Advertisement

Oxytocin and Social Relationships: From Attachment to Bond Disruption

  • Oliver J. Bosch
  • Larry J. Young
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 35)

Abstract

Social relationships throughout life are vital for well-being and physical and mental health. A significant amount of research in animal models as well as in humans suggests that oxytocin (OT) plays an important role in the development of the capacity to form social bonds, the mediation of the positive aspects of early-life nurturing on adult bonding capacity, and the maintenance of social bonding. Here, we focus on the extensive research on a socially monogamous rodent model organism, the prairie vole (Microtus ochrogaster). OT facilitates mating-induced pair bonds in adults through interaction with the mesolimbic dopamine system. Variation in striatal OT receptor density predicts resilience and susceptibility to neonatal social neglect in female prairie voles. Finally, in adults, loss of a partner results in multiple disruptions in OT signaling, including decreased OT release in the striatum, which is caused by an activation of the brain corticotropin releasing factor (CRF) system. The dramatic behavioral consequence of partner loss is increased depressive-like behavior reminiscent of bereavement. Importantly, infusions of OT into the striatum of adults prevents the onset of depressive-like behavior following partner loss, and evoking endogenous OT release using melanocortin agonists during neonatal social isolation rescues impairments in social bonding in adulthood. This work has important translational implications relevant to the disruptions of social bonds in childhood and in adults.

Keywords

Attachment Bereavement Grieving Monogamy Pair bond Social loss 

Notes

Acknowledgments

The authors would like to acknowledge support from the Deutsche Forschungsgemeinschaft Grant DFG GRK 2147/1 to OJB and NIH Grants R01MH077776, R01MH096983, and 1P50MH100023 to LJY.

References

  1. Aguilera G, Liu Y (2012) The molecular physiology of CRH neurons. Front Neuroendocrinol 33:67–84. doi: 10.1016/j.yfrne.2011.08.002CrossRefPubMedGoogle Scholar
  2. Ahern TH, Young LJ (2009) The impact of early life family structure on adult social attachment, alloparental behavior, and the neuropeptide systems regulating affiliative behaviors in the monogamous prairie vole (Microtus ochrogaster). Front Behav Neurosci 3:17. doi: 10.3389/neuro.08.017.2009CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahern TH, Modi ME, Burkett JP, Young LJ (2009) Evaluation of two automated metrics for analyzing partner preference tests. J Neurosci Methods 182:180–188. doi: 10.1016/j.jneumeth.2009.06.010CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ahern TH, Hammock EA, Young LJ (2011) Parental division of labor, coordination, and the effects of family structure on parenting in monogamous prairie voles (Microtus ochrogaster). Dev Psychobiol 53:118–131. doi: 10.1002/dev.20498CrossRefPubMedGoogle Scholar
  5. Almas AN, Degnan KA, Radulescu A, Nelson CA 3rd, Zeanah CH, Fox NA (2012) Effects of early intervention and the moderating effects of brain activity on institutionalized children’s social skills at age 8. Proc Natl Acad Sci U S A 109(Suppl 2):17228–17231. doi: 10.1073/pnas.1121256109CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aragona BJ, Liu Y, Yu YJ, Curtis JT, Detwiler JM, Insel TR, Wang Z (2006) Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nat Neurosci 9:133–139. doi: 10.1038/nn1613CrossRefPubMedGoogle Scholar
  7. Assareh AA, Sharpley CF, McFarlane JR, Sachdev PS (2015) Biological determinants of depression following bereavement. Neurosci Biobehav Rev 49C:171–181. doi: 10.1016/j.neubiorev.2014.12.013CrossRefGoogle Scholar
  8. Bales KL, Saltzman W (2016) Fathering in rodents: neurobiological substrates and consequences for offspring. Horm Behav 77:249–259. doi: 10.1016/j.yhbeh.2015.05.021CrossRefPubMedGoogle Scholar
  9. Bardo MT (1998) Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol 12:37–67. doi: 10.1615/CritRevNeurobiol.v12.i1-2.30CrossRefPubMedGoogle Scholar
  10. Barrett CE, Keebaugh AC, Ahern TH, Bass CE, Terwilliger EF, Young LJ (2013) Variation in vasopressin receptor (Avpr1a) expression creates diversity in behaviors related to monogamy in prairie voles. Horm Behav 63:518–526. doi: 10.1016/j.yhbeh.2013.01.005CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barrett CE, Modi ME, Zhang BC, Walum H, Inoue K, Young LJ (2014) Neonatal melanocortin receptor agonist treatment reduces play fighting and promotes adult attachment in prairie voles in a sex-dependent manner. Neuropharmacology 85:357–366. doi: 10.1016/j.neuropharm.2014.05.041CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barrett CE, Arambula SE, Young LJ (2015) The oxytocin system promotes resilience to the effects of neonatal isolation on adult social attachment in female prairie voles. Transl Psychiatry 5:e606. doi: 10.1038/tp.2015.73CrossRefPubMedPubMedCentralGoogle Scholar
  13. Berkman LF (1995) The role of social relations in health promotion. Psychosom Med 57:245–254CrossRefPubMedGoogle Scholar
  14. Biondi M, Picardi A (1996) Clinical and biological aspects of bereavement and loss-induced depression: a reappraisal. Psychother Psychosom 65:229–245. doi: 10.1159/000289082CrossRefPubMedGoogle Scholar
  15. Bogels S, Phares V (2008) Fathers’ role in the etiology, prevention and treatment of child anxiety: a review and new model. Clin Psychol Rev 28:539–558. doi: 10.1016/j.cpr.2007.07.011CrossRefPubMedGoogle Scholar
  16. Bosch OJ, Neumann ID (2012) Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 61:293–303. doi: 10.1016/j.yhbeh.2011.11.002CrossRefPubMedGoogle Scholar
  17. Bosch OJ, Nair HP, Ahern TH, Neumann ID, Young LJ (2009) The CRF system mediates increased passive stress-coping behavior following the loss of a bonded partner in a monogamous rodent. Neuropsychopharmacology 34:1406–1415. doi: 10.1038/npp.2008.154CrossRefPubMedGoogle Scholar
  18. Bosch OJ, Dabrowska J, Modi ME, Johnson ZV, Keebaugh AC, Barrett CE, Ahern TH, Guo J, Grinevich V, Rainnie DG, Neumann ID, Young LJ (2016) Oxytocin in the nucleus accumbens shell reverses CRFR2-evoked passive stress-coping after partner loss in monogamous male prairie voles. Psychoneuroendocrinology 64:66–78. doi: 10.1016/j.psyneuen.2015.11.011CrossRefPubMedGoogle Scholar
  19. Bowlby J (1982) Attachment and loss: retrospect and prospect. Am J Orthopsychiatry 52:664–678. doi: 10.1111/j.1939-0025.1982.tb01455.xCrossRefPubMedGoogle Scholar
  20. Bradley B, Davis TA, Wingo AP, Mercer KB, Ressler KJ (2013) Family environment and adult resilience: contributions of positive parenting and the oxytocin receptor gene. Eur J Psychotraumatol 4:21659. doi: 10.3402/ejpt.v4i0.21659CrossRefGoogle Scholar
  21. Burkett JP, Young LJ (2012) The behavioral, anatomical and pharmacological parallels between social attachment, love and addiction. Psychopharmacology 224:1–26. doi: 10.1007/s00213-012-2794-xCrossRefPubMedPubMedCentralGoogle Scholar
  22. Burkett JP, Andari E, Johnson ZV, Curry DC, de Waal FB, Young LJ (2016) Oxytocin-dependent consolation behavior in rodents. Science 351:375–378. doi: 10.1126/science.aac4785CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cacioppo JT, Hawkley LC (2003) Social isolation and health, with an emphasis on underlying mechanisms. Perspect Biol Med 46(3 Suppl):S39–S52. doi: 10.1353/pbm.2003.0049CrossRefPubMedGoogle Scholar
  24. Carter CS, Getz LL (1993) Monogamy and the prairie vole. Sci Am 268:100–106CrossRefPubMedGoogle Scholar
  25. Champagne F, Diorio J, Sharma S, Meaney MJ (2001) Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc Natl Acad Sci U S A 98:12736–12741. doi: 10.1073/pnas.221224598CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cho MM, DeVries AC, Williams JR, Carter CS (1999) The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (Microtus ochrogaster). Behav Neurosci 113:1071–1079. doi: 10.1037/0735-7044.113.5.1071CrossRefPubMedGoogle Scholar
  27. Cryan SA (2005) Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J 7:E20–E41. doi: 10.1208/aapsj070104CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cryan JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9:326–357. doi: 10.1038/sj.mp.4001457CrossRefPubMedGoogle Scholar
  29. Cryan JF, Valentino RJ, Lucki I (2005) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29:547–569. doi: 10.1016/j.neubiorev.2005.03.008CrossRefPubMedGoogle Scholar
  30. Dabrowska J, Hazra R, Ahern TH, Guo JD, McDonald AJ, Mascagni F, Muller JF, Young LJ, Rainnie DG (2011) Neuroanatomical evidence for reciprocal regulation of the corticotrophin-releasing factor and oxytocin systems in the hypothalamus and the bed nucleus of the stria terminalis of the rat: implications for balancing stress and affect. Psychoneuroendocrinology 36:1312–1326. doi: 10.1016/j.psyneuen.2011.03.003CrossRefPubMedPubMedCentralGoogle Scholar
  31. DeVries AC, Guptaa T, Cardillo S, Cho M, Carter CS (2002) Corticotropin-releasing factor induces social preferences in male prairie voles. Psychoneuroendocrinology 27:705–714. doi: 10.1016/S0306-4530(01)00073-7CrossRefPubMedGoogle Scholar
  32. DeVries AC, Glasper ER, Detillion CE (2003) Social modulation of stress responses. Physiol Behav 79:399–407. doi: 10.1016/S0031-9384(03)00152-5CrossRefPubMedGoogle Scholar
  33. Ditzen B, Heinrichs M (2014) Psychobiology of social support: the social dimension of stress buffering. Restor Neurol Neurosci 32:149–162. doi: 10.3233/RNN-139008CrossRefPubMedGoogle Scholar
  34. Donaldson ZR, Spiegel L, Young LJ (2010) Central vasopressin V1a receptor activation is independently necessary for both partner preference formation and expression in socially monogamous male prairie voles. Behav Neurosci 124:159–163. doi: 10.1037/a0018094CrossRefPubMedPubMedCentralGoogle Scholar
  35. Duclot F, Wang H, Youssef C, Liu Y, Wang Z, Kabbaj M (2016) Trichostatin A (TSA) facilitates formation of partner preference in male prairie voles (Microtus ochrogaster). Horm Behav 81:68–73. doi: 10.1016/j.yhbeh.2016.04.001CrossRefPubMedPubMedCentralGoogle Scholar
  36. Dumais KM, Veenema AH (2016) Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol 40:1–23. doi: 10.1016/j.yfrne.2015.04.003CrossRefPubMedGoogle Scholar
  37. Feldman R, Monakhov M, Pratt M, Ebstein RP (2016) Oxytocin pathway genes: evolutionary ancient system impacting on human affiliation, sociality, and psychopathology. Biol Psychiatry 79:174–184. doi: 10.1016/j.biopsych.2015.08.008CrossRefPubMedGoogle Scholar
  38. Gammie SC, Negron A, Newman SM, Rhodes JS (2004) Corticotropin-releasing factor inhibits maternal aggression in mice. Behav Neurosci 118:805–814. doi: 10.1037/0735-7044.118.4.805CrossRefPubMedGoogle Scholar
  39. Getz LL, Carter CS (1996) Prairie-vole partnerships. Am Sci 84:56–62Google Scholar
  40. Gobrogge K, Wang Z (2015) Neuropeptidergic regulation of pair-bonding and stress buffering: lessons from voles. Horm Behav 76:91–105. doi: 10.1016/j.yhbeh.2015.08.010CrossRefPubMedPubMedCentralGoogle Scholar
  41. Graziano F, Bonino S, Cattelino E (2009) Links between maternal and paternal support, depressive feelings and social and academic self-efficacy in adolescence. Eur J Dev Psychol 6:241–257. doi: 10.1080/17405620701252066CrossRefGoogle Scholar
  42. Grippo AJ, Gerena D, Huang J, Kumar N, Shah M, Ughreja R, Carter CS (2007a) Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles. Psychoneuroendocrinology 32:966–980. doi: 10.1016/j.psyneuen.2007.07.004CrossRefPubMedPubMedCentralGoogle Scholar
  43. Grippo AJ, Lamb DG, Carter CS, Porges SW (2007b) Social isolation disrupts autonomic regulation of the heart and influences negative affective behaviors. Biol Psychiatry 62:1162–1170. doi: 10.1016/j.biopsych.2007.04.011CrossRefPubMedPubMedCentralGoogle Scholar
  44. Grippo AJ, Wu KD, Hassan I, Carter CS (2008) Social isolation in prairie voles induces behaviors relevant to negative affect: toward the development of a rodent model focused on co-occurring depression and anxiety. Depress Anxiety 25:E17–E26. doi: 10.1002/da.20375CrossRefPubMedPubMedCentralGoogle Scholar
  45. Grippo AJ, Trahanas DM, Zimmerman RR 2nd, Porges SW, Carter CS (2009) Oxytocin protects against negative behavioral and autonomic consequences of long-term social isolation. Psychoneuroendocrinology 34(10):1542–1553. doi: 10.1016/j.psyneuen.2009.05.017CrossRefPubMedPubMedCentralGoogle Scholar
  46. Grippo AJ, Pournajafi-Nazarloo H, Sanzenbacher L, Trahanas DM, McNeal N, Clarke DA, Porges SW, Sue Carter C (2012) Peripheral oxytocin administration buffers autonomic but not behavioral responses to environmental stressors in isolated prairie voles. Stress 15:149–161. doi: 10.3109/10253890.2011.605486CrossRefPubMedGoogle Scholar
  47. Grippo AJ, Ihm E, Wardwell J, McNeal N, Scotti MA, Moenk DA, Chandler DL, LaRocca MA, Preihs K (2014) The effects of environmental enrichment on depressive and anxiety-relevant behaviors in socially isolated prairie voles. Psychosom Med 76:277–284. doi: 10.1097/PSY.0000000000000052CrossRefPubMedPubMedCentralGoogle Scholar
  48. Grippo AJ, Moffitt JA, Henry MK, Firkins R, Senkler J, McNeal N, Wardwell J, Scotti MA, Dotson A, Schultz R (2015) Altered connexin 43 and connexin 45 protein expression in the heart as a function of social and environmental stress in the prairie vole. Stress 18:107–114. doi: 10.3109/10253890.2014.979785CrossRefPubMedGoogle Scholar
  49. Haas BW, Filkowski MM, Cochran RN, Denison L, Ishak A, Nishitani S, Smith AK (2016) Epigenetic modification of OXT and human sociability. Proc Natl Acad Sci U S A 113:E3816–E3823. doi: 10.1073/pnas.1602809113CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hammock EA, Young LJ (2005) Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308:1630–1634. doi: 10.1126/science.1111427CrossRefPubMedGoogle Scholar
  51. Harlow HF, Zimmermann RR (1959) Affectional responses in the infant monkey; orphaned baby monkeys develop a strong and persistent attachment to inanimate surrogate mothers. Science 130:421–432. doi: 10.1126/science.130.3373.421CrossRefPubMedPubMedCentralGoogle Scholar
  52. Heim C, Young LJ, Newport DJ, Mletzko T, Miller AH, Nemeroff CB (2009) Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol Psychiatry 14:954–958. doi: 10.1038/mp.2008.112CrossRefPubMedGoogle Scholar
  53. Heim C, Shugart M, Craighead WE, Nemeroff CB (2010) Neurobiological and psychiatric consequences of child abuse and neglect. Dev Psychobiol 52:671–690. doi: 10.1002/dev.20494CrossRefPubMedGoogle Scholar
  54. House JS, Landis KR, Umberson D (1988) Social relationships and health. Science 241:540–545. doi: 10.1126/science.3399889CrossRefPubMedGoogle Scholar
  55. Humphreys KL, Gleason MM, Drury SS, Miron D, Nelson CA, Fox NA, Zeanah CH (2015) Effects of institutional rearing and foster care on psychopathology at age 12 years in Romania: follow-up of an open, randomised controlled trial. Lancet Psychiatry 2:625–634. doi: 10.1016/S2215-0366(15)00095-4CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hurlemann R, Scheele D (2016) Dissecting the role of oxytocin in the formation and loss of social relationships. Biol Psychiatry 79:185–193. doi: 10.1016/j.biopsych.2015.05.013CrossRefPubMedGoogle Scholar
  57. Insel TR (2003) Is social attachment an addictive disorder? Physiol Behav 79:351–357. doi: 10.1016/S0031-9384(03)00148-3CrossRefPubMedGoogle Scholar
  58. Insel TR, Hulihan TJ (1995) A gender-specific mechanism for pair bonding: oxytocin and partner preference formation in monogamous voles. Behav Neurosci 109:782–789. doi: 10.1037/0735-7044.109.4.782CrossRefPubMedGoogle Scholar
  59. Insel TR, Wang ZX, Ferris CF (1994) Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. J Neurosci 14:5381–5392CrossRefPubMedGoogle Scholar
  60. Johnson ZV, Young LJ (2015) Neurobiological mechanisms of social attachment and pair bonding. Curr Opin Behav Sci 3:38–44. doi: 10.1016/j.cobeha.2015.01.009CrossRefPubMedPubMedCentralGoogle Scholar
  61. Johnson ZV, Walum H, Jamal YA, Xiao Y, Keebaugh AC, Inoue K, Young LJ (2016) Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles. Horm Behav 79:8–17. doi: 10.1016/j.yhbeh.2015.11.011CrossRefPubMedGoogle Scholar
  62. Kalia M (2005) Neurobiological basis of depression: an update. Metabolism 54:24–27. doi: 10.1016/j.metabol.2005.01.009CrossRefPubMedGoogle Scholar
  63. Keebaugh AC, Young LJ (2011) Increasing oxytocin receptor expression in the nucleus accumbens of pre-pubertal female prairie voles enhances alloparental responsiveness and partner preference formation as adults. Horm Behav 60:498–504. doi: 10.1016/j.yhbeh.2011.07.018CrossRefPubMedPubMedCentralGoogle Scholar
  64. Keebaugh AC, Barrett CE, LaPrairie JL, Jenkins JJ, Young LJ (2015) RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles. Soc Neurosci 7:1–10. doi: 10.1080/17470919.2015.1040893CrossRefGoogle Scholar
  65. Kikusui T, Winslow JT, Mori Y (2006) Social buffering: relief from stress and anxiety. Philos Trans R Soc Lond Ser B Biol Sci 361:2215–2228. doi: 10.1098/rstb.2006.1941CrossRefGoogle Scholar
  66. King LB, Walum H, Inoue K, Eyrich NW, Young LJ (2016) Variation in the oxytocin receptor gene predicts brain region-specific expression and social attachment. Biol Psychiatry 80:160–169. doi: 10.1016/j.biopsych.2015.12.008CrossRefPubMedGoogle Scholar
  67. Kirschbaum C, Klauer T, Filipp SH, Hellhammer DH (1995) Sex-specific effects of social support on cortisol and subjective responses to acute psychological stress. Psychosom Med 57:23–31CrossRefPubMedGoogle Scholar
  68. Klampfl SM, Neumann ID, Bosch OJ (2013) Reduced brain corticotropin-releasing factor receptor activation is required for adequate maternal care and maternal aggression in lactating rats. Eur J Neurosci 38:2742–2750. doi: 10.1111/ejn.12274CrossRefPubMedGoogle Scholar
  69. Klampfl SM, Brunton PJ, Bayerl DS, Bosch OJ (2014) Hypoactivation of CRF receptors, predominantly type 2, in the medial-posterior BNST is vital for adequate maternal behavior in lactating rats. J Neurosci 34:9665–9676. doi: 10.1523/JNEUROSCI.4220-13.2014CrossRefPubMedPubMedCentralGoogle Scholar
  70. Klampfl SM, Brunton PJ, Bayerl DS, Bosch OJ (2016) CRF-R1 activation in the anterior-dorsal BNST induces maternal neglect in lactating rats via an HPA axis-independent central mechanism. Psychoneuroendocrinology 64:89–98. doi: 10.1016/j.psyneuen.2015.11.015CrossRefPubMedPubMedCentralGoogle Scholar
  71. Lamm C, Decety J, Singer T (2011) Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage 54:2492–2502. doi: 10.1016/j.neuroimage.2010.10.014CrossRefPubMedGoogle Scholar
  72. Lieberwirth C, Wang Z (2014) Social bonding: regulation by neuropeptides. Front Neurosci 8:171. doi: 10.3389/fnins.2014.00171CrossRefPubMedPubMedCentralGoogle Scholar
  73. Lim MM, Young LJ (2004) Vasopressin-dependent neural circuits underlying pair bond formation in the monogamous prairie vole. Neuroscience 125:35–45. doi: 10.1016/j.neuroscience.2003.12.008CrossRefPubMedGoogle Scholar
  74. Lim MM, Wang Z, Olazabal DE, Ren X, Terwilliger EF, Young LJ (2004) Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature 429:754–757. doi: 10.1038/nature02539CrossRefPubMedGoogle Scholar
  75. Lim MM, Nair HP, Young LJ (2005) Species and sex differences in brain distribution of corticotropin-releasing factor receptor subtypes 1 and 2 in monogamous and promiscuous vole species. J Comp Neurol 487:75–92. doi: 10.1002/cne.20532CrossRefPubMedPubMedCentralGoogle Scholar
  76. Lim MM, Liu Y, Ryabinin AE, Bai Y, Wang Z, Young LJ (2007) CRF receptors in the nucleus accumbens modulate partner preference in prairie voles. Horm Behav 51:508–515. doi: 10.1016/j.yhbeh.2007.01.006CrossRefPubMedPubMedCentralGoogle Scholar
  77. Liu Y, Wang ZX (2003) Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience 121:537–544. doi: 10.1016/S0306-4522(03)00555-4CrossRefPubMedGoogle Scholar
  78. Liu Y, Curtis JT, Wang Z (2001) Vasopressin in the lateral septum regulates pair bond formation in male prairie voles (Microtus ochrogaster). Behav Neurosci 115:910–919. doi: 10.1037/0735-7044.115.4.910CrossRefPubMedGoogle Scholar
  79. LoParo D, Waldman ID (2015) The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol Psychiatry 20:640–646. doi: 10.1038/mp.2014.77CrossRefPubMedGoogle Scholar
  80. Lukas D, Clutton-Brock TH (2013) The evolution of social monogamy in mammals. Science 341:526–530. doi: 10.1126/science.1238677CrossRefPubMedGoogle Scholar
  81. Lukas M, de Jong TR (2017) Conspecific interactions in adult laboratory rodents: friends or foes? Curr Top Behav Neurosci 30:3–24. doi: 10.1007/7854_2015_428CrossRefPubMedGoogle Scholar
  82. Lukas M, Neumann ID (2013) Oxytocin and vasopressin in rodent behaviors related to social dysfunctions in autism spectrum disorders. Behav Brain Res 251:85–94. doi: 10.1016/j.bbr.2012.08.011CrossRefPubMedGoogle Scholar
  83. McGraw LA, Young LJ (2010) The prairie vole: an emerging model organism for understanding the social brain. Trends Neurosci 33:103–109. doi: 10.1016/j.tins.2009.11.006CrossRefPubMedGoogle Scholar
  84. McNeal N, Scotti MA, Wardwell J, Chandler DL, Bates SL, Larocca M, Trahanas DM, Grippo AJ (2014) Disruption of social bonds induces behavioral and physiological dysregulation in male and female prairie voles. Auton Neurosci 180:9–16. doi: 10.1016/j.autneu.2013.10.001CrossRefPubMedGoogle Scholar
  85. Modi ME, Young LJ (2012) The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies. Horm Behav 61:340–350. doi: 10.1016/j.yhbeh.2011.12.010CrossRefPubMedGoogle Scholar
  86. Modi ME, Inoue K, Barrett CE, Kittelberger KA, Smith DG, Landgraf R, Young LJ (2015) Melanocortin receptor agonists facilitate oxytocin-dependent partner preference formation in the prairie vole. Neuropsychopharmacology 40:1856–1865. doi: 10.1038/npp.2015.35CrossRefPubMedPubMedCentralGoogle Scholar
  87. Myers AJ, Williams L, Gatt JM, McAuley-Clark EZ, Dobson-Stone C, Schofield PR, Nemeroff CB (2014) Variation in the oxytocin receptor gene is associated with increased risk for anxiety, stress and depression in individuals with a history of exposure to early life stress. J Psychiatr Res 59:93–100. doi: 10.1016/j.jpsychires.2014.08.021CrossRefPubMedPubMedCentralGoogle Scholar
  88. Neumann ID (2002) Involvement of the brain oxytocin system in stress coping: interactions with the hypothalamo-pituitary-adrenal axis. Prog Brain Res 139:147–162. doi: 10.1016/S0079-6123(02)39014-9CrossRefPubMedGoogle Scholar
  89. Neumann ID, Landgraf R (2012) Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci 35:649–659. doi: 10.1016/j.tins.2012.08.004CrossRefPubMedGoogle Scholar
  90. Neumann ID, Slattery DA (2016) Oxytocin in general anxiety and social fear: a translational approach. Biol Psychiatry 79:213–221. doi: 10.1016/j.biopsych.2015.06.004CrossRefPubMedGoogle Scholar
  91. Numan M, Young LJ (2016) Neural mechanisms of mother-infant bonding and pair bonding: similarities, differences, and broader implications. Horm Behav 77:98–112. doi: 10.1016/j.yhbeh.2015.05.015CrossRefPubMedGoogle Scholar
  92. Olazabal DE, Young LJ (2006a) Oxytocin receptors in the nucleus accumbens facilitate “spontaneous” maternal behavior in adult female prairie voles. Neuroscience 141:559–568. doi: 10.1016/j.neuroscience.2006.04.017CrossRefPubMedGoogle Scholar
  93. Olazabal DE, Young LJ (2006b) Species and individual differences in juvenile female alloparental care are associated with oxytocin receptor density in the striatum and the lateral septum. Horm Behav 49:681–687. doi: 10.1016/j.yhbeh.2005.12.010CrossRefPubMedGoogle Scholar
  94. Ophir AG, Gessel A, Zheng DJ, Phelps SM (2012) Oxytocin receptor density is associated with male mating tactics and social monogamy. Horm Behav 61:445–453. doi: 10.1016/j.yhbeh.2012.01.007CrossRefPubMedPubMedCentralGoogle Scholar
  95. Parker KJ, Garner JP, Libove RA, Hyde SA, Hornbeak KB, Carson DS, Liao CP, Phillips JM, Hallmayer JF, Hardan AY (2014) Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc Natl Acad Sci U S A 111:12258–12263. doi: 10.1073/pnas.1402236111CrossRefPubMedPubMedCentralGoogle Scholar
  96. Peuler JD, Scotti MA, Phelps LE, McNeal N, Grippo AJ (2012) Chronic social isolation in the prairie vole induces endothelial dysfunction: implications for depression and cardiovascular disease. Physiol Behav 106:476–484. doi: 10.1016/j.physbeh.2012.03.019CrossRefPubMedPubMedCentralGoogle Scholar
  97. Pyner S (2009) Neurochemistry of the paraventricular nucleus of the hypothalamus: implications for cardiovascular regulation. J Chem Neuroanat 38:197–208. doi: 10.1016/j.jchemneu.2009.03.005CrossRefPubMedGoogle Scholar
  98. Quintana DS, Kemp AH, Alvares GA, Guastella AJ (2013) A role for autonomic cardiac control in the effects of oxytocin on social behavior and psychiatric illness. Front Neurosci 7:48. doi: 10.3389/fnins.2013.00048CrossRefPubMedPubMedCentralGoogle Scholar
  99. Ramsay S, Ebrahim S, Whincup P, Papacosta O, Morris R, Lennon L, Wannamethee SG (2008) Social engagement and the risk of cardiovascular disease mortality: results of a prospective population-based study of older men. Ann Epidemiol 18:476–483. doi: 10.1016/j.annepidem.2007.12.007CrossRefPubMedGoogle Scholar
  100. Resendez SL, Aragona BJ (2013) Aversive motivation and the maintenance of monogamous pair bonding. Rev Neurosci 24:51–60. doi: 10.1515/revneuro-2012-0068CrossRefPubMedGoogle Scholar
  101. Reul JM, Holsboer F (2002) On the role of corticotropin-releasing hormone receptors in anxiety and depression. Dialogues Clin Neurosci 4:31–46PubMedPubMedCentralGoogle Scholar
  102. Rilling JK, Young LJ (2014) The biology of mammalian parenting and its effect on offspring social development. Science 345:771–776. doi: 10.1126/science.1252723CrossRefPubMedPubMedCentralGoogle Scholar
  103. Romano A, Tempesta B, Micioni Di Bonaventura MV, Gaetani S (2015) From autism to eating disorders and more: the role of oxytocin in neuropsychiatric disorders. Front Neurosci 9:497. doi: 10.3389/fnins.2015.00497CrossRefPubMedGoogle Scholar
  104. Ross HE, Young LJ (2009) Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol 30:534–547. doi: 10.1016/j.yfrne.2009.05.004CrossRefPubMedPubMedCentralGoogle Scholar
  105. Ross HE, Cole CD, Smith Y, Neumann ID, Landgraf R, Murphy AZ, Young LJ (2009a) Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience 162:892–903. doi: 10.1016/j.neuroscience.2009.05.055CrossRefPubMedPubMedCentralGoogle Scholar
  106. Ross HE, Freeman SM, Spiegel LL, Ren X, Terwilliger EF, Young LJ (2009b) Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles. J Neurosci 29:1312–1318. doi: 10.1523/JNEUROSCI.5039-08.2009CrossRefPubMedPubMedCentralGoogle Scholar
  107. Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625. doi: 10.1038/nrn3381CrossRefPubMedGoogle Scholar
  108. Scheele D, Wille A, Kendrick KM, Stoffel-Wagner B, Becker B, Gunturkun O, Maier W, Hurlemann R (2013) Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proc Natl Acad Sci U S A 110:20308–20313. doi: 10.1073/pnas.1314190110CrossRefPubMedPubMedCentralGoogle Scholar
  109. Schneider-Hassloff H, Straube B, Jansen A, Nuscheler B, Wemken G, Witt SH, Rietschel M, Kircher T (2016) Oxytocin receptor polymorphism and childhood social experiences shape adult personality, brain structure and neural correlates of mentalizing. NeuroImage 134:671–684. doi: 10.1016/j.neuroimage.2016.04.009CrossRefPubMedGoogle Scholar
  110. Schneiderman I, Zagoory-Sharon O, Leckman JF, Feldman R (2012) Oxytocin during the initial stages of romantic attachment: relations to couples’ interactive reciprocity. Psychoneuroendocrinology 37:1277–1285. doi: 10.1016/j.psyneuen.2011.12.021CrossRefPubMedPubMedCentralGoogle Scholar
  111. Scotti MA, Carlton ED, Demas GE, Grippo AJ (2015) Social isolation disrupts innate immune responses in both male and female prairie voles and enhances agonistic behavior in female prairie voles (Microtus ochrogaster). Horm Behav 70:7–13. doi: 10.1016/j.yhbeh.2015.01.004CrossRefPubMedPubMedCentralGoogle Scholar
  112. Shear K, Shair H (2005) Attachment, loss, and complicated grief. Dev Psychobiol 47:253–267. doi: 10.1002/dev.20091CrossRefPubMedGoogle Scholar
  113. Skuse DH, Lori A, Cubells JF, Lee I, Conneely KN, Puura K, Lehtimaki T, Binder EB, Young LJ (2014) Common polymorphism in the oxytocin receptor gene (OXTR) is associated with human social recognition skills. Proc Natl Acad Sci U S A 111:1987–1992. doi: 10.1073/pnas.1302985111CrossRefPubMedGoogle Scholar
  114. Slattery DA, Cryan JF (2012) Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc 7:1009–1014. doi: 10.1038/nprot.2012.044CrossRefPubMedGoogle Scholar
  115. Smith AS, Wang Z (2012) Salubrious effects of oxytocin on social stress-induced deficits. Horm Behav 61:320–330. doi: 10.1016/j.yhbeh.2011.11.010CrossRefPubMedGoogle Scholar
  116. Smith AS, Wang Z (2014) Hypothalamic oxytocin mediates social buffering of the stress response. Biol Psychiatry 76:281–288. doi: 10.1016/j.biopsych.2013.09.017CrossRefPubMedGoogle Scholar
  117. Steptoe A, Shankar A, Demakakos P, Wardle J (2013) Social isolation, loneliness, and all-cause mortality in older men and women. Proc Natl Acad Sci U S A 110:5797–5801. doi: 10.1073/pnas.1219686110CrossRefPubMedPubMedCentralGoogle Scholar
  118. Stowe JR, Liu Y, Curtis JT, Freeman ME, Wang Z (2005) Species differences in anxiety-related responses in male prairie and meadow voles: the effects of social isolation. Physiol Behav 86:369–378. doi: 10.1016/j.physbeh.2005.08.007CrossRefPubMedGoogle Scholar
  119. Sun P, Smith AS, Lei K, Liu Y, Wang Z (2014) Breaking bonds in male prairie vole: long-term effects on emotional and social behavior, physiology, and neurochemistry. Behav Brain Res 265:22–31. doi: 10.1016/j.bbr.2014.02.016CrossRefPubMedPubMedCentralGoogle Scholar
  120. Uchino BN (2006) Social support and health: a review of physiological processes potentially underlying links to disease outcomes. J Behav Med 29:377–387. doi: 10.1007/s10865-006-9056-5CrossRefPubMedGoogle Scholar
  121. Uchino BN, Cacioppo JT, Kiecolt-Glaser JK (1996) The relationship between social support and physiological processes: a review with emphasis on underlying mechanisms and implications for health. Psychol Bull 119:488–531. doi: 10.1037/0033-2909.119.3.488CrossRefPubMedGoogle Scholar
  122. Uvnas-Moberg K (1998) Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology 23(8):819–835. doi: 10.1016/S0306-4530(98)00056-0CrossRefPubMedGoogle Scholar
  123. Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394–1397. doi: 10.1126/science.6267699CrossRefPubMedGoogle Scholar
  124. Wang Z, Young LJ, Liu Y, Insel TR (1997) Species differences in vasopressin receptor binding are evident early in development: comparative anatomic studies in prairie and montane voles. J Comp Neurol 378:535–546. doi: 10.1002/(SICI)1096-9861(19970224)378:4<535::AID-CNE8>3.0.CO;2-3CrossRefPubMedGoogle Scholar
  125. Wang H, Duclot F, Liu Y, Wang Z, Kabbaj M (2013) Histone deacetylase inhibitors facilitate partner preference formation in female prairie voles. Nat Neurosci 16:919–924. doi: 10.1038/nn.3420CrossRefPubMedPubMedCentralGoogle Scholar
  126. Watanabe M, Irie M, Kobayashi F (2004) Relationship between effort-reward imbalance, low social support and depressive state among Japanese male workers. J Occup Health 46:78–81. doi: 10.1539/joh.46.78CrossRefPubMedGoogle Scholar
  127. Williams JR, Catania KC, Carter CS (1992) Development of partner preferences in female prairie voles (Microtus ochrogaster): the role of social and sexual experience. Horm Behav 26:339–349. doi: 10.1016/0018-506X(92)90004-FCrossRefPubMedGoogle Scholar
  128. Williams JR, Insel TR, Harbaugh CR, Carter CS (1994) Oxytocin administered centrally facilitates formation of a partner preference in female prairie voles (Microtus ochrogaster). J Neuroendocrinol 6:247–250. doi: 10.1111/j.1365-2826.1994.tb00579.xCrossRefPubMedGoogle Scholar
  129. Winslow JT, Hastings N, Carter CS, Harbaugh CR, Insel TR (1993) A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365:545–548. doi: 10.1038/365545a0CrossRefPubMedGoogle Scholar
  130. Wolff JO, Dunlap AS (2002) Multi-male mating, probability of conception, and litter size in the prairie vole (Microtus ochrogaster). Behav Process 58:105–110. doi: 10.1016/S0376-6357(02)00022-0CrossRefGoogle Scholar
  131. Young LJ (1999) Oxytocin and vasopressin receptors and species-typical social behaviors. Horm Behav 36:212–221. doi: 10.1006/hbeh.1999.1548CrossRefPubMedGoogle Scholar
  132. Young LJ, Barrett CE (2015) Neuroscience. Can oxytocin treat autism? Science 347:825–826. doi: 10.1126/science.aaa8120CrossRefPubMedPubMedCentralGoogle Scholar
  133. Young LJ, Wang Z (2004) The neurobiology of pair bonding. Nat Neurosci 7(10):1048–1054. doi: 10.1038/nn1327CrossRefPubMedGoogle Scholar
  134. Young LJ, Pitkow LJ, Ferguson JN (2002) Neuropeptides and social behavior: animal models relevant to autism. Mol Psychiatry 7(Suppl 2):S38–S39. doi: 10.1038/sj.mp.4001175CrossRefPubMedGoogle Scholar
  135. Young KA, Gobrogge KL, Liu Y, Wang Z (2011) The neurobiology of pair bonding: insights from a socially monogamous rodent. Front Neuroendocrinol 32:53–69. doi: 10.1016/j.yfrne.2010.07.006CrossRefPubMedGoogle Scholar
  136. Zisook S, Shuchter SR, Sledge PA, Paulus M, Judd LL (1994) The spectrum of depressive phenomena after spousal bereavement. J Clin Psychiatry 55(Suppl):29–36PubMedGoogle Scholar
  137. Zisook S, Paulus M, Shuchter SR, Judd LL (1997) The many faces of depression following spousal bereavement. J Affect Disord 45(1–2):85–94. doi: 10.1016/S0165-0327(97)00062-1. Discussion 94–5CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Behavioural and Molecular NeurobiologyInstitute of Zoology, University of RegensburgRegensburgGermany
  2. 2.Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral SciencesYerkes National Primate Research Center, Emory University School of MedicineAtlantaUSA

Personalised recommendations