Oxytocin and Aggression

  • Trynke R. de Jong
  • Inga D. NeumannEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 35)


The neuropeptide oxytocin (OT) has a solid reputation as a facilitator of social interactions such as parental and pair bonding, trust, and empathy. The many results supporting a pro-social role of OT have generated the hypothesis that impairments in the endogenous OT system may lead to antisocial behavior, most notably social withdrawal or pathological aggression. If this is indeed the case, administration of exogenous OT could be the “serenic” treatment that psychiatrists have for decades been searching for.

In the present review, we list and discuss the evidence for an endogenous “hypo-oxytocinergic state” underlying aggressive and antisocial behavior, derived from both animal and human studies. We furthermore examine the reported effects of synthetic OT administration on aggression in rodents and humans.

Although the scientific findings listed in this review support, in broad lines, the link between a down-regulated or impaired OT system activity and increased aggression, the anti-aggressive effects of synthetic OT are less straightforward and require further research. The rather complex picture that emerges adds to the ongoing debate questioning the unidirectional pro-social role of OT, as well as the strength of the effects of intranasal OT administration in humans.


Aggression Conduct disorder CU traits Oxytocin Resident-intruder test 



The authors were financially supported by the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement no. 602407 (FemNAT-CD,


  1. Alcorn JL, Green CE, Schmitz J, Lane SD (2015a) Effects of oxytocin on aggressive responding in healthy adult men. Behav Pharmacol 26:798–804PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alcorn JL, Rathnayaka N, Swann AC et al (2015b) Effects of intranasal oxytocin on aggressive responding in antisocial personality disorder. Psychol Rec 65:691–703PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson CA, Bushman BJ (1997) External validity of “trivial” experiments: the case of laboratory aggression. Rev Gen Psychol 1:19–41CrossRefGoogle Scholar
  4. Arakawa H, Blanchard DC, Blanchard RJ (2015) Central oxytocin regulates social familiarity and scent marking behavior that involves amicable odor signals between male mice. Physiol Behav 146:36–46PubMedCrossRefGoogle Scholar
  5. Bartal IB-A, Decety J, Mason P (2011) Empathy and pro-social behavior in rats. Science 334:1427–1430PubMedCentralCrossRefGoogle Scholar
  6. Beiderbeck DI, Reber SO, Havasi A et al (2012) High and abnormal forms of aggression in rats with extremes in trait anxiety – involvement of the dopamine system in the nucleus accumbens. Psychoneuroendocrinology 37:1969–1980PubMedCrossRefGoogle Scholar
  7. Beitchman JH, Zai CC, Muir K et al (2012) Childhood aggression, callous-unemotional traits and oxytocin genes. Eur Child Adolesc Psychiatry 21:125–132PubMedCrossRefGoogle Scholar
  8. Bertsch K, Schmidinger I, Neumann ID, Herpertz SC (2013a) Reduced plasma oxytocin levels in female patients with borderline personality disorder. Horm Behav 63:424–429PubMedCrossRefGoogle Scholar
  9. Bertsch K, Gamer M, Schmidt B et al (2013b) Oxytocin and reduction of social threat hypersensitivity in women with borderline personality disorder. Am J Psychiatr 170:1169–1177PubMedCrossRefGoogle Scholar
  10. Blanchard DC, Blanchard RJ (2003) What can animal aggression research tell us about human aggression? Horm Behav 44:171–177PubMedCrossRefGoogle Scholar
  11. Blanchard RJ, Wall PM, Blanchard DC (2003) Problems in the study of rodent aggression. Horm Behav 44:161–170PubMedCrossRefGoogle Scholar
  12. Bosch OJ (2013) Maternal aggression in rodents: brain oxytocin and vasopressin mediate pup defence. Philos Trans R Soc Lond 368:85CrossRefGoogle Scholar
  13. Bosch OJ, Neumann ID (2012) Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 61:293–303PubMedGoogle Scholar
  14. Bosch OJ, Krömer SA, Brunton PJ, Neumann ID (2004) Release of oxytocin in the hypothalamic paraventricular nucleus, but not central amygdala or lateral septum in lactating residents and virgin intruders during maternal defence. Neuroscience 124:439–448PubMedCrossRefGoogle Scholar
  15. Bosch OJ, Meddle SL, Beiderbeck DI et al (2005) Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci 25:6807–6815PubMedCrossRefGoogle Scholar
  16. Buffone AEK, Poulin MJ (2014) Empathy, target distress, and neurohormone genes interact to predict aggression for others-even without provocation. Personal Soc Psychol Bull 40:1406–1422CrossRefGoogle Scholar
  17. Calcagnoli F, de Boer SF, Althaus M et al (2013) Antiaggressive activity of central oxytocin in male rats. Psychopharmacology (Berlin) 229:639–651CrossRefGoogle Scholar
  18. Calcagnoli F, de Boer SF, Beiderbeck DI et al (2014a) Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness. Behav Brain Res 261:315–322PubMedCrossRefGoogle Scholar
  19. Calcagnoli F, Meyer N, de Boer SF et al (2014b) Chronic enhancement of brain oxytocin levels causes enduring anti-aggressive and pro-social explorative behavioral effects in male rats. Horm Behav 65:427–433PubMedCrossRefGoogle Scholar
  20. Calcagnoli F, Kreutzmann JC, de Boer SF et al (2015a) Acute and repeated intranasal oxytocin administration exerts anti-aggressive and pro-affiliative effects in male rats. Psychoneuroendocrinology 51:112–121PubMedCrossRefGoogle Scholar
  21. Calcagnoli F, Stubbendorff C, Meyer N et al (2015b) Oxytocin microinjected into the central amygdaloid nuclei exerts anti-aggressive effects in male rats. Neuropharmacology 90:74–81PubMedCrossRefGoogle Scholar
  22. Campbell A, Hausmann M (2013) Effects of oxytocin on women’s aggression depend on state anxiety. Aggress Behav 39:316–322PubMedCrossRefGoogle Scholar
  23. Caughey SD, Klampfl SM, Bishop VR et al (2011) Changes in the intensity of maternal aggression and central oxytocin and vasopressin V1a receptors across the peripartum period in the rat. J Neuroendocrinol 23:1113–1124PubMedGoogle Scholar
  24. Consiglio AR, Lucion AB (1996) Lesion of hypothalamic paraventricular nucleus and maternal aggressive behavior in female rats. Physiol Behav 59:591–596PubMedCrossRefGoogle Scholar
  25. Consiglio AR, Borsoi A, Pereira GAM, Lucion AB (2005) Effects of oxytocin microinjected into the central amygdaloid nucleus and bed nucleus of stria terminalis on maternal aggressive behavior in rats. Physiol Behav 85:354–362PubMedCrossRefGoogle Scholar
  26. Crockford C, Deschner T, Ziegler TE, Wittig RM (2014) Endogenous peripheral oxytocin measures can give insight into the dynamics of social relationships: a review. Front Behav Neurosci 8:68PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dadds MR, Moul C, Cauchi A et al (2014a) Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy. Dev Psychopathol 26:33–40PubMedCrossRefGoogle Scholar
  28. Dadds MR, Moul C, Cauchi A et al (2014b) Polymorphisms in the oxytocin receptor gene are associated with the development of psychopathy. Dev Psychopathol 26:21–31PubMedCrossRefGoogle Scholar
  29. De Boer SF, van der Vegt BJ, Koolhaas JM (2003) Individual variation in aggression of feral rodent strains: a standard for the genetics of aggression and violence? Behav Genet 33:485–501PubMedCrossRefGoogle Scholar
  30. De Dreu CKW, Kret ME (2016) Oxytocin conditions intergroup relations through upregulated in-group empathy, cooperation, conformity, and defense. Biol Psychiatry 79:165–173PubMedCrossRefGoogle Scholar
  31. De Dreu CKW, Greer LL, Handgraaf MJJ et al (2010) The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science 328:1408–1411PubMedCrossRefGoogle Scholar
  32. De Jong TR, Beiderbeck DI, Neumann ID (2014) Measuring virgin female aggression in the female intruder test (FIT): effects of oxytocin, estrous cycle, and anxiety. PLoS One 9:e91701PubMedPubMedCentralCrossRefGoogle Scholar
  33. De Jong TR, Menon R, Bludau A et al (2015) Salivary oxytocin concentrations in response to running, sexual self-stimulation, breastfeeding and the TSST: the Regensburg Oxytocin Challenge (ROC) study. Psychoneuroendocrinology 62:381–388PubMedCrossRefGoogle Scholar
  34. Demirci E, Ozmen S, Kilic E, Oztop DB (2016) The relationship between aggression, empathy skills and serum oxytocin levels in male children and adolescents with attention deficit and hyperactivity disorder. Behav Pharmacol 27:681–688PubMedCrossRefGoogle Scholar
  35. DeVries AC, Young WS, Nelson RJ (1997) Reduced aggressive behaviour in mice with targeted disruption of the oxytocin gene. J Neuroendocrinol 9:363–368PubMedCrossRefGoogle Scholar
  36. Dhakar MB, Rich ME, Reno EL et al (2012) Heightened aggressive behavior in mice with lifelong versus postweaning knockout of the oxytocin receptor. Horm Behav 62:86–92PubMedCrossRefGoogle Scholar
  37. Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin and the neurogenetics of sociality. Science 322:900–904PubMedCrossRefGoogle Scholar
  38. Ebner K, Wotjak CT, Landgraf R, Engelmann M (2005) Neuroendocrine and behavioral response to social confrontation: residents versus intruders, active versus passive coping styles. Horm Behav 47:14–21PubMedCrossRefGoogle Scholar
  39. Ferguson CJ, Rueda SM (2009) Examining the validity of the modified Taylor competitive reaction time test of aggression. J Exp Criminol 5:121–137CrossRefGoogle Scholar
  40. Ferris CF, Foote KB, Meltser HM et al (1992) Oxytocin in the amygdala facilitates maternal aggression. Ann N Y Acad Sci 652:456–457PubMedCrossRefGoogle Scholar
  41. Fetissov SO, Hallman J, Nilsson I et al (2006) Aggressive behavior linked to corticotropin-reactive autoantibodies. Biol Psychiatry 60:799–802PubMedCrossRefGoogle Scholar
  42. Freitag C (2014) Neurobiology and treatment of adolescent female conduct disorder: FemNAT-CD consortium: a new European cooperation. Eur Child Adolesc Psychiatry 23:723–724PubMedCrossRefGoogle Scholar
  43. Frick P, White SF (2008) Research review: the importance of callous-unemotional traits for developmental models of aggressive and antisocial behavior. J Child Psychol Psychiatry 49:359–375PubMedCrossRefGoogle Scholar
  44. Giancola PR, Chermack ST (1998) Construct validity of laboratory aggression paradigms: a response to Tedeschi and Quigley (1996). Aggress Violent Behav 3:237–253CrossRefGoogle Scholar
  45. Giovenardi M, Padoin MJ, Cadore LP, Lucion AB (1998) Hypothalamic paraventricular nucleus modulates maternal aggression in rats: effects of ibotenic acid lesion and oxytocin antisense. Physiol Behav 63:351–359PubMedCrossRefGoogle Scholar
  46. Harmon AC, Huhman KL, Moore TO, Albers HE (2002) Oxytocin inhibits aggression in female Syrian hamsters. J Neuroendocrinol 14:963–969PubMedCrossRefGoogle Scholar
  47. Hathaway GA, Faykoo-Martinez M, Peragine DE et al (2016) Subcaste differences in neural activation suggest a prosocial role for oxytocin in eusocial naked mole-rats. Horm Behav 79:1–7PubMedCrossRefGoogle Scholar
  48. Hattori T, Kanno K, Nagasawa M et al (2015) Impairment of interstrain social recognition during territorial aggressive behavior in oxytocin receptor-null mice. Neurosci Res 90:90–94PubMedCrossRefGoogle Scholar
  49. Hernandez-Lallement J, van Wingerden M, Marx C et al (2014) Rats prefer mutual rewards in a prosocial choice task. Front Neurosci 8:443PubMedGoogle Scholar
  50. Hovey D, Lindstedt M, Zettergren A et al (2016) Antisocial behavior and polymorphisms in the oxytocin receptor gene: findings in two independent samples. Mol Psychiatry 21:983–988PubMedCrossRefGoogle Scholar
  51. Johansson A, Bergman H, Corander J et al (2012a) Alcohol and aggressive behavior in men-moderating effects of oxytocin receptor gene (OXTR) polymorphisms. Genes Brain Behav 11:214–221PubMedCrossRefGoogle Scholar
  52. Johansson A, Westberg L, Sandnabba K et al (2012b) Associations between oxytocin receptor gene (OXTR) polymorphisms and self-reported aggressive behavior and anger: interactions with alcohol consumption. Psychoneuroendocrinology 37:1546–1556PubMedCrossRefGoogle Scholar
  53. Jokinen J, Chatzittofis A, Hellström C et al (2012) Low CSF oxytocin reflects high intent in suicide attempters. Psychoneuroendocrinology 37:482–490PubMedCrossRefGoogle Scholar
  54. Karpova IV, Mikheev VV, Marysheva VV et al (2016) Oxytocin-induced changes in monoamine level in symmetric brain structures of isolated aggressive C57Bl/6 mice. Bull Exp Biol Med 160:605–609PubMedCrossRefGoogle Scholar
  55. Koolhaas JM, Coppens CM, de Boer SF et al (2013) The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J Vis Exp 77:e4367Google Scholar
  56. Kosfeld M, Heinrichs M, Zak PJ et al (2005) Oxytocin increases trust in humans. Nature 435:673–676PubMedCrossRefGoogle Scholar
  57. Krahé B (2013) The social psychology of aggression, 2nd edn. Psychology Press, HoveCrossRefGoogle Scholar
  58. Lazzari VM, Becker RO, de Azevedo MS et al (2013) Oxytocin modulates social interaction but is not essential for sexual behavior in male mice. Behav Brain Res 244:130–136PubMedCrossRefGoogle Scholar
  59. Lee R, Ferris C, Van de Kar LD, Coccaro EF (2009) Cerebrospinal fluid oxytocin, life history of aggression, and personality disorder. Psychoneuroendocrinology 34:1567–1573PubMedCrossRefGoogle Scholar
  60. Leng G, Ludwig M (2016) Intranasal oxytocin: myths and delusions. Biol Psychiatry 79:243–250PubMedCrossRefGoogle Scholar
  61. Levy T, Bloch Y, Bar-Maisels M et al (2015) Salivary oxytocin in adolescents with conduct problems and callous-unemotional traits. Eur Child Adolesc Psychiatry 24:1543–1551PubMedCrossRefGoogle Scholar
  62. Lonstein JS, Gammie SC (2002) Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neurosci Biobehav Rev 26:869–888PubMedCrossRefGoogle Scholar
  63. LoParo D, Johansson A, Walum H et al (2016) Rigorous tests of gene-environment interactions in a lab study of the oxytocin receptor gene (OXTR), alcohol exposure, and aggression. Am J Med Genet B Neuropsychiatr Genet 171:589–602PubMedCrossRefGoogle Scholar
  64. Lubin DA, Elliott JC, Black MC, Johns JM (2003) An oxytocin antagonist infused into the central nucleus of the amygdala increases maternal aggressive behavior. Behav Neurosci 117:195–201PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lukas M, Bredewold R, Neumann ID, Veenema AH (2010) Maternal separation interferes with developmental changes in brain vasopressin and oxytocin receptor binding in male rats. Neuropharmacology 58:78–87PubMedCrossRefGoogle Scholar
  66. Mahalati K, Okanoya K, Witt DM, Carter CS (1991) Oxytocin inhibits male sexual behavior in prairie voles. Pharmacol Biochem Behav 39:219–222PubMedCrossRefGoogle Scholar
  67. Malik AI, Zai CC, Abu Z et al (2012) The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression. Genes Brain Behav 11:545–551PubMedCrossRefGoogle Scholar
  68. Malik AI, Zai CC, Berall L et al (2014) The role of genetic variants in genes regulating the oxytocin-vasopressin neurohumoral system in childhood-onset aggression. Psychiatr Genet 24:201–210PubMedGoogle Scholar
  69. Maroun M, Wagner S (2016) Oxytocin and memory of emotional stimuli: some dance to remember, some dance to forget. Biol Psychiatry 79:203–212PubMedCrossRefGoogle Scholar
  70. Modi ME, Connor-Stroud F, Landgraf R et al (2014) Aerosolized oxytocin increases cerebrospinal fluid oxytocin in rhesus macaques. Psychoneuroendocrinology 45:49–57PubMedPubMedCentralCrossRefGoogle Scholar
  71. Murgatroyd CA, Taliefar M, Bradburn S et al (2015) Social stress during lactation, depressed maternal care, and neuropeptidergic gene expression. Behavioral Pharmacology 26:642–653CrossRefGoogle Scholar
  72. Natarajan D, de Vries H, Saaltink D-J et al (2009) Delineation of violence from functional aggression in mice: an ethological approach. Behav Genet 39:73–90PubMedCrossRefGoogle Scholar
  73. Ne’eman R, Perach-Barzilay N, Fischer-Shofty M et al (2016) Intranasal administration of oxytocin increases human aggressive behavior. Horm Behav 80:125–131PubMedCrossRefGoogle Scholar
  74. Nelson RJ, Trainor BC (2007) Neural mechanisms of aggression. Nat Rev Neurosci 8:536–546PubMedCrossRefGoogle Scholar
  75. Neumann ID, Landgraf R (2012) Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci 35:649–659PubMedCrossRefGoogle Scholar
  76. Neumann ID, Slattery DA (2016) Oxytocin in general anxiety and social fear: a translational approach. Biol Psychiatry 79:213–221PubMedCrossRefGoogle Scholar
  77. Neumann ID, Toschi N, Ohl F et al (2001) Maternal defence as an emotional stressor in female rats: correlation of neuroendocrine and behavioural parameters and involvement of brain oxytocin. Eur J Neurosci 13:1016–1024PubMedCrossRefGoogle Scholar
  78. Neumann ID, Veenema AH, Beiderbeck DI (2010) Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci 4(12):1–16Google Scholar
  79. Neumann ID, Maloumby R, Beiderbeck DI et al (2013) Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinology 38:1985–1993PubMedCrossRefGoogle Scholar
  80. Pagani JH, Williams Avram SK, Cui Z et al (2015) Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only. Genes Brain Behav 14:167–176PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ragnauth AK, Goodwillie A, Brewer C et al (2004) Vasopressin stimulates ventromedial hypothalamic neurons via oxytocin receptors in oxytocin gene knockout male and female mice. Neuroendocrinology 80:92–99PubMedCrossRefGoogle Scholar
  82. Ragnauth AK, Devidze N, Moy V et al (2005) Female oxytocin gene-knockout mice, in a semi-natural environment, display exaggerated aggressive behavior. Genes Brain Behav 4:229–239PubMedCrossRefGoogle Scholar
  83. Russell JA, Leng G, Douglas AJ (2003) The magnocellular oxytocin system, the fount of maternity: adaptations in pregnancy. Front Neuroendocrinol 24:27–61PubMedCrossRefGoogle Scholar
  84. Sabihi S, Dong SM, Durosko NE, Leuner B (2014) Oxytocin in the medial prefrontal cortex regulates maternal care, maternal aggression and anxiety during the postpartum period. Front Behav Neurosci 8:258PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sala M, Braida D, Lentini D et al (2011) Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry 69:875–882PubMedCrossRefGoogle Scholar
  86. Sala M, Braida D, Donzelli A et al (2013) Mice heterozygous for the oxytocin receptor gene (Oxtr(+/−)) show impaired social behaviour but not increased aggression or cognitive inflexibility: evidence of a selective haploinsufficiency gene effect. J Neuroendocrinol 25:107–118PubMedCrossRefGoogle Scholar
  87. Sato N, Tan L, Tate K, Okada M (2015) Rats demonstrate helping behavior toward a soaked conspecific. Anim Cogn 18:1039–1047PubMedCrossRefGoogle Scholar
  88. Slattery DA, Neumann ID (2008) No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain. J Physiol 586:377–385PubMedCrossRefGoogle Scholar
  89. Smearman EL, Winiarski DA, Brennan PA et al (2015) Social stress and the oxytocin receptor gene interact to predict antisocial behavior in an at-risk cohort. Dev Psychopathol 27:309–318PubMedCrossRefGoogle Scholar
  90. Striepens N, Kendrick KM, Hanking V et al (2013) Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Sci Rep 3:3440PubMedPubMedCentralCrossRefGoogle Scholar
  91. Takahashi A, Miczek KA (2014) Neurogenetics of aggressive behavior: studies in rodents. Curr Top Behav Neurosci 17:3–44PubMedPubMedCentralCrossRefGoogle Scholar
  92. Takayanagi Y, Yoshida M, Bielsky IF et al (2005) Pervasive social deficits, but normal parturition in oxytocin receptor-deficient mice. Proc Natl Acad Sci U S A 102:16096–16101PubMedPubMedCentralCrossRefGoogle Scholar
  93. Trainor BC, Takahashi EY, Silva AL et al (2010) Sex differences in hormonal responses to social conflict in the monogamous California mouse. Horm Behav 58:506–512PubMedPubMedCentralCrossRefGoogle Scholar
  94. Tsuda MC, Yamaguchi N, Ogawa S (2011) Early life stress disrupts peripubertal development of aggression in male mice. Neuroreport 22:259–263PubMedCrossRefGoogle Scholar
  95. Uvnäs-Moberg K, Arn I, Theorell T, Jonsson CO (1991) Personality traits in a group of individuals with functional disorders of the gastrointestinal tract and their correlation with gastrin, somatostatin and oxytocin levels. J Psychosom Res 35:515–523PubMedCrossRefGoogle Scholar
  96. Veenema AH, Neumann ID (2009) Maternal separation enhances offensive play-fighting, basal corticosterone and hypothalamic vasopressin mRNA expression in juvenile male rats. Psychoneuroendocrinology 34:463–467PubMedCrossRefGoogle Scholar
  97. Veenema AH, Blume A, Niederle D et al (2006) Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur J Neurosci 24:1711–1720PubMedCrossRefGoogle Scholar
  98. Veenema AH, Bredewold R, Neumann ID (2007) Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology 32:437–450PubMedCrossRefGoogle Scholar
  99. Veenema AH, Beiderbeck DI, Lukas M, Neumann ID (2010) Distinct correlations of vasopressin release within the lateral septum and the bed nucleus of the stria terminalis with the display of intermale aggression. Horm Behav 58:273–281PubMedCrossRefGoogle Scholar
  100. Waldherr M, Neumann ID (2007) Centrally released oxytocin mediates mating-induced anxiolysis in male rats. Proc Natl Acad Sci U S A 104:16681–16684PubMedPubMedCentralCrossRefGoogle Scholar
  101. Waller R, Corral-Frías NS, Vannucci B et al (2017) An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men. Soc Cogn Affect Neurosci 11:1218–1226CrossRefGoogle Scholar
  102. Walum H, Waldman ID, Young LJ (2016) Statistical and methodological considerations for the interpretation of intranasal oxytocin studies. Biol Psychiatry 79:251–257PubMedCrossRefGoogle Scholar
  103. Winslow JT, Insel TR (1991) Social status in pairs of male squirrel monkeys determines the behavioral response to central oxytocin administration. J Neurosci 11:2032–2038PubMedCrossRefGoogle Scholar
  104. Winslow JT, Hastings N, Carter CS et al (1993) A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365:545–548PubMedCrossRefGoogle Scholar
  105. Winslow JT, Hearn EF, Ferguson J et al (2000) Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm Behav 37:145–155PubMedCrossRefGoogle Scholar
  106. Witt DM, Carter CS, Walton DM (1990) Central and peripheral effects of oxytocin administration in prairie voles (Microtus ochrogaster). Pharmacol Biochem Behav 37:63–69PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Behavioral and Molecular NeurobiologyUniversity of RegensburgRegensburgGermany

Personalised recommendations