Advertisement

pp 1-23 | Cite as

Integrating NIMH Research Domain Criteria (RDoC) into PTSD Research

  • Ulrike Schmidt
  • Eric Vermetten
Chapter
Part of the Current Topics in Behavioral Neurosciences book series

Abstract

Three and a half decades of research on posttraumatic stress disorder (PTSD) has produced substantial knowledge on the pathobiology of this frequent and debilitating disease. However, despite all research efforts, so far no drug that has specifically targeted PTSD core symptoms progressed to clinical use. Instead, although not overly efficient, serotonin re-uptake inhibitors continue to be considered the gold standard of PTSD pharmacotherapy. The psychotherapeutic treatment and symptom-oriented drug therapy options available for PTSD treatment today show some efficacy, although not in all PTSD patients, in particular not in a substantial percent of those suffering from the detrimental sequelae of repeated childhood trauma or in veterans with combat related PTSD. PTSD has this in common with other psychiatric disorders – in particular effective treatment for incapacitating conditions such as resistant major depression, chronic schizophrenia, and frequently relapsing obsessive-compulsive disorder as well as dementia has not yet been developed through modern neuropsychiatric research.

In response to this conundrum, the National Institute of Mental Health launched the Research Domain Criteria (RDoC) framework which aims to leave diagnosis-oriented psychiatric research behind and to move on to the use of research domains overarching the traditional diagnosis systems. To the best of our knowledge, the paper at hand is the first that has systematically assessed the utility of the RDoC system for PTSD research. Here, we review core findings in neurobiological PTSD research and match them to the RDoC research domains and units of analysis. Our synthesis reveals that several core findings in PTSD such as amygdala overactivity have been linked to all RDoC domains without further specification of their distinct role in the pathophysiological pathways associated with these domains. This circumstance indicates that the elucidation of the cellular and molecular processes ultimately decisive for regulation of psychic processes and for the expression of psychopathological symptoms is still grossly incomplete. All in all, we find the RDoC research domains to be useful but not sufficient for PTSD research. Hence, we suggest adding two novel domains, namely stress and emotional regulation and maintenance of consciousness. As both of these domains play a role in various if not in all psychiatric diseases, we judge them to be useful not only for PTSD research but also for psychiatric research in general.

Keywords

Emotion regulation Neurobiology PTSD RDOC Research Stress 

References

  1. 1.
    Forresia B, Caffoa E, Battagliab M (2015) Gene environment interplays: why PTSD makes a good case for gene–environment interaction studies and how adding a developmental approach can help. In: Martin CR, Preedy VR, Patel VB (eds) Comprehensive guide to post-traumatic stress disorder. Springer, pp 1–3. doi: 10.1007/978-3-319-08613-2_84-1. ISBN 978-3-319-08613-2
  2. 2.
    McFall M, Saxon AJ, Thompson CE et al (2005) Improving the rates of quitting smoking for veterans with posttraumatic stress disorder. Am J Psychiatry 162:1311–1319. doi: 10.1176/appi.ajp.162.7.1311 PubMedCrossRefGoogle Scholar
  3. 3.
    Dorrington S, Zavos H, Ball H et al (2014) Trauma, post-traumatic stress disorder and psychiatric disorders in a middle-income setting: prevalence and comorbidity. Br J Psychiatry. bjp. bp. 113.141796Google Scholar
  4. 4.
    Ringdal GI, Ringdal K, Simkus A (2007) War-related distress among Kosovar Albanians. J Loss Trauma 13:59–71CrossRefGoogle Scholar
  5. 5.
    Kessler RC (1995) Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry 52:1048. doi: 10.1001/archpsyc.1995.03950240066012 ADSPubMedCrossRefGoogle Scholar
  6. 6.
    Hauffa R, Rief W, Brähler E et al (2011) Lifetime traumatic experiences and posttraumatic stress disorder in the German population: results of a representative population survey. J Nerv Ment Dis 199:934–939. doi: 10.1097/NMD.0b013e3182392c0d PubMedCrossRefGoogle Scholar
  7. 7.
    de Vries G-J, Olff M (2009) The lifetime prevalence of traumatic events and posttraumatic stress disorder in the Netherlands. J Trauma Stress 22:259–267PubMedCrossRefGoogle Scholar
  8. 8.
    American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DSM-5, 5th edn. American Psychiatric Association, Washington, DCCrossRefGoogle Scholar
  9. 9.
    Pompili M, Sher L, Serafini G et al (2013) Posttraumatic stress disorder and suicide risk among veterans: a literature review. J Nerv Ment Dis 201:802–812. doi: 10.1097/NMD.0b013e3182a21458 PubMedCrossRefGoogle Scholar
  10. 10.
    Rodgers CS, Allard CB, Wansley P (2010) Post-traumatic stress disorder and quality of life in women. In: Handbook of disease burdens and quality of life measures. Springer, pp 3439–3456Google Scholar
  11. 11.
    Scott WJ (1990) PTSD in DSM-III: a case in the politics of diagnosis and disease. Soc Probl 37:294–310. doi: 10.2307/800744 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Berger W, Mendlowicz MV, Marques-Portella C et al (2009) Pharmacologic alternatives to antidepressants in posttraumatic stress disorder: a systematic review. Prog Neuro-Psychopharmacol Biol Psychiatry 33:169–180. doi: 10.1016/j.pnpbp.2008.12.004 CrossRefGoogle Scholar
  13. 13.
    Yehuda R, Bierer LM, Sarapas C et al (2009) Cortisol metabolic predictors of response to psychotherapy for symptoms of PTSD in survivors of the World Trade Center attacks on September 11, 2001. Psychoneuroendocrinology 34:1304–1313. doi: 10.1016/j.psyneuen.2009.03.018 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cusack K, Jonas DE, Forneris CA et al (2016) Psychological treatments for adults with posttraumatic stress disorder: a systematic review and meta-analysis. Clin Psychol Rev 43:128–141. doi: 10.1016/j.cpr.2015.10.003 PubMedCrossRefGoogle Scholar
  15. 15.
    Almli LM, Stevens JS, Smith AK et al (2015) A genome-wide identified risk variant for PTSD is a methylation quantitative trait locus and confers decreased cortical activation to fearful faces. Am J Med Genet B Neuropsychiatr Genet 168:327–336. doi: 10.1002/ajmg.b.32315 CrossRefGoogle Scholar
  16. 16.
    Klengel T, Mehta D, Anacker C et al (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 16:33–41. doi: 10.1038/nn.3275 PubMedCrossRefGoogle Scholar
  17. 17.
    Bam M, Yang X, Zumbrun EE et al (2016) Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. Sci Rep 6:31209. doi: 10.1038/srep31209 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Schmidt U, Herrmann L, Hagl K et al (2013) Therapeutic action of fluoxetine is associated with a reduction in prefrontal cortical miR-1971 expression levels in a mouse model of posttraumatic stress disorder. Front Psychiatry 4:66. doi: 10.3389/fpsyt.2013.00066 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Schmidt U, Keck ME, Buell DR (2015) miRNAs and other non-coding RNAs in posttraumatic stress disorder: a systematic review of clinical and animal studies. J Psychiatr Res 65:1–8. doi: 10.1016/j.jpsychires.2015.03.014 PubMedCrossRefGoogle Scholar
  20. 20.
    Freedman R, Leonard S, Olincy A et al (2001) Evidence for the multigenic inheritance of schizophrenia. Am J Med Genet 105:794–800PubMedCrossRefGoogle Scholar
  21. 21.
    Martins-de-Souza D (2013) Biomarkers for psychiatric disorders: where are we standing. Markers 35:1–2CrossRefGoogle Scholar
  22. 22.
    Pinsonneault J, Sadée W (2003) Pharmacogenomics of multigenic diseases: sex-specific differences in disease and treatment outcome. AAPS Pharm Sci 5:49–61CrossRefGoogle Scholar
  23. 23.
    Pitman RK, Rasmusson AM, Koenen KC et al (2012) Biological studies of post-traumatic stress disorder. Nat Rev Neurosci 13:769–787. doi: 10.1038/nrn3339 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Schmidt U, Kaltwasser SF, Wotjak CT (2013) Biomarkers in posttraumatic stress disorder: overview and implications for future research. Dis Markers 35:43–54. doi: 10.1155/2013/835876 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Vermetten E, Bremner JD (2002) Circuits and systems in stress. II. Applications to neurobiology and treatment in posttraumatic stress disorder. Depress Anxiety 16(1):14–38PubMedCrossRefGoogle Scholar
  26. 26.
    Vermetten E, Bremner JD (2002) Circuits and systems in stress. I. Preclinical studies. Depress Anxiety 15(3):126–147PubMedCrossRefGoogle Scholar
  27. 27.
    Hayes JP, Hayes SM, Mikedis AM (2012) Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biol Mood Anxiety Disord 2:9. doi: 10.1186/2045-5380-2-9 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bremner JD, Randall P, Vermetten E et al (1997) Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse – a preliminary report. Biol Psychiatry 41:23–32. doi: 10.1016/S0006-3223(96)00162-X PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Vermetten E, Vythilingam M, Southwick SM et al (2003) Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry 54:693–702. doi: 10.1016/S0006-3223(03)00634-6 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Acheson DT, Gresack JE, Risbrough VB (2012) Hippocampal dysfunction effects on context memory: possible etiology for posttraumatic stress disorder. Neuropharmacology 62(2):674–685PubMedCrossRefGoogle Scholar
  31. 31.
    Crochemore C, Lu J, Wu Y et al (2005) Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation. Mol Psychiatry 10:790–798. doi: 10.1038/sj.mp.4001679 PubMedCrossRefGoogle Scholar
  32. 32.
    Klaassens ER, Giltay EJ, Cuijpers P et al (2012) Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: a meta-analysis. Psychoneuroendocrinology 37:317–331. doi: 10.1016/j.psyneuen.2011.07.003 PubMedCrossRefGoogle Scholar
  33. 33.
    Naughton M, Dinan TG, Scott LV (2014) Corticotropin-releasing hormone and the hypothalamic-pituitary-adrenal axis in psychiatric disease. Handb Clin Neurol 124:69–91. doi: 10.1016/B978-0-444-59602-4.00005-8 PubMedCrossRefGoogle Scholar
  34. 34.
    Zaba M, Kirmeier T, Ionescu IA et al (2015) Identification and characterization of HPA-axis reactivity endophenotypes in a cohort of female PTSD patients. Psychoneuroendocrinology 55:102–115. doi: 10.1016/j.psyneuen.2015.02.005 PubMedCrossRefGoogle Scholar
  35. 35.
    Fries GR, Gassen NC, Schmidt U, Rein T (2015) The FKBP51-glucocorticoid receptor balance in stress-related mental disorders. Curr Mol Pharmacol 9:126–140PubMedCrossRefGoogle Scholar
  36. 36.
    Binder EB (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34:S186–S195PubMedCrossRefGoogle Scholar
  37. 37.
    van Zuiden M, Kavelaars A, Geuze E et al (2013) Predicting PTSD: pre-existing vulnerabilities in glucocorticoid-signaling and implications for preventive interventions. Brain Behav Immun 30:12–21PubMedCrossRefGoogle Scholar
  38. 38.
    Binder EB, Bradley RG, Liu W et al (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299:1291–1305PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bachmann AW, Sedgley TL, Jackson RV et al (2005) Glucocorticoid receptor polymorphisms and post-traumatic stress disorder. Psychoneuroendocrinology 30:297–306. doi: 10.1016/j.psyneuen.2004.08.006 PubMedCrossRefGoogle Scholar
  40. 40.
    Touma C, Gassen NC, Herrmann L et al (2011) FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol Psychiatry 70:928–936. doi: 10.1016/j.biopsych.2011.07.023 PubMedCrossRefGoogle Scholar
  41. 41.
    Schmidt U, Buell DR, Ionescu IA et al (2015) A role for synapsin in FKBP51 modulation of stress responsiveness: convergent evidence from animal and human studies. Psychoneuroendocrinology 52:43–58. doi: 10.1016/j.psyneuen.2014.11.005 PubMedCrossRefGoogle Scholar
  42. 42.
    Golub Y, Kaltwasser SF, Mauch CP et al (2011) Reduced hippocampus volume in the mouse model of posttraumatic stress disorder. J Psychiatr Res 45:650–659. doi: 10.1016/j.jpsychires.2010.10.014 PubMedCrossRefGoogle Scholar
  43. 43.
    Morris MC, Rao U (2013) Psychobiology of PTSD in the acute aftermath of trauma: integrating research on coping, HPA function and sympathetic nervous system activity. Asian J Psychiatry 6:3–21. doi: 10.1016/j.ajp.2012.07.012 CrossRefGoogle Scholar
  44. 44.
    Blanchard EB, Kolb LC, Prins A et al (1991) Changes in plasma norepinephrine to combat-related stimuli among Vietnam veterans with posttraumatic stress disorder. J Nerv Ment Dis 179:371–373PubMedCrossRefGoogle Scholar
  45. 45.
    Geracioti TD, Baker DG, Ekhator NN et al (2001) CSF norepinephrine concentrations in posttraumatic stress disorder. Am J Psychiatry 158:1227–1230. doi: 10.1176/appi.ajp.158.8.1227 PubMedCrossRefGoogle Scholar
  46. 46.
    Yehuda R, Southwick S, Giller EL et al (1992) Urinary catecholamine excretion and severity of PTSD symptoms in Vietnam combat veterans. J Nerv Ment Dis 180:321–325PubMedCrossRefGoogle Scholar
  47. 47.
    Giustino TF, Fitzgerald PJ, Maren S (2016) Revisiting propranolol and PTSD: memory erasure or extinction enhancement? Neurobiol Learn Mem 130:26–33PubMedCrossRefGoogle Scholar
  48. 48.
    Hendrickson RC, Raskind MA (2016) Noradrenergic dysregulation in the pathophysiology of PTSD. Exp Neurol. doi:  10.1016/j.expneurol.2016.05.014
  49. 49.
    Bandelow B, Baldwin D, Abelli M et al (2016) Biological markers for anxiety disorders, OCD and PTSD: a consensus statement. Part II. Neurochemistry, neurophysiology and neurocognition. World J Biol Psychiatry 1–53. doi:  10.1080/15622975.2016.1190867
  50. 50.
    Koch SBJ, van Zuiden M, Nawijn L et al (2016) Intranasal oxytocin normalizes amygdala functional connectivity in posttraumatic stress disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 41:2041–2051. doi: 10.1038/npp.2016.1 CrossRefGoogle Scholar
  51. 51.
    Schmeltzer SN, Herman JP, Sah R (2016) Neuropeptide Y (NPY) and posttraumatic stress disorder (PTSD): a translational update. Exp Neurol. doi:  10.1016/j.expneurol.2016.06.020
  52. 52.
    Block SR, Liberzon I (2016) Attentional processes in posttraumatic stress disorder and the associated changes in neural functioning. Exp Neurol doi:  10.1016/j.expneurol.2016.05.009
  53. 53.
    Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuro-Psychopharmacol Biol Psychiatry 29(8):1201–1213CrossRefGoogle Scholar
  54. 54.
    Litz BT, Orsillo SM, Kaloupek D, Weathers F (2000) Emotional processing in posttraumatic stress disorder. J Abnorm Psychol 109:26PubMedCrossRefGoogle Scholar
  55. 55.
    Phan KL, Britton JC, Taylor SF et al (2006) Corticolimbic blood flow during Nontraumatic emotional processing in posttraumatic stress disorder. Arch Gen Psychiatry 63:184. doi: 10.1001/archpsyc.63.2.184 PubMedCrossRefGoogle Scholar
  56. 56.
    Schuitevoerder S, Rosen JW, Twamley EW et al (2013) A meta-analysis of cognitive functioning in older adults with PTSD. J Anxiety Disord 27:550–558. doi: 10.1016/j.janxdis.2013.01.001 PubMedCrossRefGoogle Scholar
  57. 57.
    Vasterling JJ, Duke LM, Brailey K et al (2002) Attention, learning, and memory performances and intellectual resources in Vietnam veterans: PTSD and no disorder comparisons. Neuropsychology 16:5–14. doi: 10.1037//0894-4105.16.1.5 PubMedCrossRefGoogle Scholar
  58. 58.
    Fleeson W, Furr RM, Arnold EM (2010) An agenda for symptom-based research. Behav Brain Sci 33:157. doi: 10.1017/S0140525X10000750 PubMedCrossRefGoogle Scholar
  59. 59.
    Schmidt U (2015) A plea for symptom-based research in psychiatry. Eur J Psychotraumatol. doi:  10.3402/ejpt.v6.27660
  60. 60.
    Sharpe M, Walker J (2009) Symptoms: a new approach. Psychiatry 8:146–148. doi: 10.1016/j.mppsy.2009.03.016 CrossRefGoogle Scholar
  61. 61.
    Insel T, Cuthbert B, Garvey M et al (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 167:748–751. doi: 10.1176/appi.ajp.2010.09091379 PubMedCrossRefGoogle Scholar
  62. 62.
    World Health Organization (1992) The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. World Health Organization, GenevaGoogle Scholar
  63. 63.
    Wildes JE, Marcus MD (2015) Application of the research domain criteria (RDoC) framework to eating disorders: emerging concepts and research. Curr Psychiatry Rep. doi:  10.1007/s11920-015-0572-2
  64. 64.
    Cuthbert BN (2014) The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology: forum – the research domain criteria project. World Psychiatry 13:28–35. doi: 10.1002/wps.20087 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Unoka Z, Richman MJ (2016) Neuropsychological deficits in BPD patients and the moderator effects of co-occurring mental disorders: a meta-analysis. Clin Psychol Rev 44:1–12PubMedCrossRefGoogle Scholar
  66. 66.
    Morris SE, Cuthbert BN (2012) Research domain criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci 14:29–37PubMedPubMedCentralGoogle Scholar
  67. 67.
    Woody ML, Gibb BE (2015) Integrating NIMH research domain criteria (RDoC) into depression research. Curr Opin Psychol 4:6–12. doi: 10.1016/j.copsyc.2015.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hamm AO, Richter J, Pané-Farré C et al (2016) Panic disorder with agoraphobia from a behavioral neuroscience perspective: applying the research principles formulated by the research domain criteria (RDoC) initiative: panic disorder with agoraphobia. Psychophysiology 53:312–322. doi: 10.1111/psyp.12553 PubMedCrossRefGoogle Scholar
  69. 69.
    Morris SE, Vaidyanathan U, Cuthbert BN (2016) Changing the diagnostic concept of schizophrenia: the NIMH research domain criteria initiative. In: Li M, Spaulding WD (eds) The neuropsychopathology of schizophrenia. Springer International Publishing, Cham, pp 225–252Google Scholar
  70. 70.
    Badcock JC, Hugdahl K (2014) A synthesis of evidence on inhibitory control and auditory hallucinations based on the research domain criteria (RDoC) framework. Front Hum Neurosci 8:180PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Tanofsky-Kraff M, Engel S, Yanovski JA et al (2013) Pediatric disinhibited eating: toward a research domain criteria framework. Int J Eat Disord 46:451–455. doi: 10.1002/eat.22101 PubMedCrossRefGoogle Scholar
  72. 72.
    Gur RC, Gur RE (2016) Social cognition as an RDoC domain. Am J Med Genet B Neuropsychiatr Genet 171:132–141. doi: 10.1002/ajmg.b.32394 CrossRefGoogle Scholar
  73. 73.
    Bauer MR, Ruef AM, Pineles SL et al (2013) Psychophysiological assessment of PTSD: a potential research domain criteria construct. Psychol Assess 25:1037–1043. doi: 10.1037/a0033432 PubMedCrossRefGoogle Scholar
  74. 74.
    Montalvo-Ortiz JL, Gelernter J, Hudziak J, Kaufman J (2016) RDoC and translational perspectives on the genetics of trauma-related psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 171:81–91. doi: 10.1002/ajmg.b.32395 CrossRefGoogle Scholar
  75. 75.
    Young G (2014) PTSD, endophenotypes, the RDoC, and the DSM-5. Psychol Inj Law 7:75–91. doi: 10.1007/s12207-014-9187-x CrossRefGoogle Scholar
  76. 76.
    Morey RA, Dunsmoor JE, Haswell CC, Brown VM, Vora A, Weiner J, Stjepanovic D, Wagner HR, Brancu M, Marx CE, Naylor JC (2015) Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorder. Transl Psychiatry 5(12):e700PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35:24–35. doi: 10.1016/j.tins.2011.06.007 PubMedCrossRefGoogle Scholar
  78. 78.
    Acheson DT, Geyer MA, Baker DG, Nievergelt CM, Yurgil K, Risbrough VB, Team MI (2015) Conditioned fear and extinction learning performance and its association with psychiatric symptoms in active duty marines. Psychoneuroendocrinology 51:495–505PubMedCrossRefGoogle Scholar
  79. 79.
    Graham BM, Milad MR (2011) The study of fear extinction: implications for anxiety disorders. Am J Psychiatry 168:1255–1265. doi: 10.1176/appi.ajp.2011.11040557 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    LeDoux J (2007) The amygdala. Curr Biol CB 17:R868–R874. doi: 10.1016/j.cub.2007.08.005 PubMedCrossRefGoogle Scholar
  81. 81.
    Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72. doi: 10.1038/sj.npp.1301555 PubMedCrossRefGoogle Scholar
  82. 82.
    Liberzon I, Abelson JL (2016) Context processing and the neurobiology of post-traumatic stress disorder. Neuron 92(1):14–30PubMedCrossRefGoogle Scholar
  83. 83.
    Zuj DV, Palmer MA, Lommen MJJ, Felmingham KL (2016) The centrality of fear extinction in linking risk factors to PTSD: a narrative review. Neurosci Biobehav Rev 69:15–35. doi: 10.1016/j.neubiorev.2016.07.014 PubMedCrossRefGoogle Scholar
  84. 84.
    Middlemas DS, Bylund DB (2015) Brain-derived neurotrophic factor. In: Stolerman IP, Price LH (eds) Encyclopedia of psychopharmacology. Springer, Heidelberg, pp 310–313Google Scholar
  85. 85.
    Felmingham KL, Dobson-Stone C, Schofield PR et al (2013) The brain-derived neurotrophic factor Val66Met polymorphism predicts response to exposure therapy in posttraumatic stress disorder. Biol Psychiatry 73:1059–1063. doi: 10.1016/j.biopsych.2012.10.033 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Byrne SP, Rapee RM, Richardson R et al (2015) D-cycloserine enhances generalization of fear extinction in children: research article: DCS enhances fear extinction in children. Depress Anxiety 32:408–414. doi: 10.1002/da.22356 PubMedCrossRefGoogle Scholar
  87. 87.
    Sartori SB, Maurer V, Murphy C et al (2016) Combined neuropeptide S and D-cycloserine augmentation prevents the return of fear in extinction-impaired rodents: advantage of dual versus single drug approaches. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP. doi:  10.1093/ijnp/pyv128
  88. 88.
    de Kleine RA, Smits JAJ, Hendriks G-J, et al (2015) Extinction learning as a moderator of d-cycloserine efficacy for enhancing exposure therapy in posttraumatic stress disorder. J Anxiety Disord 34:63–67. doi: 10.1016/j.janxdis.2015.06.005 PubMedCrossRefGoogle Scholar
  89. 89.
    Difede J, Cukor J, Wyka K et al (2014) D-cycloserine augmentation of exposure therapy for post-traumatic stress disorder: a pilot randomized clinical trial. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 39:1052–1058. doi: 10.1038/npp.2013.317 CrossRefGoogle Scholar
  90. 90.
    Scheeringa MS, Weems CF (2014) Randomized placebo-controlled D-cycloserine with cognitive behavior therapy for pediatric posttraumatic stress. J Child Adolesc Psychopharmacol 24:69–77. doi: 10.1089/cap.2013.0106 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Singewald N, Schmuckermair C, Whittle N et al (2015) Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 149:150–190. doi: 10.1016/j.pharmthera.2014.12.004 PubMedCrossRefGoogle Scholar
  92. 92.
    Acheson D, Feifel D, de Wilde S, Mckinney R, Lohr J, Risbrough V (2013) The effect of intranasal oxytocin treatment on conditioned fear extinction and recall in a healthy human sample. Psychopharmacology 229(1):199–208PubMedCrossRefGoogle Scholar
  93. 93.
    Acheson DT, Risbrough VB (2015) Oxytocin enhancement of fear extinction: a new target for facilitating exposure-based treatments? Biol Psychiatry 78(3):154PubMedCrossRefGoogle Scholar
  94. 94.
    Risbrough VB, Glenn DE, Baker DG (2016) On the road to translation for PTSD treatment: theoretical and practical considerations of the use of human models of conditioned fear for drug development. Transl Neuropsychopharmacol 28:173–196CrossRefGoogle Scholar
  95. 95.
    Vervliet B, Craske MG, Hermans D (2013) Fear extinction and relapse: state of the art. Annu Rev Clin Psychol 9:215–248PubMedCrossRefGoogle Scholar
  96. 96.
    Nawijn L, van Zuiden M, Frijling JL et al (2015) Reward functioning in PTSD: a systematic review exploring the mechanisms underlying anhedonia. Neurosci Biobehav Rev 51:189–204. doi: 10.1016/j.neubiorev.2015.01.019 PubMedCrossRefGoogle Scholar
  97. 97.
    Kashdan TB, Elhai JD, Frueh BC (2006) Anhedonia and emotional numbing in combat veterans with PTSD. Behav Res Ther 44:457–467. doi: 10.1016/j.brat.2005.03.001 PubMedCrossRefGoogle Scholar
  98. 98.
    Gable SL, Reis HT, Elliot AJ (2003) Evidence for bivariate systems: an empirical test of appetition and aversion across domains. J Res Personal 37:349–372. doi: 10.1016/S0092-6566(02)00580-9 CrossRefGoogle Scholar
  99. 99.
    Sharf R, Sarhan M, DiLeone RJ (2010) Role of orexin/hypocretin in dependence and addiction. Brain Res 1314:130–138. doi: 10.1016/j.brainres.2009.08.028 PubMedCrossRefGoogle Scholar
  100. 100.
    Hoexter MQ, Fadel G, Felício AC et al (2012) Higher striatal dopamine transporter density in PTSD: an in vivo SPECT study with [99mTc]TRODAT-1. Psychopharmacology 224:337–345. doi: 10.1007/s00213-012-2755-4 PubMedCrossRefGoogle Scholar
  101. 101.
    Blum K, Giordano J, Oscar-Berman M et al (2012) Diagnosis and healing in veterans suspected of suffering from post-traumatic stress disorder (PTSD) using reward Gene testing and reward circuitry natural dopaminergic activation. J Genet Syndr Gene Ther 3:1000116. doi: 10.4172/2157-7412.1000116 PubMedPubMedCentralGoogle Scholar
  102. 102.
    Heller AS, Johnstone T, Light SN et al (2013) Relationships between changes in sustained Fronto-striatal connectivity and positive affect in major depression resulting from antidepressant treatment. Am J Psychiatry 170:197–206. doi: 10.1176/appi.ajp.2012.12010014 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nawijn L, van Zuiden M, Koch SBJ et al (2016) Intranasal oxytocin enhances neural processing of monetary reward and loss in post-traumatic stress disorder and traumatized controls. Psychoneuroendocrinology 66:228–237. doi: 10.1016/j.psyneuen.2016.01.020 PubMedCrossRefGoogle Scholar
  104. 104.
    Koch SBJ, van Zuiden M, Nawijn L et al (2014) Intranasal oxytocin as strategy for medication-enhanced psychotherapy of PTSD: salience processing and fear inhibition processes. Psychoneuroendocrinology 40:242–256. doi: 10.1016/j.psyneuen.2013.11.018 PubMedCrossRefGoogle Scholar
  105. 105.
    Hayes JP, VanElzakker MB, Shin LM (2012) Emotion and cognition interactions in PTSD: a review of neurocognitive and neuroimaging studies. Front Integr Neurosci. doi:  10.3389/fnint.2012.00089
  106. 106.
    Campanella C, Bremner JD (2016) Neuroimaging of PTSD. In: Bremner JD (ed) Posttraumatic stress disorder: from neurobiology to treatment. Wiley, Hoboken, p. 291CrossRefGoogle Scholar
  107. 107.
    Schweizer S, Dalgleish T (2016) The impact of affective contexts on working memory capacity in healthy populations and in individuals with PTSD. Emotion 16:16–23. doi: 10.1037/emo0000072 PubMedCrossRefGoogle Scholar
  108. 108.
    Golier JA, Yehuda R, Lupien SJ et al (2002) Memory performance in holocaust survivors with posttraumatic stress disorder. Am J Psychiatry 159:1682–1688. doi: 10.1176/appi.ajp.159.10.1682 PubMedCrossRefGoogle Scholar
  109. 109.
    Paunovi N, Lundh LG, Ost LG (2002) Attentional and memory bias for emotional information in crime victims with acute posttraumatic stress disorder (PTSD). J Anxiety Disord 16:675–692PubMedCrossRefGoogle Scholar
  110. 110.
    Wagner AD, Stebbins GT, Masciari F et al (1998) Neuropsychological dissociation between recognition familiarity and perceptual priming in visual long-term memory. Cortex 34:493–511PubMedCrossRefGoogle Scholar
  111. 111.
    Ehlers A, Michael T, Chen YP, Payne E, Shan S (2006) Enhanced perceptual priming for neutral stimuli in a traumatic context: a pathway to intrusive memories? Memory 14(3):316–328PubMedCrossRefGoogle Scholar
  112. 112.
    Vukojevic V, Kolassa I-T, Fastenrath M et al (2014) Epigenetic modification of the glucocorticoid receptor Gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors. J Neurosci 34:10274–10284. doi: 10.1523/JNEUROSCI.1526-14.2014 PubMedCrossRefGoogle Scholar
  113. 113.
    Kwapis JL, Wood MA (2014) Epigenetic mechanisms in fear conditioning: implications for treating post-traumatic stress disorder. Trends Neurosci 37:706–720. doi: 10.1016/j.tins.2014.08.005 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Minassian A, Maihofer AX, Baker DG, Nievergelt CM, Geyer MA, Risbrough VB (2015) Association of predeployment heart rate variability with risk of postdeployment posttraumatic stress disorder in active-duty marines. JAMA Psychiat 72(10):979–986CrossRefGoogle Scholar
  115. 115.
    Zoladz PR, Diamond DM (2013) Current status on behavioral and biological markers of PTSD: a search for clarity in a conflicting literature. Neurosci Biobehav Rev 37:860–895. doi: 10.1016/j.neubiorev.2013.03.024 PubMedCrossRefGoogle Scholar
  116. 116.
    de Quervain DJ-F, Kolassa I-T, Ertl V et al (2007) A deletion variant of the alpha2b-adrenoceptor is related to emotional memory in Europeans and Africans. Nat Neurosci 10:1137–1139. doi: 10.1038/nn1945 PubMedCrossRefGoogle Scholar
  117. 117.
    Liberzon I, King AP, Ressler KJ et al (2014) Interaction of the ADRB2 Gene polymorphism with childhood trauma in predicting adult symptoms of posttraumatic stress disorder. JAMA Psychiat 71:1174. doi: 10.1001/jamapsychiatry.2014.999 CrossRefGoogle Scholar
  118. 118.
    De Berardis D, Marini S, Serroni N et al (2015) Targeting the noradrenergic system in posttraumatic stress disorder: a systematic review and meta-analysis of prazosin trials. Curr Drug Targets 16:1094–1106PubMedCrossRefGoogle Scholar
  119. 119.
    Bangasser DA, Wiersielis KR, Khantsis S (2016) Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res 1641:177–188. doi: 10.1016/j.brainres.2015.11.021 PubMedCrossRefGoogle Scholar
  120. 120.
    Sara SJ, Bouret S (2012) Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron 76:130–141. doi: 10.1016/j.neuron.2012.09.011 PubMedCrossRefGoogle Scholar
  121. 121.
    Bangasser DA, Valentino RJ (2014) Sex differences in stress-related psychiatric disorders: neurobiological perspectives. Front Neuroendocrinol 35:303–319. doi: 10.1016/j.yfrne.2014.03.008 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    del Río-Casanova L, González A, Páramo M et al (2016) Emotion regulation strategies in trauma-related disorders: pathways linking neurobiology and clinical manifestations. Rev Neurosci. doi:  10.1515/revneuro-2015-0045
  123. 123.
    Gross JJ (1998) The emerging field of emotion regulation: an integrative review. Rev Gen Psychol 2:271–299. doi: 10.1037/1089-2680.2.3.271 CrossRefGoogle Scholar
  124. 124.
    Laddis A (2015) The pathogenesis and treatment of emotion dysregulation in borderline personality disorder. ScientificWorldJournal 2015:179276. doi: 10.1155/2015/179276 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Seligowski AV, Lee DJ, Bardeen JR, Orcutt HK (2015) Emotion regulation and posttraumatic stress symptoms: a meta-analysis. Cogn Behav Ther 44:87–102. doi: 10.1080/16506073.2014.980753 PubMedCrossRefGoogle Scholar
  126. 126.
    Vermetten E, Spiegel D (2014) Trauma and dissociation: implications for borderline personality disorder. Curr Psychiatry Rep 16:434. doi: 10.1007/s11920-013-0434-8 PubMedCrossRefGoogle Scholar
  127. 127.
    Ford JD, Courtois CA (2014) Complex PTSD, affect dysregulation, and borderline personality disorder. Borderline Personal Disord Emot Dysregulation 1:9. doi: 10.1186/2051-6673-1-9 CrossRefGoogle Scholar
  128. 128.
    Cohen Kadosh K, Luo Q, de Burca C et al (2016) Using real-time fMRI to influence effective connectivity in the developing emotion regulation network. NeuroImage 125:616–626. doi: 10.1016/j.neuroimage.2015.09.070 PubMedCentralCrossRefGoogle Scholar
  129. 129.
    Jerud AB, Pruitt LD, Zoellner LA, Feeny NC (2016) The effects of prolonged exposure and sertraline on emotion regulation in individuals with posttraumatic stress disorder. Behav Res Ther 77:62–67. doi: 10.1016/j.brat.2015.12.002 PubMedCrossRefGoogle Scholar
  130. 130.
    Fernandez KC, Jazaieri H, Gross JJ (2016) Emotion regulation: a transdiagnostic perspective on a new RDoC domain. Cogn Ther Res 40:426–440. doi: 10.1007/s10608-016-9772-2 CrossRefGoogle Scholar
  131. 131.
    Holmes E, Brown R, Mansell W et al (2005) Are there two qualitatively distinct forms of dissociation? A review and some clinical implications. Clin Psychol Rev 25:1–23. doi: 10.1016/j.cpr.2004.08.006 PubMedCrossRefGoogle Scholar
  132. 132.
    Ginzburg K, Koopman C, Butler LD et al (2006) Evidence for a dissociative subtype of post-traumatic stress disorder among help-seeking childhood sexual abuse survivors. J Trauma Dissociation 7:7–27PubMedCrossRefGoogle Scholar
  133. 133.
    American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR, 4th edn. American Psychiatric Association, Washington, DC. Text revisionGoogle Scholar
  134. 134.
    Lanius RA, Brand B, Vermetten E et al (2012) The dissociative subtype of posttraumatic stress disorder: rationale, clinical and neurobiological evidence, and implications. Depress Anxiety 29:701–708. doi: 10.1002/da.21889 PubMedCrossRefGoogle Scholar
  135. 135.
    Perez DL, Dworetzky BA, Dickerson BC et al (2015) An integrative Neurocircuit perspective on psychogenic Nonepileptic seizures and functional movement disorders: neural functional unawareness. Clin EEG Neurosci 46:4–15. doi: 10.1177/1550059414555905 PubMedCrossRefGoogle Scholar
  136. 136.
    Pape W, Wöller W (2015) Low dose naltrexone in the treatment of dissociative symptoms. Nervenarzt 86:346–351. doi: 10.1007/s00115-014-4015-9 PubMedCrossRefGoogle Scholar
  137. 137.
    Goldstein LH, Mellers JDC, Landau S et al (2015) COgnitive behavioural therapy vs standardised medical care for adults with dissociative non-epileptic seizures (CODES): a multicentre randomised controlled trial protocol. BMC Neurol 15:98. doi: 10.1186/s12883-015-0350-0 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Lanius RA, Vermetten E, Loewenstein RJ et al (2010) Emotion modulation in PTSD: clinical and neurobiological evidence for a dissociative subtype. Am J Psychiatry 167:640–647. doi: 10.1176/appi.ajp.2009.09081168 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Felmingham K, Kemp AH, Williams L et al (2008) Dissociative responses to conscious and non-conscious fear impact underlying brain function in post-traumatic stress disorder. Psychol Med 38:1771–1780. doi: 10.1017/S0033291708002742 PubMedCrossRefGoogle Scholar
  140. 140.
    Vermetten E, Lanius RA (2012) Biological and clinical framework for posttraumatic stress disorder. Handb Clin Neurol 106:291–342PubMedCrossRefGoogle Scholar
  141. 141.
    Yehuda R, Hoge CW, McFarlane AC, Vermetten E, Lanius RA, Nievergelt CM, Hobfoll SE, Koenen KC, Neylan TC, Hyman SE (2015) Posttraumatic stress disorder. Nat Rev Primer. doi:  10.1038/nrdp.2015.57

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Trauma Outpatient Unit and RG Molecular Psychotraumatology, Clinical DepartmentMax Planck Institute of PsychiatryMunichGermany
  2. 2.Department PsychiatryLeiden University Medical Center UtrechtLeidenThe Netherlands
  3. 3.Arq Psychotruama Research GroupDiemenThe Netherlands

Personalised recommendations