Animal Models of PTSD: A Critical Review

  • Elizabeth I. FlandreauEmail author
  • Mate Toth
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 38)


The goals of animal research in post-traumatic stress disorder (PTSD) include better understanding the neurophysiological etiology of PTSD, identifying potential targets for novel pharmacotherapies, and screening drugs for their potential use as PTSD treatment in humans. Diagnosis of PTSD relies on a patient interview and, as evidenced by changes to the diagnostic criteria in the DSM-5, an adequate description of this disorder in humans is a moving target. Therefore, it may seem insurmountable to model the construct of PTSD in animals such as rodents. Fortunately, the neural circuitry involved in fear and anxiety, thought to be essential to the etiology of PTSD in humans, is highly conserved throughout evolution. Furthermore, many symptoms can be modeled using behavioral tests that have face, construct, and predictive validity. Because PTSD is precipitated by a definite traumatic experience, animal models can simulate the induction of PTSD, and test causal factors with longitudinal designs. Accordingly, several animal models of physical and psychological trauma have been established. This review discusses the widely used animal models of PTSD in rodents, and overviews their strengths and weaknesses in terms of face, construct, and predictive validity.


Animal model Anxiety Fear learning Predator stress PTSD Social defeat 


  1. Acheson DT, Gresack JE, Risbrough VB (2012) Hippocampal dysfunction effects on context memory: possible etiology for posttraumatic stress disorder. Neuropharmacology 62:674–685PubMedCrossRefGoogle Scholar
  2. Acheson DT, Geyer MA, Baker DG, Nievergelt CM, Yurgil K, Risbrough VB, Team M-I (2015) Conditioned fear and extinction learning performance and its association with psychiatric symptoms in active duty Marines. Psychoneuroendocrinology 51:495–505PubMedCrossRefGoogle Scholar
  3. Adamec R (1997) Transmitter systems involved in neural plasticity underlying increased anxiety and defense—implications for understanding anxiety following traumatic stress. Neurosci Biobehav Rev 21:755–765PubMedCrossRefGoogle Scholar
  4. Adamec RE, Shallow T (1993) Lasting effects on rodent anxiety of a single exposure to a cat. Physiol Behav 54:101–109PubMedCrossRefGoogle Scholar
  5. Adamec R, Head D, Blundell J, Burton P, Berton O (2006) Lasting anxiogenic effects of feline predator stress in mice: sex differences in vulnerability to stress and predicting severity of anxiogenic response from the stress experience. Physiol Behav 88:12–29PubMedCrossRefGoogle Scholar
  6. Adamec R, Fougere D, Risbrough V (2010) CRF receptor blockade prevents initiation and consolidation of stress effects on affect in the predator stress model of PTSD. Int J Neuropsychopharmacol 13:747–757PubMedCrossRefGoogle Scholar
  7. Adamec R, Hebert M, Blundell J, Mervis RF (2012) Dendritic morphology of amygdala and hippocampal neurons in more and less predator stress responsive rats and more and less spontaneously anxious handled controls. Behav Brain Res 226:133–146PubMedCrossRefGoogle Scholar
  8. Aliczki M, Haller J (2015) Electric shock as model of post-traumatic stress disorder in rodents. In: Martin CR, Preedy VR, Patel VB (eds) Comprehensive guide to post-traumatic stress disorder. Springer International Publishing, ChamGoogle Scholar
  9. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Washington, DCCrossRefGoogle Scholar
  10. Andero R, Brothers SP, Jovanovic T, Chen YT, Salah-Uddin H, Cameron M, Bannister TD, Almli L, Stevens JS, Bradley B et al (2013) Amygdala-dependent fear is regulated by Oprl1 in mice and humans with PTSD. Sci Transl Med 5:188ra173CrossRefGoogle Scholar
  11. Apfelbach R, Blanchard CD, Blanchard RJ, Hayes RA, McGregor IS (2005) The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev 29:1123–1144PubMedCrossRefGoogle Scholar
  12. Bailey KR, Crawley JN (2009) Anxiety-related behaviors in mice. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience. CRC Press, Boca Raton, FLGoogle Scholar
  13. Bali A, Jaggi AS (2015) Electric foot shock stress adaptation: does it exist or not? Life Sci 130:97–102PubMedCrossRefGoogle Scholar
  14. Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125:141–149PubMedCrossRefGoogle Scholar
  15. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M et al (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868PubMedCrossRefGoogle Scholar
  16. Blanchard RJ, Blanchard DC (1989) Antipredator defensive behaviors in a visible burrow system. J Comp Psychol 103:70–82PubMedCrossRefGoogle Scholar
  17. Blanchard RJ, Nikulina JN, Sakai RR, McKittrick C, McEwen B, Blanchard DC (1998) Behavioral and endocrine change following chronic predatory stress. Physiol Behav 63:561–569PubMedCrossRefGoogle Scholar
  18. Bolivar VJ, Pooler O, Flaherty L (2001) Inbred strain variation in contextual and cued fear conditioning behavior. Mamm Genome 12:651–656PubMedCrossRefGoogle Scholar
  19. Bowers ME, Ressler KJ (2015) An overview of translationally informed treatments for posttraumatic stress disorder: animal models of pavlovian fear conditioning to human clinical trials. Biol Psychiatry 78:E15–E27PubMedPubMedCentralCrossRefGoogle Scholar
  20. Breslau N, Davis GC, Andreski P, Peterson E (1991) Traumatic events and posttraumatic stress disorder in an urban population of young adults. Arch Gen Psychiatry 48:216–222PubMedCrossRefGoogle Scholar
  21. Breslau N, Davis GC, Andreski P, Peterson EL, Schultz LR (1997) Sex differences in posttraumatic stress disorder. Arch Gen Psychiatry 54:1044–1048PubMedCrossRefGoogle Scholar
  22. Canteras NS, Pavesi E, Carobrez AP (2015) Olfactory instruction for fear: neural system analysis. Front Neurosci 9:276PubMedPubMedCentralCrossRefGoogle Scholar
  23. Carrion VG, Weems CF, Watson C, Eliez S, Menon V, Reiss AL (2009) Converging evidence for abnormalities of the prefrontal cortex and evaluation of midsagittal structures in pediatric posttraumatic stress disorder: an MRI study. Psychiatry Res 172:226–234PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cassella JV, Davis M (1985) Fear-enhanced acoustic startle is not attenuated by acute or chronic imipramine treatment in rats. Psychopharmacology (Berl) 87:278–282CrossRefGoogle Scholar
  25. Chudasama Y, Robbins TW (2004) Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia. Psychopharmacology (Berl) 174:86–98CrossRefGoogle Scholar
  26. Cohen H, Zohar J, Matar M (2003) The relevance of differential response to trauma in an animal model of posttraumatic stress disorder. Biol Psychiatry 53:463–473PubMedCrossRefGoogle Scholar
  27. Cohen H, Zohar J, Matar MA, Zeev K, Loewenthal U, Richter-Levin G (2004) Setting apart the affected: the use of behavioral criteria in animal models of post traumatic stress disorder. Neuropsychopharmacology 29:1962–1970PubMedCrossRefGoogle Scholar
  28. Cohen H, Zohar J, Matar MA, Kaplan Z, Geva AB (2005) Unsupervised fuzzy clustering analysis supports behavioral cutoff criteria in an animal model of posttraumatic stress disorder. Biol Psychiatry 58:640–650PubMedCrossRefGoogle Scholar
  29. Cohen H, Matar MA, Richter-Levin G, Zohar J (2006a) The contribution of an animal model toward uncovering biological risk factors for PTSD. Ann N Y Acad Sci 1071:335–350PubMedCrossRefGoogle Scholar
  30. Cohen H, Zohar J, Gidron Y, Matar MA, Belkind D, Loewenthal U, Kozlovsky N, Kaplan Z (2006b) Blunted HPA axis response to stress influences susceptibility to posttraumatic stress response in rats. Biol Psychiatry 59:1208–1218PubMedCrossRefGoogle Scholar
  31. Cohen H, Geva AB, Matar MA, Zohar J, Kaplan Z (2008) Post-traumatic stress behavioural responses in inbred mouse strains: can genetic predisposition explain phenotypic vulnerability? Int J Neuropsychopharmacol 11:331–349PubMedGoogle Scholar
  32. Cohen H, Kozlovsky N, Alona C, Matar MA, Joseph Z (2012) Animal model for PTSD: from clinical concept to translational research. Neuropharmacology 62:715–724PubMedCrossRefGoogle Scholar
  33. Cohen H, Kozlovsky N, Matar MA, Zohar J, Kaplan Z (2014) Distinctive hippocampal and amygdalar cytoarchitectural changes underlie specific patterns of behavioral disruption following stress exposure in an animal model of PTSD. Eur Neuropsychopharmacol 24:1925–1944PubMedCrossRefGoogle Scholar
  34. Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625PubMedCrossRefGoogle Scholar
  35. Cullen PK, Gilman TL, Winiecki P, Riccio DC, Jasnow AM (2015) Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization. Neurobiol Learn Mem 124:19–27PubMedCrossRefGoogle Scholar
  36. Cuthbert BN (2014) The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatryn 13:28–35CrossRefGoogle Scholar
  37. Cuthbert BN, Insel TR (2013) Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med 11:126PubMedPubMedCentralCrossRefGoogle Scholar
  38. Daskalakis NP, Yehuda R (2014) Principles for developing animal models of military PTSD. Eur J Psychotraumatol 5Google Scholar
  39. Davis M (1989) Sensitization of the acoustic startle reflex by footshock. Behav Neurosci 103:495–503PubMedCrossRefGoogle Scholar
  40. Davis JA, Gould TJ (2007) beta2 subunit-containing nicotinic receptors mediate the enhancing effect of nicotine on trace cued fear conditioning in C57BL/6 mice. Psychopharmacology (Berl) 190:343–352CrossRefGoogle Scholar
  41. Der-Avakian A, Mazei-Robison MS, Kesby JP, Nestler EJ, Markou A (2014) Enduring deficits in brain reward function after chronic social defeat in rats: susceptibility, resilience, and antidepressant response. Biol Psychiatry 76:542–549PubMedPubMedCentralCrossRefGoogle Scholar
  42. Diamond DM, Park CR, Heman KL, Rose GM (1999) Exposing rats to a predator impairs spatial working memory in the radial arm water maze. Hippocampus 9:542–552PubMedCrossRefGoogle Scholar
  43. Diamond DM, Campbell AM, Park CR, Woodson JC, Conrad CD, Bachstetter AD, Mervis RF (2006) Influence of predator stress on the consolidation versus retrieval of long-term spatial memory and hippocampal spinogenesis. Hippocampus 16:571–576PubMedCrossRefGoogle Scholar
  44. Dielenberg RA, McGregor IS (2001) Defensive behavior in rats towards predatory odors: a review. Neurosci Biobehav Rev 25:597–609PubMedCrossRefGoogle Scholar
  45. Elharrar E, Warhaftig G, Issler O, Sztainberg Y, Dikshtein Y, Zahut R, Redlus L, Chen A, Yadid G (2013) Overexpression of corticotropin-releasing factor receptor type 2 in the bed nucleus of stria terminalis improves posttraumatic stress disorder-like symptoms in a model of incubation of fear. Biol Psychiatry 74:827–836PubMedCrossRefGoogle Scholar
  46. Eysenck HJ (1968) A theory of the incubation of anxiety-fear responses. Behav Res Ther 6:309–321PubMedCrossRefGoogle Scholar
  47. File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463:35–53PubMedCrossRefGoogle Scholar
  48. Fodor A, Barsvari B, Aliczki M, Balogh Z, Zelena D, Goldberg SR, Haller J (2014) The effects of vasopressin deficiency on aggression and impulsiveness in male and female rats. Psychoneuroendocrinology 47:141–150PubMedCrossRefGoogle Scholar
  49. Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304:881–883PubMedCrossRefGoogle Scholar
  50. Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, Pitman RK (2002) Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 5:1242–1247PubMedPubMedCentralCrossRefGoogle Scholar
  51. Golden SA, Covington HE 3rd, Berton O, Russo SJ (2011) A standardized protocol for repeated social defeat stress in mice. Nat Protoc 6:1183–1191PubMedPubMedCentralCrossRefGoogle Scholar
  52. Goshen I, Brodsky M, Prakash R, Wallace J, Gradinaru V, Ramakrishnan C, Deisseroth K (2011) Dynamics of retrieval strategies for remote memories. Cell 147:678–689PubMedCrossRefGoogle Scholar
  53. Hammamieh R, Chakraborty N, De Lima TC, Meyerhoff J, Gautam A, Muhie S, D’Arpa P, Lumley L, Carroll E, Jett M (2012) Murine model of repeated exposures to conspecific trained aggressors simulates features of post-traumatic stress disorder. Behav Brain Res 235:55–66PubMedCrossRefGoogle Scholar
  54. Han F, Yan S, Shi Y (2013) Single-prolonged stress induces endoplasmic reticulum-dependent apoptosis in the hippocampus in a rat model of post-traumatic stress disorder. PLoS One 8:e69340PubMedPubMedCentralCrossRefGoogle Scholar
  55. Harvey BH, Brand L, Jeeva Z, Stein DJ (2006) Cortical/hippocampal monoamines, HPA-axis changes and aversive behavior following stress and restress in an animal model of post-traumatic stress disorder. Physiol Behav 87:881–890PubMedCrossRefGoogle Scholar
  56. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM et al (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468:270–276PubMedPubMedCentralCrossRefGoogle Scholar
  57. Herry C, Johansen JP (2014) Encoding of fear learning and memory in distributed neuronal circuits. Nat Neurosci 17:1644–1654PubMedCrossRefGoogle Scholar
  58. Imanaka A, Morinobu S, Toki S, Yamawaki S (2006) Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav Brain Res 173:129–137PubMedCrossRefGoogle Scholar
  59. Johnson LR, McGuire J, Lazarus R, Palmer AA (2012) Pavlovian fear memory circuits and phenotype models of PTSD. Neuropharmacology 62:638–646PubMedCrossRefGoogle Scholar
  60. Jovanovic T, Kazama A, Bachevalier J, Davis M (2012) Impaired safety signal learning may be a biomarker of PTSD. Neuropharmacology 62:695–704PubMedCrossRefGoogle Scholar
  61. Kedia S, Chattarji S (2014) Marble burying as a test of the delayed anxiogenic effects of acute immobilisation stress in mice. J Neurosci Methods 233:150–154PubMedCrossRefGoogle Scholar
  62. Keeley RJ, Bye C, Trow J, McDonald RJ (2015) Strain and sex differences in brain and behaviour of adult rats: learning and memory, anxiety and volumetric estimates. Behav Brain Res 288:118–131PubMedCrossRefGoogle Scholar
  63. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB (1995) Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry 52:1048–1060PubMedCrossRefGoogle Scholar
  64. Keum S, Park J, Kim A, Park J, Kim KK, Jeong J, Shin HS (2016) Variability in empathic fear response among 11 inbred strains of mice. Genes Brain Behav 15:231–242PubMedCrossRefGoogle Scholar
  65. Khan S, Liberzon I (2004) Topiramate attenuates exaggerated acoustic startle in an animal model of PTSD. Psychopharmacology (Berl) 172:225–229CrossRefGoogle Scholar
  66. Knox D, George SA, Fitzpatrick CJ, Rabinak CA, Maren S, Liberzon I (2012) Single prolonged stress disrupts retention of extinguished fear in rats. Learn Mem 19:43–49PubMedPubMedCentralCrossRefGoogle Scholar
  67. Koolhaas JM, Coppens CM, de Boer SF, Buwalda B, Meerlo P, Timmermans PJ (2013) The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J Vis Exp e4367Google Scholar
  68. Kozlovsky N, Matar MA, Kaplan Z, Kotler M, Zohar J, Cohen H (2007) Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response. Int J Neuropsychopharmacol 10:741–758PubMedCrossRefGoogle Scholar
  69. Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7:121–147PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lebow M, Neufeld-Cohen A, Kuperman Y, Tsoory M, Gil S, Chen A (2012) Susceptibility to PTSD-like behavior is mediated by corticotropin-releasing factor receptor type 2 levels in the bed nucleus of the stria terminalis. J Neurosci 32:6906–6916PubMedCrossRefGoogle Scholar
  71. Lehner M, Wislowska-Stanek A, Maciejak P, Szyndler J, Sobolewska A, Krzascik P, Plaznik A (2010) The relationship between pain sensitivity and conditioned fear response in rats. Acta Neurobiol Exp (Wars) 70:56–66Google Scholar
  72. Lin CC, Tung CS, Liu YP (2016) Escitalopram reversed the traumatic stress-induced depressed and anxiety-like symptoms but not the deficits of fear memory. Psychopharmacology (Berl) 233(7):1135–1146CrossRefGoogle Scholar
  73. Liu D, Xiao B, Han F, Wang E, Shi Y (2012a) Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder. BMC Psychiatry 12:211PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012b) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–385PubMedPubMedCentralCrossRefGoogle Scholar
  75. Louvart H, Maccari S, Ducrocq F, Thomas P, Darnaudery M (2005) Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinology 30:316–324PubMedCrossRefGoogle Scholar
  76. Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35:24–35PubMedCrossRefGoogle Scholar
  77. Mar AC, Robbins TW (2007) Delay discounting and impulsive choice in the rat. Curr Protoc Neurosci Chapter 8, Unit 8 22Google Scholar
  78. Marschner A, Kalisch R, Vervliet B, Vansteenwegen D, Buchel C (2008) Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. J Neurosci 28:9030–9036PubMedCrossRefGoogle Scholar
  79. Matar MA, Cohen H, Kaplan Z, Zohar J (2006) The effect of early poststressor intervention with sertraline on behavioral responses in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 31:2610–2618PubMedCrossRefGoogle Scholar
  80. Matar MA, Zohar J, Cohen H (2013) Translationally relevant modeling of PTSD in rodents. Cell Tissue Res 354:127–139PubMedCrossRefGoogle Scholar
  81. McCormick CM, Green MR (2013) From the stressed adolescent to the anxious and depressed adult: investigations in rodent models. Neuroscience 249:242–257PubMedCrossRefGoogle Scholar
  82. Meerlo P, Easton A, Bergmann BM, Turek FW (2001) Restraint increases prolactin and REM sleep in C57BL/6 J mice but not in BALB/cJ mice. Am J Physiol Regul Integr Comp Physiol 281:R846–R854PubMedCrossRefGoogle Scholar
  83. Mesches MH, Fleshner M, Heman KL, Rose GM, Diamond DM (1999) Exposing rats to a predator blocks primed burst potentiation in the hippocampus in vitro. J Neurosci 19:RC18PubMedCrossRefGoogle Scholar
  84. Mikics E, Baranyi J, Haller J (2008a) Rats exposed to traumatic stress bury unfamiliar objects—a novel measure of hyper-vigilance in PTSD models? Physiol Behav 94:341–348PubMedCrossRefGoogle Scholar
  85. Mikics E, Toth M, Varju P, Gereben B, Liposits Z, Ashaber M, Halasz J, Barna I, Farkas I, Haller J (2008b) Lasting changes in social behavior and amygdala function following traumatic experience induced by a single series of foot-shocks. Psychoneuroendocrinology 33:1198–1210PubMedCrossRefGoogle Scholar
  86. Milad MR, Quirk GJ (2012) Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol 63:129–151PubMedPubMedCentralCrossRefGoogle Scholar
  87. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, Zeidan MA, Handwerger K, Orr SP, Rauch SL (2009) Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry 66:1075–1082PubMedPubMedCentralCrossRefGoogle Scholar
  88. Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci U S A 102:9371–9376PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mitra R, Adamec R, Sapolsky R (2009) Resilience against predator stress and dendritic morphology of amygdala neurons. Behav Brain Res 205:535–543PubMedPubMedCentralCrossRefGoogle Scholar
  90. Moore NL, Gauchan S, Genovese RF (2012) Differential severity of anxiogenic effects resulting from a brief swim or underwater trauma in adolescent male rats. Pharmacol Biochem Behav 102:264–268PubMedCrossRefGoogle Scholar
  91. Moser MB, Moser EI (1998) Distributed encoding and retrieval of spatial memory in the hippocampus. J Neurosci 18:7535–7542PubMedCrossRefGoogle Scholar
  92. Muhie S, Gautam A, Meyerhoff J, Chakraborty N, Hammamieh R, Jett M (2015) Brain transcriptome profiles in mouse model simulating features of post-traumatic stress disorder. Mol Brain 8:14PubMedPubMedCentralCrossRefGoogle Scholar
  93. Norrholm SD, Jovanovic T, Olin IW, Sands LA, Karapanou I, Bradley B, Ressler KJ (2011) Fear extinction in traumatized civilians with posttraumatic stress disorder: relation to symptom severity. Biol Psychiatry 69:556–563PubMedCrossRefGoogle Scholar
  94. O'Doherty DC, Chitty KM, Saddiqui S, Bennett MR, Lagopoulos J (2015) A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res 232:1–33PubMedCrossRefGoogle Scholar
  95. Olson VG, Rockett HR, Reh RK, Redila VA, Tran PM, Venkov HA, Defino MC, Hague C, Peskind ER, Szot P, Raskind MA (2011) The role of norepinephrine in differential response to stress in an animal model of posttraumatic stress disorder. Biol Psychiatry 70:441–448PubMedPubMedCentralCrossRefGoogle Scholar
  96. Parsons RG, Ressler KJ (2013) Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci 16:146–153PubMedPubMedCentralCrossRefGoogle Scholar
  97. Pawlyk AC, Morrison AR, Ross RJ, Brennan FX (2008) Stress-induced changes in sleep in rodents: models and mechanisms. Neurosci Biobehav Rev 32:99–117PubMedCrossRefGoogle Scholar
  98. Perrine SA, Eagle AL, George SA, Mulo K, Kohler RJ, Gerard J, Harutyunyan A, Hool SM, Susick LL, Schneider BL et al (2016) Severe, multimodal stress exposure induces PTSD-like characteristics in a mouse model of single prolonged stress. Behav Brain Res 303:228–237PubMedCrossRefGoogle Scholar
  99. Philbert J, Pichat P, Beeske S, Decobert M, Belzung C, Griebel G (2011) Acute inescapable stress exposure induces long-term sleep disturbances and avoidance behavior: a mouse model of post-traumatic stress disorder (PTSD). Behav Brain Res 221:149–154PubMedCrossRefGoogle Scholar
  100. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285PubMedCrossRefGoogle Scholar
  101. Pulliam JV, Dawaghreh AM, Alema-Mensah E, Plotsky PM (2010) Social defeat stress produces prolonged alterations in acoustic startle and body weight gain in male Long Evans rats. J Psychiatr Res 44:106–111PubMedCrossRefGoogle Scholar
  102. Pynoos RS, Ritzmann RF, Steinberg AM, Goenjian A, Prisecaru I (1996) A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biol Psychiatry 39:129–134PubMedCrossRefGoogle Scholar
  103. Quirk GJ, Pare D, Richardson R, Herry C, Monfils MH, Schiller D, Vicentic A (2010) Erasing fear memories with extinction training. J Neurosci 30:14993–14997PubMedPubMedCentralCrossRefGoogle Scholar
  104. Richter-Levin G (1998) Acute and long-term behavioral correlates of underwater trauma—potential relevance to stress and post-stress syndromes. Psychiatry Res 79:73–83PubMedCrossRefGoogle Scholar
  105. Risbrough VB, Glenn DE, Baker DG (2016) On the road to translation for PTSD treatment: theoretical and practical considerations of the use of human models of conditioned fear for drug development. Curr Top Behav Neurosci 28:173–196PubMedCrossRefGoogle Scholar
  106. Ritov G, Boltyansky B, Richter-Levin G (2016) A novel approach to PTSD modeling in rats reveals alternating patterns of limbic activity in different types of stress reaction. Mol Psychiatry 21(5):630–641. doi: 10.1038/mp.2015.169 CrossRefPubMedGoogle Scholar
  107. Roozendaal B, Hui GK, Hui IR, Berlau DJ, McGaugh JL, Weinberger NM (2006) Basolateral amygdala noradrenergic activity mediates corticosterone-induced enhancement of auditory fear conditioning. Neurobiol Learn Mem 86:249–255PubMedCrossRefGoogle Scholar
  108. Rozeske RR, Valerio S, Chaudun F, Herry C (2015) Prefrontal neuronal circuits of contextual fear conditioning. Genes Brain Behav 14:22–36PubMedCrossRefGoogle Scholar
  109. Rygula R, Abumaria N, Domenici E, Hiemke C, Fuchs E (2006) Effects of fluoxetine on behavioral deficits evoked by chronic social stress in rats. Behav Brain Res 174:188–192PubMedCrossRefGoogle Scholar
  110. Sandi C, Woodson JC, Haynes VF, Park CR, Touyarot K, Lopez-Fernandez MA, Venero C, Diamond DM (2005) Acute stress-induced impairment of spatial memory is associated with decreased expression of neural cell adhesion molecule in the hippocampus and prefrontal cortex. Biol Psychiatry 57:856–864PubMedCrossRefGoogle Scholar
  111. Sanford LD, Yang L, Wellman LL, Liu X, Tang X (2010) Differential effects of controllable and uncontrollable footshock stress on sleep in mice. Sleep 33:621–630PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sareen J (2014) Posttraumatic stress disorder in adults: impact, comorbidity, risk factors, and treatment. Can J Psychiatry 59:460–467PubMedPubMedCentralCrossRefGoogle Scholar
  113. Schaap MW, van Oostrom H, Doornenbal A, van’t Klooster J, Baars AM, Arndt SS, Hellebrekers LJ (2013) Nociception and conditioned fear in rats: strains matter. PLoS One 8:e83339PubMedPubMedCentralCrossRefGoogle Scholar
  114. Sharma S, Rakoczy S, Brown-Borg H (2010) Assessment of spatial memory in mice. Life Sci 87:521–536PubMedCrossRefGoogle Scholar
  115. Shoji H, Takao K, Hattori S, Miyakawa T (2014) Contextual and cued fear conditioning test using a video analyzing system in mice. J Vis Exp (85). doi: 10.3791/50871
  116. Siegmund A, Wotjak CT (2006) Toward an animal model of posttraumatic stress disorder. Ann N Y Acad Sci 1071:324–334PubMedCrossRefGoogle Scholar
  117. Siegmund A, Wotjak CT (2007a) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J Psychiatr Res 41:848–860PubMedCrossRefGoogle Scholar
  118. Siegmund A, Wotjak CT (2007b) Hyperarousal does not depend on trauma-related contextual memory in an animal model of posttraumatic stress disorder. Physiol Behav 90:103–107PubMedCrossRefGoogle Scholar
  119. Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ (2015) Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 149:150–190PubMedCrossRefGoogle Scholar
  120. Steckler T, Risbrough V (2012) Pharmacological treatment of PTSD—established and new approaches. Neuropharmacology 62:617–627PubMedCrossRefGoogle Scholar
  121. Stein MB, Kline NA, Matloff JL (2002) Adjunctive olanzapine for SSRI-resistant combat-related PTSD: a double-blind, placebo-controlled study. Am J Psychiatry 159:1777–1779PubMedCrossRefGoogle Scholar
  122. Stiedl O, Radulovic J, Lohmann R, Birkenfeld K, Palve M, Kammermeier J, Sananbenesi F, Spiess J (1999) Strain and substrain differences in context- and tone-dependent fear conditioning of inbred mice. Behav Brain Res 104:1–12PubMedCrossRefGoogle Scholar
  123. Takahashi LK (2014) Olfactory systems and neural circuits that modulate predator odor fear. Front Behav Neurosci 8:72PubMedPubMedCentralCrossRefGoogle Scholar
  124. Takahashi T, Morinobu S, Iwamoto Y, Yamawaki S (2006) Effect of paroxetine on enhanced contextual fear induced by single prolonged stress in rats. Psychopharmacology (Berl) 189:165–173CrossRefGoogle Scholar
  125. Toth M, Flandreau EI, Deslauriers J, Geyer MA, Mansuy IM, Merlo Pich E, Risbrough VB (2016) Overexpression of forebrain CRH during early life increases trauma susceptibility in adulthood. Neuropsychopharmacology 41:1681–1690PubMedCrossRefGoogle Scholar
  126. Tulogdi A, Soros P, Toth M, Nagy R, Biro L, Aliczki M, Klausz B, Mikics E, Haller J (2012) Temporal changes in c-Fos activation patterns induced by conditioned fear. Brain Res Bull 88:359–370PubMedCrossRefGoogle Scholar
  127. Vanderheyden WM, George SA, Urpa L, Kehoe M, Liberzon I, Poe GR (2015) Sleep alterations following exposure to stress predict fear-associated memory impairments in a rodent model of PTSD. Exp Brain Res 233:2335–2346PubMedPubMedCentralCrossRefGoogle Scholar
  128. VanElzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM (2014) From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem 113:3–18PubMedCrossRefGoogle Scholar
  129. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858PubMedPubMedCentralCrossRefGoogle Scholar
  130. Vouimba RM, Munoz C, Diamond DM (2006) Differential effects of predator stress and the antidepressant tianeptine on physiological plasticity in the hippocampus and basolateral amygdala. Stress 9:29–40PubMedCrossRefGoogle Scholar
  131. Wang W, Liu Y, Zheng H, Wang HN, Jin X, Chen YC, Zheng LN, Luo XX, Tan QR (2008) A modified single-prolonged stress model for post-traumatic stress disorder. Neurosci Lett 441:237–241PubMedCrossRefGoogle Scholar
  132. Warren BL, Vialou VF, Iniguez SD, Alcantara LF, Wright KN, Feng J, Kennedy PJ, Laplant Q, Shen L, Nestler EJ, Bolanos-Guzman CA (2013) Neurobiological sequelae of witnessing stressful events in adult mice. Biol Psychiatry 73:7–14PubMedCrossRefGoogle Scholar
  133. Woodson JC, Macintosh D, Fleshner M, Diamond DM (2003) Emotion-induced amnesia in rats: working memory-specific impairment, corticosterone-memory correlation, and fear versus arousal effects on memory. Learn Mem 10:326–336PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wu Z, Tian Q, Li F, Gao J, Liu Y, Mao M, Liu J, Wang S, Li G, Ge D et al (2016) Behavioral changes over time in post-traumatic stress disorder: insights from a rat model of single prolonged stress. Behav Processes 124:123–129PubMedCrossRefGoogle Scholar
  135. Yamamoto S, Morinobu S, Takei S, Fuchikami M, Matsuki A, Yamawaki S, Liberzon I (2009) Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress Anxiety 26:1110–1117PubMedCrossRefGoogle Scholar
  136. Yehuda R, Antelman SM (1993) Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biol Psychiatry 33:479–486PubMedCrossRefGoogle Scholar
  137. Yehuda R, Southwick SM, Krystal JH, Bremner D, Charney DS, Mason JW (1993) Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. Am J Psychiatry 150:83–86PubMedCrossRefGoogle Scholar
  138. Yehuda R, Yang RK, Buchsbaum MS, Golier JA (2006) Alterations in cortisol negative feedback inhibition as examined using the ACTH response to cortisol administration in PTSD. Psychoneuroendocrinology 31:447–451PubMedCrossRefGoogle Scholar
  139. Zoladz PR, Conrad CD, Fleshner M, Diamond DM (2008) Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder. Stress 11:259–281PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zoladz PR, Fleshner M, Diamond DM (2012) Psychosocial animal model of PTSD produces a long-lasting traumatic memory, an increase in general anxiety and PTSD-like glucocorticoid abnormalities. Psychoneuroendocrinology 37:1531–1545PubMedCrossRefGoogle Scholar
  141. Zoladz PR, Fleshner M, Diamond DM (2013) Differential effectiveness of tianeptine, clonidine and amitriptyline in blocking traumatic memory expression, anxiety and hypertension in an animal model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry 44:1–16PubMedCrossRefGoogle Scholar
  142. Zoladz PR, Park CR, Fleshner M, Diamond DM (2015) Psychosocial predator-based animal model of PTSD produces physiological and behavioral sequelae and a traumatic memory four months following stress onset. Physiol Behav 147:183–192PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Grand Valley State UniversityAllendaleUSA
  2. 2.Department of Behavioral Neurobiology, Hungarian Academy of SciencesInstitute of Experimental MedicineBudapestHungary

Personalised recommendations