRefGoogle Scholar
  43. Domes G, Heinrichs M, Kumbier K et al (2013) Effects of intranasal oxytocin on the neural basis of face processing in autism spectrum disorder. Biol Psychiatry 74(3):164–171PubMedCrossRefGoogle Scholar
  44. Dumais KM, Veenema AH (2016) Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol 40:1–23CrossRefGoogle Scholar
  45. Eckstein M, Markett S, Kendrick K et al (2017) Oxytocin differentially alters resting state functional connectivity between amygdala subregions and emotional control networks: inverse correlation with depressive traits. NeuroImage 149:458–467. doi: 10.1016/j.neuroimage.2017.01.078CrossRefPubMedGoogle Scholar
  46. Edelson MG, Shemesh M, Weizman A et al (2015) Opposing effects of oxytocin on overt compliance and lasting changes in memory. Neuropsychopharmacology 40:966–973PubMedCrossRefGoogle Scholar
  47. Fan Y, Herrera-Melendez AL, Pestke K et al (2014) Early life stress modulates amygdala-prefrontal functional connectivity: implications for oxytocin effects. Hum Brain Mapp 35(10):5328–5339PubMedCrossRefGoogle Scholar
  48. Fehm-Wolfsdorf G, Born J, Voigt HL et al (1984) Human memory and neurohypophyseal hormones: opposite effects of vasopressin and oxytocin. Psychoneuroendocrinology 9:285–292PubMedCrossRefGoogle Scholar
  49. Fehm-Wolfsdorf G, Bachholz G, Born J et al (1988) Vasopressin but not oxytocin enhances cortical arousal: an integrative hypothesis on behavioral effects of neurohypophyseal hormones. Psychopharmacology 94(4):496–500PubMedCrossRefGoogle Scholar
  50. Feifel D, Shilling PD, MacDonald K (2016) A review of oxytocin’s effects on the positive, negative, and cognitive domains of schizophrenia. Biol Psychiatry 79(3):222–233PubMedCrossRefGoogle Scholar
  51. Ferrier BM, Kennett DJ, Devlin MC (1980) Influence of oxytocin on human memory processes. Life Sci 27:2311–2317PubMedCrossRefGoogle Scholar
  52. Ferris CF, Yee JR, Kenkel WM et al (2015) Distinct BOLD activation profiles following central and peripheral oxytocin administration in awake rats. Front Behav Neurosci 9:245PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fischer-Shofty M, Shamay-Tsoory SG, Harari H et al (2010) The effect of intranasal administration of oxytocin on fear recognition. Neuropsychologia 48:179–184PubMedCrossRefGoogle Scholar
  54. Freeman SM, Samineni S, Allen PC et al (2016) Plasma and CSF oxytocin levels after intranasal and intravenous oxytocin in awake monkeys. Psychoneuroendocrinology 66:185–194PubMedCrossRefGoogle Scholar
  55. Fusar-Poli P, Placentino A, Carletti F et al (2009) Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci 34(6):418–432PubMedPubMedCentralGoogle Scholar
  56. Gamer M, Büchel C (2012) Oxytocin specifically enhances valence-dependent parasympathetic responses. Psychoneuroendocrinology 37:87–93PubMedCrossRefGoogle Scholar
  57. Gamer M, Zurowski B, Buchel C (2010) Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proc Natl Acad Sci U S A 107:9400–9405PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gao S, Becker B, Luo L et al (2016) Oxytocin the peptide that bonds the sexes also divides them. Proc Natl Acad Sci U S A 113:7650–7654PubMedPubMedCentralCrossRefGoogle Scholar
  59. Geenen V, Adam F, Baro V et al (1988) Inhibitory influence of oxytocin infusion on contingent negative variation and some memory tasks in normal men. Psychoneuroendocrinology 13:367–375PubMedCrossRefGoogle Scholar
  60. Goldman M, Marlow-O’Connor M, Torres I et al (2008) Diminished plasma oxytocin in schizophrenia patients with neuroendocrine dysfunction and emotional deficits. Schizophr Res 98:247–255PubMedCrossRefGoogle Scholar
  61. Granholm E, Holden J, Link PC et al (2014) Randomized clinical trial of cognitive behavioral social skills training for schizophrenia: improvement in functioning and experiential negative symptoms. J Consult Clin Psychol 82(6):1173–1185PubMedPubMedCentralCrossRefGoogle Scholar
  62. Green MF, Penn DL, Bentall R et al (2008) Social cognition in schizophrenia: an NIMH workshop on definitions, assessment, and research opportunities. Schizophr Bull 34(6):1211–1220PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gregory SG, Connelly JJ, Towers AJ et al (2009) Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med 7:62PubMedPubMedCentralCrossRefGoogle Scholar
  64. Grillon C, Krimsky M, Charney DR et al (2013) Oxytocin increases anxiety to unpredictable threat. Mol Psychiatry 18(9):958–960PubMedCrossRefGoogle Scholar
  65. Grinevich V, Knobloch-Bollman S, Eliava M et al (2016) Assembling the puzzle: pathways of oxytocin signaling in the brain. Biol Psychiatry 79:155–164PubMedPubMedCentralCrossRefGoogle Scholar
  66. Groppe SE, Gossen A, Rademacher L et al (2013) Oxytocin influences processing of socially relevant cues in the ventral tegmental area of the human brain. Biol Psychiatry 74(3):172–179PubMedCrossRefGoogle Scholar
  67. Guastella AJ, Hickie IB (2016) Oxytocin treatment, circuitry, and autism: a critical review of the literature placing oxytocin into the autism context. Biol Psychiatry 79(3):234–242PubMedCrossRefGoogle Scholar
  68. Guastella AJ, Mitchell PB, Dadds MR (2008) Oxytocin increases gaze to the eye region of human faces. Biol Psychiatry 63:3–5PubMedPubMedCentralCrossRefGoogle Scholar
  69. Guastella AJ, Einfeld SL, Gray KM et al (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67(7):692–694PubMedCrossRefGoogle Scholar
  70. Guastella AJ, Hickie IB, McGuinness MM et al (2013) Recommendations for the standardisation of oxytocin nasal administration and guidelines for its reporting in human research. Psychoneuroendocrinology 38:612–625PubMedCrossRefGoogle Scholar
  71. Guastella AJ, Gray KM, Rinehart NS et al (2015a) The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: a randomized controlled trial. J Child Psychol Psychiatry 56(4):444–452PubMedCrossRefGoogle Scholar
  72. Guastella AJ, Ward PB, Hickie IB et al (2015b) A single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia. Schizophr Res 168(3):628–633PubMedCrossRefGoogle Scholar
  73. Haram M, Tesli M, Betella F et al (2015) Association between genetic variation in the oxytocin receptor gene and emotional withdrawal, but not between oxytocin pathway genes and diagnosis in psychotic disorders. Front Hum Neurosci 9:9PubMedPubMedCentralCrossRefGoogle Scholar
  74. Heinrichs M, Baumgartner T, Kirschbaum C et al (2003) Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 54:1389–1398PubMedPubMedCentralCrossRefGoogle Scholar
  75. Heinrichs M, Meinlschmidt G, Wippich W et al (2004) Selective amnesic effects of oxytocin on human memory. Physiol Behav 83:31–38PubMedCrossRefGoogle Scholar
  76. Hollander E, Novotny S, Hanratty M et al (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 28:193–198PubMedCrossRefGoogle Scholar
  77. Hollander E, Bartz J, Chaplin W et al (2007) Oxytocin increases retention of social cognition in autism. Biol Psychiatry 61:498–503PubMedCrossRefGoogle Scholar
  78. Horan WP (2011) Efficacy and specificity of social cognitive skills training for outpatients with psychotic disorders. J Psychiatr Res 45(8):1113–1122PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hu J, Qi S, Becker B et al (2015) Oxytocin facilitation of learning with social feedback increases activity and functional connectivity in emotional memory and reward processing regions. Hum Brain Mapp 46(5):1737–1747Google Scholar
  80. Huang H, Michetti C, Busnelli M et al (2014) Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacology 39:1102–1114PubMedCrossRefGoogle Scholar
  81. Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308:245–248PubMedPubMedCentralCrossRefGoogle Scholar
  82. Huntingford PJ (1961) Intranasal use of synthetic oxytocin in management of breast-feeding. Br Med J 11:709–711CrossRefGoogle Scholar
  83. Hurlemann R, Patin A, Oezguer P et al (2010a) Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J Neurosci 30(14):4999–5007PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hurlemann R, Walter H, Rehme AK et al (2010b) Human amygdala reactivity is diminished by the beta-noradrenergic antagonist propranolol. Psychol Med 40:1839–1848PubMedCrossRefGoogle Scholar
  85. Insel TR, Shapiro LE (1992) Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc Natl Acad Sci U S A 89:5981–5985PubMedPubMedCentralCrossRefGoogle Scholar
  86. Johnston M, Zakharov A, Papaiconomou C et al (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2PubMedPubMedCentralCrossRefGoogle Scholar
  87. Jones W, Klin A (2013) Attention to eyes is present but in decline in 2-6-month-old infants later diagnosed with autism. Nature 504(7480):427–431PubMedPubMedCentralCrossRefGoogle Scholar
  88. Jones W, Carr K, Klin A (2008) Absence of preferential looking to the eyes of approaching adults predicts level of social disability in 2-year-old toddlers with autism spectrum disorder. Arch Gen Psychiatry 65(8):946–954PubMedCrossRefGoogle Scholar
  89. Kasari CFS, Paparella T (2006) Joint attention and symbolic play in young children with autism: a randomized controlled intervention study. J Child Psychol Psychiatry 47:611–620PubMedCrossRefGoogle Scholar
  90. Kee KS, Green MF, Mintz J et al (2003) Is emotion processing a predictor of functional outcome in schizophrenia? Schizophr Bull 29(3):487–497PubMedCrossRefGoogle Scholar
  91. Kee KS, Horan WP, Wynn JK et al (2006) An analysis of categorical perception of facial emotion in schizophrenia. Schizophr Res 87(1–3):228–237PubMedCrossRefGoogle Scholar
  92. Kemp AH, Quintana DS, Kuhnert RL et al (2012) Oxytocin increases heart rate variability in humans at rest: implications for social-approach-related motivation and capacity for social engagement. PLoS One 7:e44014PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kendrick KM (2000) Oxytocin, motherhood and bonding. Exp Physiol 85:111s–124sPubMedCrossRefGoogle Scholar
  94. Kendrick KM, Keverne EB, Baldwin BA (1987) Intracerebroventricular oxytocin stimulates maternal behaviour in the sheep. Neuroendocrinology 46:56–61PubMedCrossRefGoogle Scholar
  95. Kendrick KM, Keverne EB, Hinton MR et al (1991) Cerebrospinal fluid and plasma concentrations of oxytocin and vasopressin during parturition and vaginocervical stimulation in the sheep. Brain Res Bull 26:803–807PubMedCrossRefGoogle Scholar
  96. Kettle JWL, O’Brien-Simpson L, Allen NB et al (2008) Impaired theory of mind in first-episode schizophrenia: comparison with community, university and depressed controls. Schizophr Res 99(1–3):96–102PubMedCrossRefGoogle Scholar
  97. Kim HS, Sherman DK, Sasaki JY et al (2010) Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking. Proc Natl Acad Sci U S A 107(36):15717–15721PubMedPubMedCentralCrossRefGoogle Scholar
  98. King LB, Walum H, Inoue K et al (2015) Variation in the oxytocin receptor gene predicts brain region-specific expression and social attachment. Biol Psychiatry 80:160–169PubMedPubMedCentralCrossRefGoogle Scholar
  99. Kirsch P, Esslinger C, Chen Q et al (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25:11489–11493PubMedPubMedCentralCrossRefGoogle Scholar
  100. Klin A, Jones W, Schultz R et al (2002) Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry 59(9):809–816PubMedCrossRefGoogle Scholar
  101. Kosfeld M, Heinrichs M, Zak PJ et al (2005) Oxytocin increases trust in humans. Nature 435:673–676PubMedPubMedCentralCrossRefGoogle Scholar
  102. Kranz TM, Kopp M, Waltes R et al (2016) Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. Autism Res 9(10):1036–1045PubMedCrossRefGoogle Scholar
  103. Kumsta R, Heinrichs M (2013) Oxytocin, stress and social behavior: neurogenetics of the human oxytocin system. Curr Opin Neurobiol 23(1):11–16PubMedCrossRefGoogle Scholar
  104. Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25:150–176PubMedPubMedCentralCrossRefGoogle Scholar
  105. Langdon R, Michie PT, Ward PB et al (1997) Defective self and/or other mentalising in schizophrenia: a cognitive neuropsychological approach. Cogn Neuropsychiatry 2(3):167–193PubMedCrossRefGoogle Scholar
  106. Langdon R, Coltheart M, Ward PB et al (2002) Disturbed communication in schizophrenia: the role of poor pragmatics and poor mind-reading. Psychol Med 32(7):1273–1284PubMedCrossRefGoogle Scholar
  107. Le Doux JE (2000) Emotion circuits in the brain. Ann Rev Neurosci 23:155–184CrossRefGoogle Scholar
  108. Lee MR, Scheidweiler KB, Diao XX et al (2017) Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus monkeys: determination using a novel oxytocin assay. Mol Psychiatry. doi: 10.1038/mp.2017.27CrossRefPubMedPubMedCentralGoogle Scholar
  109. Leng G, Ludwig M (2016) Intransasal oxytocin: myths and delusions. Biol Psychiatry 79:243–250PubMedPubMedCentralCrossRefGoogle Scholar
  110. Li J, Zhao Y, Li R et al (2015) Association of oxytocin receptor gene (OXTR) rs53576 polymorphism with sociality: a meta-analysis. PLoS One 10(6):e0131820PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lischke A, Gamer M, Berger C et al (2012) Oxytocin increases amygdala reactivity to threatening scenes in females. Psychoneuroendocrinology 37(9):1431–1438PubMedCrossRefGoogle Scholar
  112. Liu Y, Wang ZX (2003) Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience 121:537–544PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lochhead JL, Thorne RG (2012) Intransal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64:614–628PubMedCrossRefGoogle Scholar
  114. LoParo D, Waldman ID (2015) The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol Psychiatry 20(5):640–646PubMedPubMedCentralCrossRefGoogle Scholar
  115. Losh M, Adolphs R, Poe MD et al (2009) Neuropsychological profile of autism and the broad autism phenotype. Arch Gen Psychiatry 66(5):518–526PubMedPubMedCentralCrossRefGoogle Scholar
  116. Loup F, Tribollet E, Dubois-Dauphin M et al (1991) Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res 555(2):220–232PubMedCrossRefGoogle Scholar
  117. Luhman LA (1963) The effect of intranasal oxytocin on lactation. Obstet Gynecol 21:713–717PubMedGoogle Scholar
  118. Ma XL, Luo LZ, Geng YY et al (2014) Oxytocin increases liking for a country’s people and national flag but not for other cultural symbols or consumer products. Front Behav Neurosci 8:266PubMedPubMedCentralCrossRefGoogle Scholar
  119. Marusak HA, Furman DJ, Kuruvadi N et al (2015) Amygdala responses to salient social cues vary with oxytocin receptor genotype in youth. Neuropsychologia 79(Pt A):1–9PubMedPubMedCentralCrossRefGoogle Scholar
  120. Meyer-Lindenberg A, Domes G, Kirsch P et al (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12:524–538PubMedCrossRefGoogle Scholar
  121. Modahl C, Green LA, Fein D et al (1998) Plasma oxytocin levels in autistic children. Biol Psychiatry 43:270–277PubMedCrossRefGoogle Scholar
  122. Modi ME, Connor-Stroud F, Landgraf R et al (2014) Aerosolized oxytocin increases cerebrospinal fluid oxytocin in rhesus macaques. Psychoneuroendocrinology 45:49–57PubMedPubMedCentralCrossRefGoogle Scholar
  123. Montag C, Fiebach CJ, Kirsch P et al (2011) Interaction of 5-HTTLPR and a variation on the oxytocin receptor gene influences negative emotionality. Biol Psychiatry 69:601–603PubMedCrossRefGoogle Scholar
  124. Mottolese R, Redouté J, Costes N et al (2014) Switching brain serotonin with oxytocin. Proc Natl Acad Sci U S A 111(23):8637–8642PubMedPubMedCentralCrossRefGoogle Scholar
  125. Mundy PSM, Kasari C (1994) Joint attention, developmental level, and symptom presentation in autism. Dev Psychopathol 6:389–401CrossRefGoogle Scholar
  126. Neumann ID, Landgraf R (2012) Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci 35:649–659PubMedPubMedCentralCrossRefGoogle Scholar
  127. Numan M, Young LJ (2016) Neural mechanisms of mother-infant bonding and pair bonding: similarities, differences, and broader implications. Horm Behav 77:98–112CrossRefPubMedGoogle Scholar
  128. Oya K, Matsuda Y, Matsunaga S et al (2016) Efficacy and safety of oxytocin augmentation therapy for schizophrenia: an updated systematic review and meta-analysis of randomized, placebo-controlled trials. Eur Arch Psychiatry Clin Neurosci 266(5):439–450PubMedCrossRefGoogle Scholar
  129. Paloyelis Y, Doyle OM, Zelaya FO et al (2016) A spatiotemporal profile of in vivo cerebral blood flow changes following intranasal oxytocin in humans. Biol Psychiatry 79:693–705PubMedPubMedCentralCrossRefGoogle Scholar
  130. Parker KJ, Garner JP, Libove RA et al (2014) Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc Natl Acad Sci U S A 111(33):12258–12263PubMedPubMedCentralCrossRefGoogle Scholar
  131. Penagarikano O (2016) Oxytocin in animal models of autism spectrum disorder. Dev Neurobiol 77:158–168. doi: 10.1002/dneu.22450CrossRefGoogle Scholar
  132. Penn DL, Sanna LJ, Roberts DL (2008) Social cognition in schizophrenia: an overview. Schizophr Bull 34(3):408–411PubMedPubMedCentralCrossRefGoogle Scholar
  133. Petrovic P, Kalisch R, Singer T et al (2008) Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J Neurosci 28(26):6607–6615PubMedPubMedCentralCrossRefGoogle Scholar
  134. Pietrowski R, Strüben C, Molle M et al (1996a) Brain potential changes after intranasal vs intravenous administration of vasopressin: evidence for a direct nose-brain pathway for peptide effects in humans. Biol Psychiatry 39(5):332–340CrossRefGoogle Scholar
  135. Pietrowski R, Thiemann A, Kern W et al (1996b) A nose-brain pathway for psychotropic peptides: evidence from a brain evoked potential study with cholecystokinin. Psychoneuroendocrinology 21(6):559–572CrossRefGoogle Scholar
  136. Pitman RK, Orr SP, Lasko NB (1993) Effects of intranasal vasopressin and oxytocin on physiologic responding during personal combat imagery in Vietnam veterans with post-traumatic stress disorder. Psychiatry Res 48:107–117PubMedCrossRefGoogle Scholar
  137. Prehn K, Kazzer P, Lischke A, Heinrichs M, Herpertz SC, Domes G (2013) Effects of intranasal oxytocin on pupil dilation indicate increase salience of socioaffective stimuli. Psychophysiology 50:528–537PubMedCrossRefGoogle Scholar
  138. Premkumar P, Cooke MA, Fannon D et al (2008) Misattribution bias of threat-related facial expressions is related to a longer duration of illness and poor executive function in schizophrenia and schizoaffective disorder. Eur Psychiatry 23(1):14–19PubMedPubMedCentralCrossRefGoogle Scholar
  139. Puglia MH, Lillard TS, Morris JP et al (2015) Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proc Natl Acad Sci U S A 112:3308–3313PubMedPubMedCentralCrossRefGoogle Scholar
  140. Quintana DS, Westlye LT, Rustan OG et al (2015a) Low-dose oxytocin delivered intranasally with breath powered device affects social-cognitive behavior: a randomized four-way crossover trial with nasal cavity dimension assessment. Transl Psychiatry 5:e602PubMedPubMedCentralCrossRefGoogle Scholar
  141. Quintana DS, Alvares GA, Hickie IB et al (2015b) Do delivery routes of intranasally administered oxytocin account for observed effects on social cognition and behavior? A two-level model. Neurosci Biobehav Rev 49:182–192PubMedCrossRefGoogle Scholar
  142. Rault J-L, Carter CS, Garner JP et al (2013) Repeated intranasal oxytocin administration in early life dysregulates the HPA axis and alters social behavior. Physiol Behav 112–113:40–48PubMedCrossRefGoogle Scholar
  143. Reichow B, Barton EE, Boyd BA et al (2012) Early intensive behavioral intervention (EIBI) for young children with autism spectrum disorders (ASD). Cochrane Database Syst Rev 10:Cd009260PubMedGoogle Scholar
  144. Reuter M, Montag C, Altmann S et al (2016) Functional characterization of an oxytocin receptor gene variant (rs2268498) previously associated with social cognition by expression analysis in vitro and in human brain biopsy. Soc Neurosci 2016:1–8Google Scholar
  145. Riem MM, Bakermans-Kranenburg MJ, Pieper S et al (2011) Oxytocin modulates amygdala, insula, and inferior frontal gyrus responses to infant crying: a randomized controlled trial. Biol Psychiatry 70(3):291–297PubMedCrossRefGoogle Scholar
  146. Rilling JK, de Marco AC, Hackett PD et al (2012) Effects of intranasal oxytocin and vasopressin on cooperative behavior and associated brain activity in men. Psychoneuroendocrinology 37(4):447–461PubMedPubMedCentralCrossRefGoogle Scholar
  147. Rimmele U, Hediger K, Heinrichs M et al (2009) Oxytocin makes a face in memory familiar. J Neurosci 29(1):38–42PubMedCrossRefGoogle Scholar
  148. Ross HE, Young LJ (2009) Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol 30:534–547PubMedPubMedCentralCrossRefGoogle Scholar
  149. Roy AK, Shehzad Z, Margulies DS et al (2009) Functional connectivity of the human amygdala using resting state fMRI. NeuroImage 45:614–626PubMedCrossRefGoogle Scholar
  150. Rubin LH, Connelly JJ, Reilly JL et al (2016) Sex and diagnosis-specific associations between DNA methylation of the oxytocin receptor gene with emotion processing and temporal-limbic and prefrontal brain volumes in psychotic disorders. Biol Psychiatry 1:141–151Google Scholar
  151. Ruis H, Rolland R, Doesburg W et al (1981) Oxytocin enhances onset of lactation among mothers delivering prematurely. Br Med J 283:340–342CrossRefGoogle Scholar
  152. Scheele D, Striepens N, Güntürkun O et al (2012) Oxytocin modulates social distance between men and women. J Neurosci 32:16074–16079PubMedCrossRefGoogle Scholar
  153. Scheele D, Wille A, Kendrick KM et al (2013) Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proc Natl Acad Sci U S A 110:20308–20313PubMedPubMedCentralCrossRefGoogle Scholar
  154. Scheele D, Kendrick KM, Khouri C et al (2014) An oxytocin-induced facilitation of neural and emotional responses to social touch correlates inversely with autism traits. Neuropsychopharmacology 39:2078–2085PubMedPubMedCentralCrossRefGoogle Scholar
  155. Scheele D, Plota J, Stoffel-Wagner B (2015) Hormonal contraceptives suppress oxytocin-induced brain reward responses to the partner’s face. Soc Cogn Affect Neurosci 11(5):767–774PubMedPubMedCentralCrossRefGoogle Scholar
  156. Shahrestani S, Kemp AH, Guastella AJ (2013) The impact of a single administration of intranasal oxytocin on the recognition of basic emotions in humans: a meta-analysis. Neuropsychopharmacology 38:1929–1936PubMedPubMedCentralCrossRefGoogle Scholar
  157. Shamay-Tsoory SG, Abu-Akel A (2016) The social salience hypothesis of oxytocin. Biol Psychiatry 79:194–202PubMedPubMedCentralCrossRefGoogle Scholar
  158. Shilling PD, Feifel D (2016) Potential of oxytocin in the treatment of schizophrenia. CNS Drugs 30(3):193–208PubMedPubMedCentralCrossRefGoogle Scholar
  159. Shire SY, Gulsrud A, Kasari C (2016) Increasing responsive parent-child interactions and joint engagement: comparing the influence of parent-mediated intervention and parent psychoeducation. J Autism Dev Disord 46(5):1737–1747PubMedPubMedCentralCrossRefGoogle Scholar
  160. Singer T, Critchley HD, Preuschoff K (2009) A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci 13(8):334–340PubMedCrossRefGoogle Scholar
  161. Sripada CS, Phan KL, Labuschagne I et al (2013) Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex. Int J Neuropsychopharmacol 16(2):255–260PubMedPubMedCentralCrossRefGoogle Scholar
  162. Stoop R (2012) Neuromodulation by oxytocin and vasopressin. Neuron 76:142–159PubMedCrossRefGoogle Scholar
  163. Striepens N, Kendrick KM, Maier W et al (2011) Prosocial effects of oxytocin and clinical evidence for its therapeutic potential. Front Neuroendrocrinol 32:426–450CrossRefGoogle Scholar
  164. Striepens N, Scheele D, Kendrick KM et al (2012) Oxytocin facilitates protective responses to aversive social stimuli in males. Proc Natl Acad Sci U S A 109(44):18144–18149PubMedPubMedCentralCrossRefGoogle Scholar
  165. Striepens N, Kendrick KM, Hanking V et al (2013) Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Sci Rep 3:3440PubMedPubMedCentralCrossRefGoogle Scholar
  166. Striepens N, Matusch A, Kendrick KM et al (2014) Oxytocin enhances attractiveness of unfamiliar female faces independent of the dopamine reward system. Psychoneuroendocrinology 39:74–87PubMedCrossRefGoogle Scholar
  167. Tachibana M, Kagitani-Shimono K, Mohri I et al (2013) Long-term administration of intranasal oxytocin is a safe and promising therapy for early adolescent boys with autism spectrum disorders. J Child Adolesc Psychopharmacol 23(2):123–127PubMedCrossRefGoogle Scholar
  168. Teffer K, Semendeferi K (2012) Human prefrontal cortex: evolution, development and pathology. Prog Brain Res 195:191–218PubMedCrossRefGoogle Scholar
  169. Thorne RG, Hanson LR, Ross TM (2008) Delivery of interferon-β to the monkey nervous system following intranasal application. Neuroscience 152:785–797PubMedCrossRefGoogle Scholar
  170. Tonge BJ, Bull K, Brereton A et al (2014) A review of evidence-based early intervention for behavioural problems in children with autism spectrum disorder: the core components of effective programs, child-focused interventions and comprehensive treatment models. Curr Opin Psychiatry 27(2):158–165PubMedCrossRefGoogle Scholar
  171. Tost H, Kolachana B, Hakimi S et al (2010) A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc Natl Acad Sci U S A 107:13936–13941PubMedPubMedCentralCrossRefGoogle Scholar
  172. Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16(1):55–61PubMedCrossRefGoogle Scholar
  173. Uhrig S, Hirth N, Broccoli L et al (2016) Reduced oxytocin receptor gene expression and binding sites in different brain regions in schizophrenia: a post-mortem study. Schizophr Res 177:59–66PubMedCrossRefGoogle Scholar
  174. Waller RI, Corral-Frías NS, Vannucci B (2016) An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men. Soc Cogn Affect Neurosci 11(8):1218–1226PubMedPubMedCentralCrossRefGoogle Scholar
  175. Walum H, Lichtenstein P, Neiderhiser JM et al (2012) Variation in the oxytocin receptor gene is associated with pair-bonding and social behavior. Biol Psychiatry 71(5):419–426PubMedCrossRefGoogle Scholar
  176. Walum H, Waldman ID, Young LJ (2016) Statistical and methodological considerations for the interpretation of intranasal oxytocin studies. Biol Psychiatry 79:251–257PubMedPubMedCentralCrossRefGoogle Scholar
  177. Warren Z et al (2011) A systematic review of early intensive intervention for autism spectrum disorders. Pediatrics 127(5):e1303–e1311PubMedCrossRefGoogle Scholar
  178. Watanabe T et al (2015) Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain 138(11):3400–3412PubMedCrossRefGoogle Scholar
  179. Wei D, Lee D, Cox CD et al (2015) Endocannabinoid signaling mediates oxytocin-driven social reward. Proc Natl Acad Sci U S A 112:14084–14089PubMedPubMedCentralCrossRefGoogle Scholar
  180. Wigton R, Radua J, Allen P et al (2015) Neurophysiological effects of acute oxytocin administration: systematic review and meta-analysis of placebo-controlled imaging studies. J Psychiatry Neurosci 40(1):E1–E22PubMedPubMedCentralCrossRefGoogle Scholar
  181. Williams LM, Loughland CM, Green MJ et al (2003) Emotion perception in schizophrenia: an eye movement study comparing the effectiveness of risperidone vs. haloperidol. Psychiatry Res 120(1):13–27PubMedCrossRefGoogle Scholar
  182. Xu L, Ma X, Zhao W et al (2015) Oxytocin enhances attentional bias for neutral and positive expression faces in individuals with higher autistic traits. Psychoneuroendocrinology 62:352–358PubMedCrossRefGoogle Scholar
  183. Xu X, Yao S, Xu L et al (2017) Oxytocin biases men but not women to restore social connections with individuals who socially exclude them. Sci Rep 7:40589. doi: 10.1038/srep40589CrossRefPubMedPubMedCentralGoogle Scholar
  184. Yatawara CJ, Einfeld SL, Hickie IB et al (2016) The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol Psychiatry 21(9):1225–1231PubMedCrossRefGoogle Scholar
  185. Young LJ, Wang Z (2004) The neurobiology of pair bonding. Nat Neurosci 7(10):1048–1054CrossRefPubMedGoogle Scholar
  186. Zachary N, Warnken HDC, Smyth AB (2016) Formulation and device design to increase nose to brain drug delivery. J Drug Delivery Sci Technol 35:213–222. doi: 10.1016/j.jddst.2016.05.003CrossRefGoogle Scholar
  187. Zhao W, Yao S, Li Q et al (2016) Oxytocin blurs the self-other distinction during trait judgments and reduces medial prefrontal cortex responses. Hum Brain Mapp 37(7):2512–2527PubMedCrossRefGoogle Scholar
  188. Zink CF, Meyer-Lindenberg A (2012) Human neuroimaging of oxytocin and vasopressin in social cognition. Horm Behav 61:400–409PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Brain and Mind CenterUniversity of SydneySydneyAustralia

Personalised recommendations