Advertisement

Oxytocin Signaling in the Early Life of Mammals: Link to Neurodevelopmental Disorders Associated with ASD

  • Françoise Muscatelli
  • Michel G. Desarménien
  • Valery Matarazzo
  • Valery Grinevich
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 35)

Abstract

Oxytocin plays a role in various functions including endocrine and immune functions but also parent–infant bonding and social interactions. It might be considered as a main neuropeptide involved in mediating the regulation of adaptive interactions between an individual and his/her environment. Recently, a critical role of oxytocin in early life has been revealed in sensory processing and multi-modal integration that are essential for normal postnatal neurodevelopment. An early alteration in the oxytocin-system may disturb its maturation and may have short-term and long-term pathological consequences such as autism spectrum disorders. Here, we will synthesize the existing literature on the development of the oxytocin system and its role in the early postnatal life of mammals (from birth to weaning) in a normal or pathological context. Oxytocin is required in critical windows of time that play a pivotal role and that should be considered for therapeutical interventions.

Keywords

Oxytocin Autism spectrum disorders Oxytocin receptor Neonatal period Neurodevelopment Prader-Willi syndrome 

References

  1. Altman J, Bayer SA (1978a) Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. J Comp Neurol 182(4 Pt 2):945–971CrossRefPubMedGoogle Scholar
  2. Altman J, Bayer SA (1978b) Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons. J Comp Neurol 182(4 Pt 2):973–993CrossRefPubMedGoogle Scholar
  3. Altman J, Bayer SA (1978c) Development of the diencephalon in the rat. III. Ontogeny of the specialized ventricular linings of the hypothalamic third ventricle. J Comp Neurol 182(4 Pt 2):995–1015CrossRefPubMedGoogle Scholar
  4. Altstein M, Gainer H (1988) Differential biosynthesis and posttranslational processing of vasopressin and oxytocin in rat brain during embryonic and postnatal development. J Neurosci 8(11):3967–3977CrossRefPubMedGoogle Scholar
  5. Ang VT, Jenkins JS (1984) Neurohypophysial hormones in the adrenal medulla. J Clin Endocrinol Metab 58(4):688–691. doi: 10.1210/jcem-58-4-688CrossRefPubMedGoogle Scholar
  6. Aoki Y, Yahata N, Watanabe T, Takano Y, Kawakubo Y, Kuwabara H, Iwashiro N, Natsubori T, Inoue H, Suga M, Takao H, Sasaki H, Gonoi W, Kunimatsu A, Kasai K, Yamasue H (2014) Oxytocin improves behavioural and neural deficits in inferring others’ social emotions in autism. Brain 137(Pt 11):3073–3086. doi: 10.1093/brain/awu231CrossRefPubMedGoogle Scholar
  7. Aspe-Sanchez M, Moreno M, Rivera MI, Rossi A, Ewer J (2015) Oxytocin and vasopressin receptor gene polymorphisms: role in social and psychiatric traits. Front Neurosci 9:510. doi: 10.3389/fnins.2015.00510CrossRefPubMedGoogle Scholar
  8. Auyeung B, Lombardo MV, Heinrichs M, Chakrabarti B, Sule A, Deakin JB, Bethlehem RA, Dickens L, Mooney N, Sipple JA, Thiemann P, Baron-Cohen S (2015) Oxytocin increases eye contact during a real-time, naturalistic social interaction in males with and without autism. Transl Psychiatry 5:e507. doi: 10.1038/tp.2014.146CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bales KL, Carter CS (2003a) Developmental exposure to oxytocin facilitates partner preferences in male prairie voles (Microtus ochrogaster). Behav Neurosci 117(4):854–859CrossRefPubMedGoogle Scholar
  10. Bales KL, Carter CS (2003b) Sex differences and developmental effects of oxytocin on aggression and social behavior in prairie voles (Microtus ochrogaster). Horm Behav 44(3):178–184CrossRefPubMedGoogle Scholar
  11. Bales KL, Perkeybile AM (2012) Developmental experiences and the oxytocin receptor system. Horm Behav 61(3):313–319. doi: 10.1016/j.yhbeh.2011.12.013CrossRefPubMedGoogle Scholar
  12. Bales KL, Plotsky PM, Young LJ, Lim MM, Grotte N, Ferrer E, Carter CS (2007) Neonatal oxytocin manipulations have long-lasting, sexually dimorphic effects on vasopressin receptors. Neuroscience 144(1):38–45. doi: 10.1016/j.neuroscience.2006.09.009CrossRefPubMedGoogle Scholar
  13. Banerjee A, Rikhye RV, Breton-Provencher V, Tang X, Li C, Li K, Runyan CA, Fu Z, Jaenisch R, Sur M (2016) Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. Proc Natl Acad Sci U S A 113(46):E7287–E7296. doi: 10.1073/pnas.1615330113CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18(5):467–486. doi: 10.1177/1073858412438697CrossRefPubMedGoogle Scholar
  15. Bourgeron T (2009) A synaptic trek to autism. Curr Opin Neurobiol 19:231–234. doi: 10.1016/j.conb.2009.06.003CrossRefPubMedGoogle Scholar
  16. Broser P, Grinevich V, Osten P, Sakmann B, Wallace DJ (2008) Critical period plasticity of axonal arbors of layer 2/3 pyramidal neurons in rat somatosensory cortex: layer-specific reduction of projections into deprived cortical columns. Cereb Cortex 18(7):1588–1603. doi: 10.1093/cercor/bhm189CrossRefPubMedGoogle Scholar
  17. Caba M, Rovirosa MJ, Silver R (2003) Suckling and genital stroking induces Fos expression in hypothalamic oxytocinergic neurons of rabbit pups. Brain Res Dev Brain Res 143(2):119–128CrossRefPubMedGoogle Scholar
  18. Campbell DB, Datta D, Jones ST, Batey Lee E, Sutcliffe JS, Hammock EA, Levitt P (2011) Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder. J Neurodev Disord 3(2):101–112. doi: 10.1007/s11689-010-9071-2CrossRefPubMedPubMedCentralGoogle Scholar
  19. Caqueret A, Boucher F, Michaud JL (2006) Laminar organization of the early developing anterior hypothalamus. Dev Biol 298(1):95–106. doi: 10.1016/j.ydbio.2006.06.019CrossRefPubMedGoogle Scholar
  20. Carter CS (2014) Oxytocin pathways and the evolution of human behavior. Annu Rev Psychol 65:17–39. doi: 10.1146/annurev-psych-010213-115110CrossRefPubMedGoogle Scholar
  21. Cassidy SB, Schwartz S, Miller JL, Driscoll DJ (2012) Prader-Willi syndrome. Genet Med 14(1):10–26. doi: 10.1038/gim.0b013e31822bead0CrossRefPubMedGoogle Scholar
  22. Castro J, Garcia RI, Kwok S, Banerjee A, Petravicz J, Woodson J, Mellios N, Tropea D, Sur M (2014) Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 111(27):9941–9946. doi: 10.1073/pnas.1311685111CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chevaleyre V, Dayanithi G, Moos FC, Desarmenien MG (2000) Developmental regulation of a local positive autocontrol of supraoptic neurons. J Neurosci 20(15):5813–5819CrossRefPubMedGoogle Scholar
  24. Chevaleyre V, Moos FC, Desarmenien MG (2001) Correlation between electrophysiological and morphological characteristics during maturation of rat supraoptic neurons. Eur J Neurosci 13(6):1136–1146CrossRefPubMedGoogle Scholar
  25. Chevaleyre V, Moos FC, Desarmenien MG (2002) Interplay between presynaptic and postsynaptic activities is required for dendritic plasticity and synaptogenesis in the supraoptic nucleus. J Neurosci 22(1):265–273CrossRefPubMedGoogle Scholar
  26. Christian KM, Song H, Ming G-l (2014) Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci 37:243–262. doi: 10.1146/annurev-neuro-071013-014134CrossRefPubMedPubMedCentralGoogle Scholar
  27. Crespo D, Viadero CF, Villegas J, Lafarga M (1988) Nucleoli numbers and neuronal growth in supraoptic nucleus neurons during postnatal development in the rat. Brain Res Dev Brain Res 44(1):151–155CrossRefPubMedGoogle Scholar
  28. Curley JP (2011) The mu-opioid receptor and the evolution of mother-infant attachment: theoretical comment on Higham et al. (2011). Behav Neurosci 125(2):273–278. doi: 10.1037/a0022939CrossRefPubMedGoogle Scholar
  29. Cushing BS, Kramer KM (2005) Mechanisms underlying epigenetic effects of early social experience: the role of neuropeptides and steroids. Neurosci Biobehav Rev 29(7):1089–1105. doi: 10.1016/j.neubiorev.2005.04.001CrossRefPubMedGoogle Scholar
  30. DeVries AC, Young WS 3rd, Nelson RJ (1997) Reduced aggressive behaviour in mice with targeted disruption of the oxytocin gene. J Neuroendocrinol 9(5):363–368CrossRefPubMedGoogle Scholar
  31. Dolen G, Darvishzadeh A, Huang KW, Malenka RC (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501(7466):179–184. doi: 10.1038/nature12518CrossRefPubMedPubMedCentralGoogle Scholar
  32. Domes G, Sibold M, Schulze L, Lischke A, Herpertz SC, Heinrichs M (2013) Intranasal oxytocin increases covert attention to positive social cues. Psychol Med 43(8):1747–1753. doi: 10.1017/S0033291712002565CrossRefPubMedGoogle Scholar
  33. Dorner G, Staudt J (1972) Comparative morphologic studies of hypothalamic differentiation in the rat and man. Endokrinologie 59(1):152–155PubMedGoogle Scholar
  34. Dranovsky A, Hen R (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 59:1136–1143. doi: 10.1016/j.biopsych.2006.03.082CrossRefPubMedGoogle Scholar
  35. Dumais KM, Veenema AH (2016) Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol 40:1–23. doi: 10.1016/j.yfrne.2015.04.003CrossRefGoogle Scholar
  36. Eaton JL, Roache L, Nguyen KN, Cushing BS, Troyer E, Papademetriou E, Raghanti MA (2012) Organizational effects of oxytocin on serotonin innervation. Dev Psychobiol 54(1):92–97. doi: 10.1002/dev.20566CrossRefPubMedGoogle Scholar
  37. Eckertova M, Ondrejcakova M, Krskova K, Zorad S, Jezova D (2011) Subchronic treatment of rats with oxytocin results in improved adipocyte differentiation and increased gene expression of factors involved in adipogenesis. Br J Pharmacol 162:452–463. doi: 10.1111/j.1476-5381.2010.01037.xCrossRefPubMedPubMedCentralGoogle Scholar
  38. Einspanier A, Ivell R, Hodges JK (1995) Oxytocin: a follicular luteinisation factor in the marmoset monkey. Adv Exp Med Biol 395:517–522PubMedGoogle Scholar
  39. Eliava M, Melchior M, Knobloch-Bollmann HS, Wahis J, da Silva Gouveia M, Tang Y, Ciobanu AC, Triana del Rio R, Roth LC, Althammer F, Chavant V, Goumon Y, Gruber T, Petit-Demouliere N, Busnelli M, Chini B, Tan LL, Mitre M, Froemke RC, Chao MV, Giese G, Sprengel R, Kuner R, Poisbeau P, Seeburg PH, Stoop R, Charlet A, Grinevich V (2016) A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89(6):1291–1304. doi: 10.1016/j.neuron.2016.01.041CrossRefPubMedPubMedCentralGoogle Scholar
  40. Elston GN, Oga T, Fujita I (2009) Spinogenesis and pruning scales across functional hierarchies. J Neurosci 29:3271–3275. doi: 10.1523/JNEUROSCI.5216-08.2009CrossRefPubMedGoogle Scholar
  41. Ershov PV, Ugrumov MV, Calas A, Makarenko IG, Krieger M, Thibault J (2002) Neurons possessing enzymes of dopamine synthesis in the mediobasal hypothalamus of rats. Topographic relations and axonal projections to the median eminence in ontogenesis. J Chem Neuroanat 24(2):95–107CrossRefPubMedGoogle Scholar
  42. Feldman DE, Brecht M (2005) Map plasticity in somatosensory cortex. Science 310(5749):810–815. doi: 10.1126/science.1115807CrossRefPubMedGoogle Scholar
  43. Ferguson JN, Aldag JM, Insel TR, Young LJ (2001) Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci 21(20):8278–8285CrossRefPubMedGoogle Scholar
  44. Fountain MD, Aten E, Cho MT, Juusola J, Walkiewicz MA, Ray JW, Xia F, Yang Y, Graham BH, Bacino CA, Potocki L, van Haeringen A, Ruivenkamp CA, Mancias P, Northrup H, Kukolich MK, Weiss MM, van Ravenswaaij-Arts CM, Mathijssen IB, Levesque S, Meeks N, Rosenfeld JA, Lemke D, Hamosh A, Lewis SK, Race S, Stewart LL, Hay B, Lewis AM, Guerreiro RL, Bras JT, Martins MP, Derksen-Lubsen G, Peeters E, Stumpel C, Stegmann S, Bok LA, Santen GW, Schaaf CP (2017) The phenotypic spectrum of Schaaf-Yang syndrome: 18 new affected individuals from 14 families. Genet Med 19:45–52. doi: 10.1038/gim.2016.53CrossRefPubMedGoogle Scholar
  45. Frayne J, Nicholson HD (1998) Localization of oxytocin receptors in the human and macaque monkey male reproductive tracts: evidence for a physiological role of oxytocin in the male. Mol Hum Reprod 4(6):527–532CrossRefPubMedGoogle Scholar
  46. Fuchs AR, Fields MJ, Freidman S, Shemesh M, Ivell R (1995) Oxytocin and the timing of parturition. Influence of oxytocin receptor gene expression, oxytocin secretion, and oxytocin-induced prostaglandin F2 alpha and E2 release. Adv Exp Med Biol 395:405–420PubMedGoogle Scholar
  47. Furuya K, Mizumoto Y, Makimura N, Mitsui C, Murakami M, Tokuoka S, Ishikawa N, Imaizumi E, Katayama E, Seki K et al (1995) Gene expressions of oxytocin and oxytocin receptor in cumulus cells of human ovary. Horm Res 44(Suppl 2):47–49CrossRefPubMedGoogle Scholar
  48. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683CrossRefPubMedGoogle Scholar
  49. Gomez-Nicola D, Perry VH (2015) Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist 21:169–184. doi: 10.1177/1073858414530512CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gordon I, Vander Wyk BC, Bennett RH, Cordeaux C, Lucas MV, Eilbott JA, Zagoory-Sharon O, Leckman JF, Feldman R, Pelphrey KA (2013) Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci U S A 110(52):20953–20958. doi: 10.1073/pnas.1312857110CrossRefPubMedPubMedCentralGoogle Scholar
  51. Grinevich V, Desarménien M, Chini B, Tauber M, Muscatelli F (2015) Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders. Front Neuroanat 8:164. doi: 10.3389/fnana.2014.00164CrossRefPubMedPubMedCentralGoogle Scholar
  52. Halbach P, Pillers DA, York N, Asuma MP, Chiu MA, Luo W, Tokarz S, Bird IM, Pattnaik BR (2015) Oxytocin expression and function in the posterior retina: a novel signaling pathway. Invest Ophthalmol Vis Sci 56(2):751–760. doi: 10.1167/iovs.14-15646CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hammock EA (2015) Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology 40(1):24–42. doi: 10.1038/npp.2014.120CrossRefPubMedGoogle Scholar
  54. Hammock EA, Levitt P (2013) Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse. Front Behav Neurosci 7:195. doi: 10.3389/fnbeh.2013.00195CrossRefPubMedPubMedCentralGoogle Scholar
  55. Havranek T, Zatkova M, Lestanova Z, Bacova Z, Mravec B, Hodosy J, Strbak V, Bakos J (2015) Intracerebroventricular oxytocin administration in rats enhances object recognition and increases expression of neurotrophins, microtubule-associated protein 2, and synapsin I. J Neurosci Res 93:893–901. doi: 10.1002/jnr.23559CrossRefPubMedGoogle Scholar
  56. Hussy N, Boissin-Agasse L, Richard P, Desarmenien MG (1997) NMDA receptor properties in rat supraoptic magnocellular neurons: characterization and postnatal development. Eur J Neurosci 9(7):1439–1449CrossRefPubMedGoogle Scholar
  57. Insel TR, Young LJ (2001) The neurobiology of attachment. Nat Rev Neurosci 2(2):129–136. doi: 10.1038/35053579CrossRefPubMedGoogle Scholar
  58. Israel JM, Oliet SH, Ciofi P (2016) Electrophysiology of hypothalamic magnocellular neurons in vitro: a rhythmic drive in organotypic cultures and acute slices. Front Neurosci 10:109. doi: 10.3389/fnins.2016.00109CrossRefPubMedPubMedCentralGoogle Scholar
  59. Isshiki M, Tanaka S, Kuriu T, Tabuchi K, Takumi T, Okabe S (2014) Enhanced synapse remodelling as a common phenotype in mouse models of autism. Nat Commun 5:4742. doi: 10.1038/ncomms5742CrossRefPubMedGoogle Scholar
  60. Iwasaki Y, Kinoshita M, Ikeda K, Shiojima T, Kurihara T, Appel SH (1991) Trophic effect of angiotensin II, vasopressin and other peptides on the cultured ventral spinal cord of rat embryo. J Neurol Sci 103:151–155CrossRefPubMedGoogle Scholar
  61. Jafarzadeh N, Javeri A, Khaleghi M, Taha MF (2014) Oxytocin improves proliferation and neural differentiation of adipose tissue-derived stem cells. Neurosci Lett 564:105–110. doi: 10.1016/j.neulet.2014.02.012CrossRefPubMedGoogle Scholar
  62. Jankowski M, Wang D, Hajjar F, Mukaddam-Daher S, McCann SM, Gutkowska J (2000) Oxytocin and its receptors are synthesized in the rat vasculature. Proc Natl Acad Sci U S A 97(11):6207–6211. doi: 10.1073/pnas.110137497CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, Shnayder NA, Yamada K, Noda M, Seike T, Fujita K, Takasawa S, Yokoyama S, Koizumi K, Shiraishi Y, Tanaka S, Hashii M, Yoshihara T, Higashida K, Islam MS, Yamada N, Hayashi K, Noguchi N, Kato I, Okamoto H, Matsushima A, Salmina A, Munesue T, Shimizu N, Mochida S, Asano M, Higashida H (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446(7131):41–45. doi: 10.1038/nature05526CrossRefPubMedGoogle Scholar
  64. Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J (2014) Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 15(10):637–654. doi: 10.1038/nrn3819CrossRefPubMedPubMedCentralGoogle Scholar
  65. Keebaugh AC, Barrett CE, Laprairie JL, Jenkins JJ, Young LJ (2015) RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles. Soc Neurosci 10(5):561–570. doi: 10.1080/17470919.2015.1040893CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kimura T, Tanizawa O, Mori K, Brownstein MJ, Okayama H (1992) Structure and expression of a human oxytocin receptor. Nature 356(6369):526–529. doi: 10.1038/356526a0CrossRefPubMedGoogle Scholar
  67. Knobloch HS, Grinevich V (2014) Evolution of oxytocin pathways in the brain of vertebrates. Front Behav Neurosci 8:31. doi: 10.3389/fnbeh.2014.00031CrossRefPubMedPubMedCentralGoogle Scholar
  68. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73(3):553–566. doi: 10.1016/j.neuron.2011.11.030CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kojima S, Stewart RA, Demas GE, Alberts JR (2012) Maternal contact differentially modulates central and peripheral oxytocin in rat pups during a brief regime of mother-pup interaction that induces a filial huddling preference. J Neuroendocrinol 24:831–840CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kuwabara Y, Takeda S, Mizuno M, Sakamoto S (1987) Oxytocin levels in maternal and fetal plasma, amniotic fluid, and neonatal plasma and urine. Arch Gynecol Obstet 241(1):13–23CrossRefPubMedGoogle Scholar
  71. Lambert RC, Moos FC, Richard P (1993) Action of endogenous oxytocin within the paraventricular or supraoptic nuclei: a powerful link in the regulation of the bursting pattern of oxytocin neurons during the milk-ejection reflex in rats. Neuroscience 57(4):1027–1038CrossRefPubMedGoogle Scholar
  72. Lee SH, Park KH, Ho WK (2007) Postnatal developmental changes in Ca2+ homeostasis in supraoptic magnocellular neurons. Cell Calcium 41(5):441–450. doi: 10.1016/j.ceca.2006.08.003CrossRefPubMedGoogle Scholar
  73. Lefebvre DL, Giaid A, Bennett H, Lariviere R, Zingg HH (1992) Oxytocin gene expression in rat uterus. Science 256(5063):1553–1555CrossRefPubMedGoogle Scholar
  74. Lefebvre DL, Lariviere R, Zingg HH (1993) Rat amnion: a novel site of oxytocin production. Biol Reprod 48(3):632–639CrossRefPubMedGoogle Scholar
  75. Lefebvre DL, Farookhi R, Giaid A, Neculcea J, Zingg HH (1994a) Uterine oxytocin gene expression. II. Induction by exogenous steroid administration. Endocrinology 134(6):2562–2566. doi: 10.1210/endo.134.6.8194483CrossRefPubMedGoogle Scholar
  76. Lefebvre DL, Farookhi R, Larcher A, Neculcea J, Zingg HH (1994b) Uterine oxytocin gene expression. I. Induction during pseudopregnancy and the estrous cycle. Endocrinology 134(6):2556–2561. doi: 10.1210/endo.134.6.8194482CrossRefPubMedGoogle Scholar
  77. Lefevre A, Sirigu A (2016) The two fold role of oxytocin in social developmental disorders: a cause and a remedy? Neurosci Biobehav Rev 63:168–176. doi: 10.1016/j.neubiorev.2016.01.011CrossRefPubMedGoogle Scholar
  78. Lenz KM, Sengelaub DR (2010) Maternal care effects on the development of a sexually dimorphic motor system: the role of spinal oxytocin. Horm Behav 58(4):575–581. doi: 10.1016/j.yhbeh.2010.07.010CrossRefPubMedPubMedCentralGoogle Scholar
  79. Leonzino M, Busnelli M, Antonucci F, Verderio C, Mazzanti M, Chini B (2016) The timing of the excitatory-to-inhibitory GABA switch is regulated by the oxytocin receptor via KCC2. Cell Rep 15(1):96–103. doi: 10.1016/j.celrep.2016.03.013CrossRefPubMedPubMedCentralGoogle Scholar
  80. Lestanova Z, Bacova Z, Kiss A, Havranek T, Strbak V, Bakos J (2016) Oxytocin increases neurite length and expression of cytoskeletal proteins associated with neuronal growth. J Mol Neurosci 59:184–192. doi: 10.1007/s12031-015-0664-9CrossRefPubMedGoogle Scholar
  81. Leuner B, Caponiti JM, Gould E (2012) Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus 22:861–868. doi: 10.1002/hipo.20947CrossRefPubMedGoogle Scholar
  82. Liu HX, Lopatina O, Higashida C, Tsuji T, Kato I, Takasawa S, Okamoto H, Yokoyama S, Higashida H (2008) Locomotor activity, ultrasonic vocalization and oxytocin levels in infant CD38 knockout mice. Neurosci Lett 448(1):67–70. doi: 10.1016/j.neulet.2008.09.084CrossRefPubMedGoogle Scholar
  83. Ludwig M, Stern J (2015) Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc Lond Ser B Biol Sci 370(1672). doi: 10.1098/rstb.2014.0182CrossRefGoogle Scholar
  84. Lukas M, Bredewold R, Neumann ID, Veenema AH (2010) Maternal separation interferes with developmental changes in brain vasopressin and oxytocin receptor binding in male rats. Neuropharmacology 58(1):78–87. doi: 10.1016/j.neuropharm.2009.06.020CrossRefPubMedPubMedCentralGoogle Scholar
  85. Madarász E, Környei Z, Poulain DA, Theodosis DT (1992) Development of oxytocinergic neurons in monolayer cultures derived from embryonic, fetal and postnatal rat hypothalami. J Neuroendocrinol 4:433–439. doi: 10.1111/j.1365-2826.1992.tb00190.xCrossRefPubMedGoogle Scholar
  86. Makarenko IG, Ugrumov MV, Derer P, Calas A (2000) Projections from the hypothalamus to the posterior lobe in rats during ontogenesis: 1,1′-dioctadecyl-3,3,3′, 3′-tetramethylindocarbocyanine perchlorate tracing study. J Comp Neurol 422(3):327–337CrossRefPubMedGoogle Scholar
  87. Makarenko IG, Ugriumov MV, Kalas A (2002) Involvement of accessory neurosecretory nuclei of hypothalamus in the formation of hypothalamohypophyseal system during prenatal and postnatal development in rats. Ontogenez 33(1):43–49PubMedGoogle Scholar
  88. Marco EJ, Hinkley LB, Hill SS, Nagarajan SS (2011) Sensory processing in autism: a review of neurophysiologic findings. Pediatr Res 69(5 Pt 2):48R–54R. doi: 10.1203/PDR.0b013e3182130c54CrossRefPubMedPubMedCentralGoogle Scholar
  89. Markakis EA (2002) Development of the neuroendocrine hypothalamus. Front Neuroendocrinol 23(3):257–291CrossRefPubMedPubMedCentralGoogle Scholar
  90. McAllister AK (2007) Dynamic aspects of CNS synapse formation. Annu Rev Neurosci 30:425–450. doi: 10.1146/annurev.neuro.29.051605.112830CrossRefPubMedPubMedCentralGoogle Scholar
  91. McCall C, Singer T (2012) The animal and human neuroendocrinology of social cognition, motivation and behavior. Nat Neurosci 15(5):681–688. doi: 10.1038/nn.3084CrossRefPubMedGoogle Scholar
  92. Medina I, Friedel P, Rivera C, Kahle KT, Kourdougli N, Uvarov P, Pellegrino C (2014) Current view on the functional regulation of the neuronal K(+)-Cl(−) cotransporter KCC2. Front Cell Neurosci 8:27. doi: 10.3389/fncel.2014.00027CrossRefPubMedPubMedCentralGoogle Scholar
  93. Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12(9):524–538. doi: 10.1038/nrn3044CrossRefPubMedGoogle Scholar
  94. Meziane H, Schaller F, Bauer S, Villard C, Matarazzo V, Riet F, Guillon G, Lafitte D, Desarmenien MG, Tauber M, Muscatelli F (2015) An early postnatal oxytocin treatment prevents social and learning deficits in adult mice deficient for Magel2, a gene involved in Prader-Willi syndrome and autism. Biol Psychiatry 78(2):85–94. doi: 10.1016/j.biopsych.2014.11.010CrossRefPubMedGoogle Scholar
  95. Miller TV, Caldwell HK (2015) Oxytocin during development: possible organizational effects on behavior. Front Endocrinol 6:76. doi: 10.3389/fendo.2015.00076CrossRefGoogle Scholar
  96. Mitre M, Marlin BJ, Schiavo JK, Morina E, Norden SE, Hackett TA, Aoki CJ, Chao MV, Froemke RC (2016) A distributed network for social cognition enriched for oxytocin receptors. J Neurosci 36(8):2517–2535. doi: 10.1523/JNEUROSCI.2409-15.2016CrossRefPubMedPubMedCentralGoogle Scholar
  97. Miyazaki S, Hiraoka Y, Hidema S, Nishimori K (2016) Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice. Biochem Biophys Res Commun 472:319–323. doi: 10.1016/j.bbrc.2016.02.109CrossRefPubMedGoogle Scholar
  98. Moll UM, Lane BL, Robert F, Geenen V, Legros JJ (1988) The neuroendocrine thymus. Abundant occurrence of oxytocin-, vasopressin-, and neurophysin-like peptides in epithelial cells. Histochemistry 89(4):385–390CrossRefPubMedGoogle Scholar
  99. Nakai S, Kawano H, Yudate T, Nishi M, Kuno J, Nagata A, Jishage K, Hamada H, Fujii H, Kawamura K et al (1995) The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev 9(24):3109–3121CrossRefGoogle Scholar
  100. Neumann ID, Slattery DA (2016) Oxytocin in general anxiety and social fear: a translational approach. Biol Psychiatry 79:213–221. doi: 10.1016/j.biopsych.2015.06.004CrossRefPubMedGoogle Scholar
  101. Nyffeler J, Walitza S, Bobrowski E, Gundelfinger R, Grunblatt E (2014) Association study in siblings and case-controls of serotonin- and oxytocin-related genes with high functioning autism. J Mol Psychiatry 2(1):1. doi: 10.1186/2049-9256-2-1CrossRefPubMedPubMedCentralGoogle Scholar
  102. Okuda K, Uenoyama Y, Fujita Y, Iga K, Sakamoto K, Kimura T (1997) Functional oxytocin receptors in bovine granulosa cells. Biol Reprod 56(3):625–631CrossRefPubMedGoogle Scholar
  103. Paquin J, Danalache BA, Jankowski M, McCann SM, Gutkowska J (2002) Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc Natl Acad Sci U S A 99:9550–9555. doi: 10.1073/pnas.152302499CrossRefPubMedPubMedCentralGoogle Scholar
  104. Penagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH (2011) Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147(1):235–246. doi: 10.1016/j.cell.2011.08.040CrossRefPubMedPubMedCentralGoogle Scholar
  105. Penagarikano O, Lazaro MT, Lu XH, Gordon A, Dong H, Lam HA, Peles E, Maidment NT, Murphy NP, Yang XW et al (2015) Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci Transl Med 7:271ra278CrossRefGoogle Scholar
  106. Randle JC, Mazurek M, Kneifel D, Dufresne J, Renaud LP (1986) Alpha 1-adrenergic receptor activation releases vasopressin and oxytocin from perfused rat hypothalamic explants. Neurosci Lett 65(2):219–223CrossRefPubMedGoogle Scholar
  107. Rinaman L (2007) Visceral sensory inputs to the endocrine hypothalamus. Front Neuroendocrinol 28(1):50–60. doi: 10.1016/j.yfrne.2007.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  108. Rinne UK, Kivalo E, Talanti S (1962) Maturation of human hypothalamic neurosecretion. Biol Neonat 4:351–364CrossRefPubMedGoogle Scholar
  109. Ross HE, Freeman SM, Spiegel LL, Ren X, Terwilliger EF, Young LJ (2009) Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles. J Neurosci 29(5):1312–1318. doi: 10.1523/JNEUROSCI.5039-08.2009CrossRefPubMedPubMedCentralGoogle Scholar
  110. Sala M, Braida D, Lentini D, Busnelli M, Bulgheroni E, Capurro V, Finardi A, Donzelli A, Pattini L, Rubino T, Parolaro D, Nishimori K, Parenti M, Chini B (2011) Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry 69(9):875–882. doi: 10.1016/j.biopsych.2010.12.022CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sala M, Braida D, Donzelli A, Martucci R, Busnelli M, Bulgheroni E, Rubino T, Parolaro D, Nishimori K, Chini B (2013) Mice heterozygous for the oxytocin receptor gene (Oxtr(+/−)) show impaired social behaviour but not increased aggression or cognitive inflexibility: evidence of a selective haploinsufficiency gene effect. J Neuroendocrinol 25(2):107–118. doi: 10.1111/j.1365-2826.2012.02385.xCrossRefPubMedPubMedCentralGoogle Scholar
  112. Sánchez-Vidaña DI, Chan N-MJ, Chan AHL, Hui KKY, Lee S, Chan H-Y, Law YS, Sze MY, Tsui W-CS, Fung TKH, Lau BW-M, Lai CYY (2016) Repeated treatment with oxytocin promotes hippocampal cell proliferation, dendritic maturation and affects socio-emotional behavior. Neuroscience 333:65–77. doi: 10.1016/j.neuroscience.2016.07.005CrossRefPubMedGoogle Scholar
  113. Sannino S, Chini B, Grinevich V (2017) Lifespan oxytocin signaling: maturation, flexibility, and stability in newborn, adolescent, and aged brain. Dev Neurobiol 77:158–168CrossRefPubMedGoogle Scholar
  114. Schaaf CP, Gonzalez-Garay ML, Xia F, Potocki L, Gripp KW, Zhang B, Peters BA, McElwain MA, Drmanac R, Beaudet AL, Caskey CT, Yang Y (2013) Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet 45(11):1405–1408. doi: 10.1038/ng.2776CrossRefPubMedPubMedCentralGoogle Scholar
  115. Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F (2010) A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum Mol Genet 19(24):4895–4905. doi: 10.1093/hmg/ddq424CrossRefPubMedGoogle Scholar
  116. Shapiro LE, Insel TR (1989) Ontogeny of oxytocin receptors in rat forebrain: a quantitative study. Synapse 4(3):259–266. doi: 10.1002/syn.890040312CrossRefPubMedGoogle Scholar
  117. Silverman AJ, Gadde CA, Zimmerman EA (1980) Effects of adrenalectomy on the incorporation of 3H-cytidine in neurophysin and vasopressin-containing neurons of the rat hypothalamus. Neuroendocrinology 30(5):285–290CrossRefPubMedGoogle Scholar
  118. Simpson EA, Sclafani V, Paukner A, Hamel AF, Novak MA, Meyer JS, Suomi SJ, Ferrari PF (2014) Inhaled oxytocin increases positive social behaviors in newborn macaques. Proc Natl Acad Sci U S A 111(19):6922–6927. doi: 10.1073/pnas.1402471111CrossRefPubMedPubMedCentralGoogle Scholar
  119. Smearman EL, Almli LM, Conneely KN, Brody GH, Sales JM, Bradley B, Ressler KJ, Smith AK (2016) Oxytocin receptor genetic and epigenetic variations: association with child abuse and adult psychiatric symptoms. Child Dev 87(1):122–134. doi: 10.1111/cdev.12493CrossRefPubMedPubMedCentralGoogle Scholar
  120. Sofroniew MV (1983) Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog Brain Res 60:101–114. doi: 10.1016/S0079-6123(08)64378-2CrossRefPubMedGoogle Scholar
  121. Stefanidis K, Loutradis D, Anastasiadou V, Beretsos P, Bletsa R, Dinopoulou V, Lekka K, Elenis E, Kiapekou E, Koussoulakos S, Fotinos A, Antsaklis A (2009) Embryoid bodies from mouse stem cells express oxytocin receptor, Oct-4 and DAZL. Bio Systems 98:122–126. doi: 10.1016/j.biosystems.2009.08.004CrossRefPubMedGoogle Scholar
  122. Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, Parod JM, Stephan DA, Morton DH (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 354(13):1370–1377. doi: 10.1056/NEJMoa052773CrossRefPubMedGoogle Scholar
  123. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH (2005) Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54:132–141CrossRefPubMedGoogle Scholar
  124. Swaab DF (1995) Development of the human hypothalamus. Neurochem Res 20(5):509–519CrossRefPubMedGoogle Scholar
  125. Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324. doi: 10.1146/annurev.ne.06.030183.001413CrossRefPubMedGoogle Scholar
  126. Szarek E, Cheah PS, Schwartz J, Thomas P (2010) Molecular genetics of the developing neuroendocrine hypothalamus. Mol Cell Endocrinol 323(1):115–123. doi: 10.1016/j.mce.2010.04.002CrossRefPubMedGoogle Scholar
  127. Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, Yanagisawa T, Kimura T, Matzuk MM, Young LJ, Nishimori K (2005) Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci U S A 102(44):16096–16101. doi: 10.1073/pnas.0505312102CrossRefPubMedPubMedCentralGoogle Scholar
  128. Takeda S, Kuwabara Y, Mizuno M (1986) Concentrations and origin of oxytocin in breast milk. Endocrinol Jpn 33(6):821–826CrossRefPubMedGoogle Scholar
  129. Tamborski S, Mintz EM, Caldwell HK (2016) Sex differences in the embryonic development of the central oxytocin system in mice. J Neuroendocrinol 28(4). doi: 10.1111/jne.12364
  130. Tauber M, Boulanouar K, Diene G, Cabal-Berthoumieu S, Ehlinger V, Fichaux-Bourin P, Molinas C, Faye S, Valette M, Pourrinet J et al (2017) The use of oxytocin to improve feeding and social skills in infants with Prader-Willi syndrome. PediatricsGoogle Scholar
  131. Tobin VA, Arechaga G, Brunton PJ, Russell JA, Leng G, Ludwig M, Douglas AJ (2014) Oxytocinase in the female rat hypothalamus: a novel mechanism controlling oxytocin neurones during lactation. J Neuroendocrinol 26(4):205–216. doi: 10.1111/jne.12141CrossRefPubMedGoogle Scholar
  132. Tribollet E, Charpak S, Schmidt A, Dubois-Dauphin M, Dreifuss JJ (1989) Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiology. J Neurosci 9(5):1764–1773CrossRefPubMedGoogle Scholar
  133. Tribollet E, Goumaz M, Raggenbass M, Dreifuss JJ (1991) Appearance and transient expression of vasopressin and oxytocin receptors in the rat brain. J Recept Res 11(1–4):333–346CrossRefPubMedGoogle Scholar
  134. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, DD F, Flannery R, Jaenisch R, Sur M (2009) Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A 106(6):2029–2034. doi: 10.1073/pnas.0812394106CrossRefPubMedPubMedCentralGoogle Scholar
  135. Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari S, Khalilov I, Tsintsadze V, Brouchoud C, Chazal G, Lemonnier E, Lozovaya N, Burnashev N, Ben-Ari Y (2014) Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 343(6171):675–679. doi: 10.1126/science.1247190CrossRefPubMedGoogle Scholar
  136. Unternaehrer E, Meyer AH, Burkhardt SC, Dempster E, Staehli S, Theill N, Lieb R, Meinlschmidt G (2015) Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women. Stress 18(4):451–461. doi: 10.3109/10253890.2015.1038992CrossRefPubMedPubMedCentralGoogle Scholar
  137. Van der Woude PF, Goudsmit E, Wierda M, Purba JS, Hofman MA, Bogte H, Swaab DF (1995) No vasopressin cell loss in the human hypothalamus in aging and Alzheimer’s disease. Neurobiol Aging 16(1):11–18CrossRefPubMedGoogle Scholar
  138. van Dongen PAM, Nieuwenhuys R (1989) Diencephalon. In: Dubbeldam JL, van Dongen PAM, Voogd J (eds) The central nervous system of vertebrates, vol 3. Springer, BerlinGoogle Scholar
  139. Veenema AH (2012) Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors. Horm Behav 61(3):304–312. doi: 10.1016/j.yhbeh.2011.12.002CrossRefPubMedGoogle Scholar
  140. Veenema AH, Neumann ID (2009) Maternal separation enhances offensive play-fighting, basal corticosterone and hypothalamic vasopressin mRNA expression in juvenile male rats. Psychoneuroendocrinology 34(3):463–467. doi: 10.1016/j.psyneuen.2008.10.017CrossRefPubMedPubMedCentralGoogle Scholar
  141. Veenema AH, Blume A, Niederle D, Buwalda B, Neumann ID (2006) Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur J Neurosci 24(6):1711–1720. doi: 10.1111/j.1460-9568.2006.05045.xCrossRefPubMedPubMedCentralGoogle Scholar
  142. Verbalis JG (1999) The brain oxytocin receptor(s)? Front Neuroendocrinol 20(2):146–156. doi: 10.1006/frne.1999.0178CrossRefPubMedGoogle Scholar
  143. Watanabe M, Fukuda A (2015) Development and regulation of chloride homeostasis in the central nervous system. Front Cell Neurosci 9:371. doi: 10.3389/fncel.2015.00371CrossRefPubMedPubMedCentralGoogle Scholar
  144. Weisman O, Agerbo E, Carter CS, Harris JC, Uldbjerg N, Henriksen TB, Thygesen M, Mortensen PB, Leckman JF, Dalsgaard S (2015) Oxytocin-augmented labor and risk for autism in males. Behav Brain Res 284:207–212. doi: 10.1016/j.bbr.2015.02.028CrossRefPubMedGoogle Scholar
  145. Whitnall MH, Key S, Ben-Barak Y, Ozato K, Gainer H (1985) Neurophysin in the hypothalamo-neurohypophysial system. II. Immunocytochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons. J Neurosci 5(1):98–109CrossRefPubMedGoogle Scholar
  146. Widmer H, Amerdeil H, Fontanaud P, Desarmenien MG (1997) Postnatal maturation of rat hypothalamoneurohypophysial neurons: evidence for a developmental decrease in calcium entry during action potentials. J Neurophysiol 77(1):260–271CrossRefPubMedGoogle Scholar
  147. Wierda M, Goudsmit E, Van der Woude PF, Purba JS, Hofman MA, Bogte H, Swaab DF (1991) Oxytocin cell number in the human paraventricular nucleus remains constant with aging and in Alzheimer’s disease. Neurobiol Aging 12(5):511–516CrossRefPubMedGoogle Scholar
  148. Winslow JT, Insel TR (1991) Social status in pairs of male squirrel monkeys determines the behavioral response to central oxytocin administration. J Neurosci 11(7):2032–2038CrossRefPubMedGoogle Scholar
  149. Winslow JT, Hearn EF, Ferguson J, Young LJ, Matzuk MM, Insel TR (2000) Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm Behav 37(2):145–155. doi: 10.1006/hbeh.1999.1566CrossRefPubMedPubMedCentralGoogle Scholar
  150. Yamamoto Y, Cushing BS, Kramer KM, Epperson PD, Hoffman GE, Carter CS (2004) Neonatal manipulations of oxytocin alter expression of oxytocin and vasopressin immunoreactive cells in the paraventricular nucleus of the hypothalamus in a gender-specific manner. Neuroscience 125(4):947–955CrossRefPubMedGoogle Scholar
  151. Yi KJ, So KH, Hata Y, Suzuki Y, Kato D, Watanabe K, Aso H, Kasahara Y, Nishimori K, Chen C, Katoh K, Roh SG (2015) The regulation of oxytocin receptor gene expression during adipogenesis. J Neuroendocrinol 27:335–342. doi: 10.1111/jne.12268CrossRefPubMedGoogle Scholar
  152. Yuan L, Liu S, Bai X, Gao Y, Liu G, Wang X, Liu D, Li T, Hao A, Wang Z (2016) Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J Neuroinflammation 13(1):77. doi: 10.1186/s12974-016-0541-7CrossRefPubMedPubMedCentralGoogle Scholar
  153. Zheng JJ, Li SJ, Zhang XD, Miao WY, Zhang D, Yao H, Yu X (2014) Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices. Nat Neurosci 17(3):391–399. doi: 10.1038/nn.3634CrossRefPubMedGoogle Scholar
  154. Zink CF, Meyer-Lindenberg A (2012) Human neuroimaging of oxytocin and vasopressin in social cognition. Horm Behav 61(3):400–409. doi: 10.1016/j.yhbeh.2012.01.016CrossRefPubMedPubMedCentralGoogle Scholar
  155. Zoghbi HY (2003) Postnatal neurodevelopmental disorders: meeting at the synapse? Science (New York, NY) 302:826–830. doi: 10.1126/science.1089071CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Françoise Muscatelli
    • 1
  • Michel G. Desarménien
    • 2
  • Valery Matarazzo
    • 1
  • Valery Grinevich
    • 3
    • 4
  1. 1.Institut de Neurobiologie de la Méditerranée, INMED UMR U901, INSERM, Aix-Marseille UniversitéMarseilleFrance
  2. 2.Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de MontpellierMontpellierFrance
  3. 3.Schaller Research Group on Neuropeptides, German Cancer Research CenterUniversity of HeidelbergHeidelbergGermany
  4. 4.Central Institute of Mental HealthUniversity of HeidelbergMannheimGermany

Personalised recommendations